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    Abstract- Whistler mode instability in interplanetary space at 

1AU(Astronomical Unit) is investigated using an anisotropic 

Lorentzian Kappa distribution with perpendicular AC electric 

field for  relativistic plasma. The method of characteristic 

solutions using the perturbed and unperturbed particle 

trajectories have been used to determine the perturbed 

distribution function. The conductivities and dielectric tensors 

are then determined and used to obtain the dispersion relation. 

The special case of whistler mode dispersion is then use to 

determine the growth rates for various plasma parameters.  

Present studies are helpful in making estimates on high energetic 

plasma particles and properties of whistler mode waves and thus 

contribute to a better understanding of the auroral activity in the 

planetary atmospheres. 

 

    Index Terms- Whistler mode instability for relativistic plasma 

Lorentzian Kappa 

I. INTRODUCTION 

histler mode waves have been a common feature of 

spectrum wave observations at Earth's bow shock for 

many years [Heppner et al. 1967; Fair 1974]. It has been shown 

that whistler wave can be excited through the application of 

electron beams gyro phase bunching ions [Gurgiolo et al., 1993] 

and wave steeping
 
[ Hoppe  and Russell 1980]. Whistler waves at 

spacecraft frequency between 1 and 7 Hz have been reported 

upstream of Earth
 

[Hoppe et al., 1982]. While there are 

observations of whistler waves propagating parallel to the 

interplanetary magnetic field, most reported whistler wave 

observations and generation theories involve highly oblique 

propagation. Whistler mode waves have also been observed in 

commentary foreshocks and are thought to arise from the same 

mechanisms as above
 
[Tsurutani et al., 1987]. It is also reported 

that the whistler mode can be driven by electron temperature 

anisotropy
 
[Kennel and Petschek 1966]. 

    Higher frequency whistler wave activity has also been 

observed upstream of the Earth's bow shock by plasma wave 

analysis. These waves possess spacecraft frame frequencies from 

approximately 10 to 100Hz and are generally synchronous with 

plasma oscillations at the electron plasma frequency [Anderson 

et al., 1981; Greenstadt et al., 1981; Toker et al., 1984]. Tokar 

and Gurnett [1985] argued that these waves, when observed with 

the shock ramp result from electron beams with high thermal 

anisotropy and beam velocities directed towards the 

magnetosheath [Feldman et al., 1983]. Similarly high frequency 

whistler waves have been observed by (International Sun Earth 

Explorer) ISEE 3 in the distant upstream plasma
 
[Kennel et al., 

1985]. These waves are also coincident with electron plasma 

oscillations and they possibly result from streaming electrons 

with a solar wind, rather than a bow shock origin in accordance 

with the instability analysis of Gary and Feldman
 

[1977]. 

Orlowski et al [1990] suggest that whistler waves observed in 

planetary foreshocks may not be the result of in situ generation, 

but rather these observations may simply result from propagation 

away from the shock.  

    Whistler waves excited by an electron using kappa distribution 

and an anisotropic bi-maxwellian distribution functions in space 

plasma have been studied by using the one dimensional particle 

simulation technique and confirmed the result of linear and non-

linear theory [Lu Quanming et al., 2010; 2004]. The study of 

thermal velocity of superathermal electron has been done by 

Vasyliunas [1968] using the observation of satellite data of 

OGO1 and OGO3 in the magnetosphere. 

    Electric field measurements at magnetospheric heights and 

shock region have given values of AC electric field along and 

perpendicular to Earth's magnetic field [ Mozer et al., 1978 

;Wygant et al., 1987; Lindquist and Mozer 1990; Pandey et al., 

2008; Misra and Pandey 1995]. Various authors have discussed 

the role of parallel DC and AC electric fields on the whistler 

mode instability in the magnetosphere by generally adopting 

plasma dispersion function which is based on anisotropic 

Maxwellian distributions to describe the resonant population 

[Misra and Singh  1980; Pandey et al., 2002A Pandey et al., 

2002B]. However in the natural space environment, plasma is 

generally observed to possess a non-Maxwellian high-energy tail 

that can be well modeled by a generalized Lorentzian (Kappa) 

distribution function containing a spectral index κ. The 

Maxwellian and kappa distributions differ substantially in the 

high-energy tail but differences become less significant for 

higher values of Kappa [ Pandey et al., 2008; Pandey et al., 

2001]. Motivated by these studies whistler mode instability has 

been analyzed in this paper for relativistic plasma in the presence 

of perpendicular a.c. electric field using kappa distribution in the 

interplanetary space at 1AU.  

 

II. DISPERSION RELATIONS AND GROWTH RATE 

 

    Homogeneous anisotropic collisionless plasma in the presence 

of an external magnetic field z00 êBB 
 and an electric field 

xx etEE ˆsin00 
 is assumed. The in- homogeneity is 

assumed to be small in interaction zone. In order to obtain the 

particle trajectories, perturbed distribution function and 

dispersion relation, the linearised Vlasov-Maxwell equations are 

used. Separating the equilibrium and non equilibrium parts, 

neglecting the higher order terms and following the techniques of 

W 
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Pandey et. a1 [2005] the linearized Vlasov equations are given 

as:  
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Where   is AC field frequency, E0 = magnitude of AC electric 

field and  
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where s denotes the type of electrons. Subscript '0' denotes the 

equilibrium values. The perturbed distribution function f1 is 

determined by using the method of characteristic, which is  
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Transformed the phase space coordinate system for (r, v, t) to (r0, 

v0,t - t').The relativistic particle trajectories that have been 

obtained by solving equation (3) for given external field 

configuration are 
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Where
θ

angle of projection, zP P and are being 

perpendicular and parallel momentum and the velocities are 
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Using equation (5), (6) and the Bessel identity then performing 

the time integration, following the technique and method of 

Misra and Pandey [1995] and Pandey et al.,[2008], the perturbed 

distribution function is found after some lengthy algebraic 

simplifications as : 
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Due to the phase factor the solution is possible when m = n.  

 

Here. 
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and the Bessel function arguments are defined as  
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The conductivity tensor |||| is found to be  
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By using these in the Maxwell's equations we get the dielectric 

tensor, 
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For parallel propagating whistler mode instability, the general 

dispersion relation reduces to 
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The dispersion relation for relativistic case with perpendicular 

AC electric field for g= o, p = 1, n = 1 is written as: 
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The bi-Lorentzian Kappa distribution function is given as  
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θ|| and θ┴  are respective thermal speeds parallel and 

perpendicular to the background magnetic field and is defined as 
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Substituting and using equation (13), (14) and doing integration 

by parts the dispersion relation is found as: 
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Doing some lengthy integrals the general dispersion relation 

becomes 
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Where, 
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For real k and substituting 

1
ω

ck
2

22


 

 

And using the expression of modified dispersion function 

Summers &Thorne [1991] Z
*
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For |ξ| → ∞ 

The expression for growth rate for real frequency r in 

dimensionless form is found to be  
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Where 
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                                                  . 

When the relativistic factor is not considered, that is when the 

velocity of plasma does not approach velocity of light, Then ms = 

me and the expressions for Growth rate and real frequency reduce 

to Pandey et al.,[2005]. 

 

III. RESULTS AND DISCUSSION    

    For numerical evaluation of normalized growth rate and real 

frequency of relativistic whistler mode in the presence of 

perpendicular AC electric field has been analyzed for Kappa 

distribution function of electron density for inter planetary space 

at 1AU.  

    Following plasma parameters have been taken from Pandey et 

al [2005] B0 = 8 x 10
-9

T, AT= [(T/T||)   – 1] = 0.25, 0.5, 0.75, κ= 

2,3,4, relativistic factor b1 = v/c= 0.3, 0.6, 0.9, E0 = 20 mV/m. AC 

field frequency  varies from zero to 400 Hz. According to this 

choice of plasma parameters, the explanations and details of 

results are given as follows. Fig. 1 depicts the variation of 

normalized growth rate and real frequency with respect to 

normalized k  for various values of temperature anisotropy for 

kappa distribution index κ= 2. At this location the growth rate as 

well as the bandwidth increases with the increase of the 

temperature anisotropy and maxima is shifted towards the higher 

k  values. It is clear from the figure that the temperature 

anisotropy is the main source of energy to drive the excitation of 

the wave. Lorentzian (Kappa) plasma series expansion brings 
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change in perpendicular thermal velocity θ┴. Therefore any 

change in θ┴ shall affect marginally T┴ , affecting temperature 

anisotropy terms. Temperature anisotropy being the primary 

source of instability gets further modified by Lorentzian (Kappa) 

distribution function, giving rise to further increase in growth 

rate. Recently it was found that suprathermal electron in Kappa 

distribution modifies the intensity and Doppler frequency of 

electron plasma lines. The inclusion of temperature anisotropy in 

Lorentzian (Kappa) plasma can explain the observed higher 

frequencies spectrum of whistler waves [Pandey et al.,2008]. 

Figure 2 shows the variation of growth rate and real frequency 

for various values of number density and other fixed plasma 

parameters. The growth rate increases as density increases. The 

maxima shifts to higher values of k. Fig. 3 exhibits variation of 

normalized growth rate and real frequency versus k  for various 

values of the thermal energy of electron at other fixed plasma 

parameters. The depressive’s properties of the whistler waves are 

known to dependent sensitivity on the density and composition 

of thermal energy of plasma it is clear as the growth rate as well 

as the band width increases with the increase of thermal velocity 

of electron. Fig. 4 shows the variation of normalized growth rate 

and real frequency with k  for variation of the relativistic factor 

b1 = (v/c). With the increase of the relativistic factor the growth 

rate increases and the bandwidth widens. This shows that the 

velocity of the energetic electrons have triggering effect on the 

growth of the wave. 

    Fig. 5 Shows the variation of normalized growth rate and real 

frequency with k  for various values of spectral index κ. The 

growth rate increases and bandwidth shrinks towards higher 

wave number for increasing the value of κ. For κ →∞ the value 

of normalized growth rate approaches the value of growth rate 

for Maxwellian distribution function. This effect remains 

basically applicable to the Lorentzian (Kappa) plasma also, 

except that the limit of temperature anisotropy in this case is little 

higher because of series solution involving κ. Fig. 6 Shows 

variation of normalized growth rate and real frequency versus k  

for various values of AC electric field frequency for other fixed 

plasma parameters. The growth rate increases with increase of 

the value of a.c. frequency, maxima shifts to lower values of k . 

it means that the a.c. frequency modifies resonance frequency. 

The increase of AC frequency increases the growth rate due to 

the negative exponential of Landau damping. The perpendicular 

electric field that modifies the perpendicular velocity 

contributing to the energy exchange contributes significantly to 

the emission of VLF signals and can explain the low frequency 

side of the spectrum. The energy exchange between electrons, 

the components of the wave electric field and the impressed AC 

field perpendicular to the magnetic field mainly contributes to 

the cyclotron growth or the damping of the waves. 

    Thus the frequency of the perpendicular AC electric field 

brings the maxima to different k  as if the resonant charged 

particles were oscillating at different cyclotron frequencies and 

absorbing energy and thus growing. 

 

Fig. 1 Variation of growth rate (solid line) and real frequency 

(dotted line) with respect to k  for various values of temperature 

anisotropy at other fixed plasma parameters. 

 

 

 
Fig. 2 Variation of growth rate (solid line) and real frequency 

(dotted line) with respect to k  for various values of number 

density anisotropy at other fixed plasma parameters. 
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Fig. 3 Variation of growth rate (solid line) and real frequency 

(dotted line) with respect to k  for various values of thermal 

energy at other fixed plasma parameters. 

 

 
Fig. 4 Variation of growth rate (solid line) and real frequency 

(dotted line) with respect to k  for various values of relativistic 

factor at other fixed plasma parameters. 

 

 
Fig. 5 Variation of growth rate (solid line) and real frequency 

(dotted line) with respect to k  for various values of spectral 

index at other fixed plasma parameters. 

 

 
Fig. 6 Variation of growth rate (solid line) and real frequency 

(dotted line) with respect to k  for various valuesof frequency of 

a.c. field at other fixed plasma parameters. 

 

IV. CONCLUSION 

    The normalized growth rates have been evaluated for plasma 

parameters suited in interplanetary space at 1AU. The method of 

characteristics solution and kinetic approach has been used for 

the derivation of dispersion relation and growth rate. The effects 

of AC. frequency and relativistic factor will discuss in the light 

of Kappa distribution function. The velocity of background 

plasma has been considered in the order of velocity of light, so 

the relativistic approach of mass changing with velocity has been 

taken in account. Thus changing the mathematical treatment 

from velocity to momentum form in detail, an expression for the 

growth rate of the system has been calculated and the results for 

representative values of the parameters suited to bow shock 

region at 1AU has been obtained. It is inferred that A.C. field 

frequency modifies the resonance criteria, which influences the 

growth rate. Also the growth rate increases by increasing the 

number density of cold plasma and temperature anisotropy. 

Plasma particles having higher Kappa spectral index provide 

additional source of energy. In addition to the other factors the 

relativistic plasma modifies the growth rate and also shifts the 

wave band significantly. The relativistic electrons by increasing 

the growth rate and widening the bandwidth may explain a wide 

frequency range of whistler emissions in the Earth’s 

magnetosphere.  
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