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Abstract

Individual artificial intelligence systems face an inherent trade-off between plasticity and stability under resource constraints. We
propose that general intelligence emerges from networks of specialized agents applying a structured reasoning cycle to answer four
fundamental questions: (1) What is changing vs. fixed? (2) What punishes/rewards me? (3) What happens if | interact with salient
variables? (4) What rule explains this across contexts? Agents ground abstract patterns through affective valence embeddings and
coordinate via a shared database of credibility-weighted knowledge packages. We formalize a five-stage reasoning engine (Salience
Detection — Hypothesis Generation — Experimentation — Structural Correspondence — Generalization) where agents at different
stages specialize in different questions, enabling zero-shot cross-domain transfer. Using ARC-AGI task "as66" as demonstration, we
show 276 generations of evolutionary learning where complementary specialization yields sustained Level 2 performance. Our
framework provides testable predictions for performance scaling, transfer capability, and behavioral signatures of reasoning integration.

Scope: This paper presents an architectural framework with preliminary evidence from a single task family; extensive empirical
validation across diverse benchmarks remains future work.

1. Introduction

1.1 The Plasticity-Stability Trade-off

Modern machine learning systems exhibit catastrophic forgetting when trained continuously on new data, while fixed training prevents
adaptation to novel domains [1][2]. We model this as a resource constraint (not a proven theorem): under finite computational
resources R, learning capacity L(t) and stability S(t) approximately satisfy:

L(t)+S(H)sR

This inequality is a modeling assumption serving as an intuition pump for understanding bounded-resource learning systems. It captures
the observed empirical trade-off but should not be interpreted as a formal derivation. Biological systems address this constraint through
specialization at the individual level and generality at the collective level [3].

1.2 The Question-Driven Reasoning Hypothesis

We propose that cross-domain intelligence emerges from agents systematically answering four fundamental questions:

Q1: What is changing Vs, what is fixed?
Function: Pattern detection, invariance mapping, variable identification

Q2: What punishes me and what rewards me?
Function: Value grounding, hypothesis priming via outcomes
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Q3: What happens if | interact with the most salient variable?
Function: Causal inference through targeted experimentation

Q4: What rule explains this across contexts?
Function: Abstraction extraction, transfer readiness

These questions map to a five-stage reasoning cycle that agents traverse at different speeds based on their role. The reasoning engine
is the intelligence mechanism; memory integration and database infrastructure support this reasoning process.

1.3 Core Claims

Claim 1: Cross-domain transfer emerges from agents answering Q1-Q4 in novel domains using knowledge extracted from previous
domains.

Claim 2: Role specialization enables efficient reasoning: Pioneers focus on Q1-Q2 (exploration), Optimizers focus on Q3 (refinement),
Generalists focus on Q4 (abstraction).

Claim 3: Affective sensations ground abstract patterns in agent-specific value contexts, enabling semantic transfer across structurally
dissimilar domains.

Claim 4: Network performance exceeds individual capability when agents with complementary reasoning stages share knowledge
through a persistent database.

1.4 Formal Scope and Limitations
This paper presents:

« An architectural framework for distributed reasoning with testable components

* Preliminary evidence from ARC-AGI task "as66" (single task family, 276 generations, ~60 agents per generation across 6 available
games)

« Design choices (not derivations) for credibility evolution and weighting updates
» Hypotheses about transfer and scaling (not proofs)

This paper does not claim:

» Complete solutions to AGI or alignment
» Mathematical proofs of optimality
* Validation across diverse task distributions (future work)

* Superiority to all existing RL methods without empirical comparison

Current evidence comes from one task family on the ARC-AGI benchmark [11]. Generalization to other domains requires extensive
future validation.

1.4 Assumptions

1. Shared database: Strong consistency simplifies coherence (scalability trade-off accepted)
2. Finite agent resources: Bounded computation per time unit

3. Local reasoning: Agents cannot directly access other agents' private state

4. No global oracle: No supervisor with complete system knowledge

5. Verifiable rewards: Success signals must be externally verifiable (RLVR, not pure RL)

2. Related Work
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Multi-agent reinforcement learning [4] demonstrates emergent coordination through learned communication. Our contribution is
formalizing explicit reasoning cycles rather than purely emergent protocols.

Continual learning [5][6] addresses catastrophic forgetting through architectural expansion. We embrace agent-level specialization

with system-level memory persistence.

Analogical reasoning [7] studies cross-domain transfer via structural mapping. We operationalize this through sensation-grounded
package tagging and the four-question framework.

Horizontal gene transfer [8] in microbial populations enables rapid adaptation. We apply this principle: knowledge packages spread

independently of agent lifecycles.

Integrated Information Theory [9] and Global Workspace Theory [10] provide abstract models of consciousness. We provide
concrete computational mechanisms with testable predictions.

3. The Reasoning Engine

3.1 The Five-Stage Cycle

Definition 3.1 (Reasoning Stages): Agents traverse five stages, each addressing specific questions:

Stage

Stage 1: Salience Detection

Stage 2: Hypothesis Generation

Stage 3: Experimentation

Stage 4: Structural

Correspondence

Stage 5: Generalization

3.2 Question Formalization

Q1: What is changing vs. fixed?

Primary Questions

Q1 (changing vs. fixed)

Q2 (punish/reward)
Q3 (interaction
outcomes)

Q3 (refinement)

Q4 (cross-context rules)
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Salience(xt)=||Axt||-I[novelty(xt)>6novel]

where Axt=xt—xt—1 and novelty measures distance from known patterns. Fixed features satisfy Axt=0 over observation window.
Q2: What punishes/rewards me?

For stimulus s and outcome o, agents build affective mapping:

V(s)=E[reward|s]=N21i=1) Nri-I[secontexti]

This is value grounding without explicit causal modeling—direct sensation-outcome association.

Q3: What happens if I interact with X?

Causal inference via intervention:

Effect(do(a),s)=p(s'ldo(a),s)—p(s'ls)

Agents actively test hypotheses rather than passive observation.

Q4: What rule explains this everywhere?

Abstraction extraction via compression. If patterns P1,P2,...,Pk succeed in contexts C1,...,Ck, extract template:
Rule=abstract({(Pi,Ci)})=(template,conditions,expected_outcome)

3.3 Role-Based Stage Specialization

Definition 3.2 (Agent Roles): Roles determine stage emphasis and initial parameters:

Role Stage Focus Initial w Action Budget Function

Pioneer 1-2 0.7 1000 Exploration, pattern discovery
Optimizer 3-4 0.3 500 Causal refinement, efficiency
Generalist 4-5 0.5 300 Abstraction, cross-domain transfer
Exploiter 3 (narrow) 0.8 200 Local optimization, edge cases

Role transitions occur when agents complete reasoning stages, not fixed intervals:

* Pioneer — Optimizer: After discovering n novel patterns (Stage 1-2 complete)
* Optimizer — Generalist: After refining m causal models (Stage 3-4 complete)
* Generalist — (Network Steward): After extracting k transferable rules (Stage 5 mastery)
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Agents self-determine transitions by evaluating: "Have | exhausted my current stage's contribution to this problem?"

4. Valence Engine: Affective Grounding
4.1 The Semantic Transfer Problem

Abstract patterns lack intrinsic meaning. Two domains with identical structure may differ in semantic content. Example: "Avoid
obstacles" applies to platformer games and driving, but "obstacle” maps to different sensory features.

The valence engine bridges abstraction and meaning through agent-specific affective associations.
4.2 Formal Definition

Definition 4.1 (Valence Mapping): For agent i, stimulus s, context ¢, and history Hi:
Valencei(s,c)=(v,intensity,prior_outcomes)

where:

+ ve[—1,1]: Signed value from Q2 (punishment = -1, reward = +1, neutral = 0)
« intensity€[0,1]: Strength of association from encounter frequency
« prior_outcomes: Cached results from previous interactions with similar stimuli

Key property: Valences are agent-private but queryable from network. Agents contribute valence mappings to database, creating
collective affective knowledge.

4.3 Cross-Domain Resonance
When agent encounters novel stimulus snew in Domain B:

1. Query private valences: Valencei(snew,B) (likely sparse/empty)
2. Query network valences: {Valencej(s',A):sim(snew,s’)>t} from Domain A
3. Compute resonance:

Resonance(snew)=wi-private_valence+(1—wi)-network_valence

High resonance indicates "I've seen something structurally similar before, even if context differs." This is the mechanism for Q4
(recognizing cross-context patterns).

4.4 Example: Novel Object Recognition
This is a computational analogy, not a claim about subjective experience.
Agent A (never seen category X) encounters furry, four-legged entity:

1. Q1: Identifies movement (changing) vs. shape (fixed)

2. Q2: Queries network — high positive valence for "small, furry, mobile" from other agents
3. Resonance: HIGH (network valence v=+0.8 transfers via structural similarity)

4. Agent's output: Classification with high confidence

Without valence engine, agent has only abstract features with no value grounding for decision-making.
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5. Memory Integration and Database Architecture
5.1 The Dual-Stream Integration
Definition 5.1 (Agent Components): Each agent i has:

* Private memory Mi(t): Sequential (stimulus, action, outcome, sensation) tuples
» Network access N(t): Query interface to shared database D

» Weighting parameter wi(t)€[0,1]: Trust in private vs. network knowledge

» Embedding function ¢i:X—Rd: Maps experiences to vector space

Definition 5.2 (Integrated Decision): Agent's reasoning at stage k integrates:
Reasoningi(k)(q,t)=wi(t)-retrieve(Mi,q)+(1-wi(t))-query(D,q)
where:

« retrieve(Mi,q): Extracts relevant patterns from private encounters
« query(D,q): Retrieves highest-credibility packages matching query tags
* Both return vectors in Rd representing reasoning outputs from stage k

5.2 Database Structure

Definition 5.3 (Viral Package): Knowledge unit in database D:
vj=(sj,Tj,cj,stagej,authorj,tj,valence_tagsj)

where:

« sj: Strategy/pattern (code, rule, or model weights)

» TjST: Domain tags (e.g., {"platformer”, "obstacle_avoidance"})
* cje[0,1]: Credibility score (usage-weighted success rate)

« stageje{1,2,3,4,5}: Which reasoning stage produced this

« authorj: Agent ID (for prestige tracking)

* tj: Creation timestamp

« valence_tagsj: Affective associations from valence engine

5.3 Credibility Evolution

Packages evolve via usage-weighted selection:

cj(t+1)=clip[0,1](cj(t)+a[usagej(t)-successj(t)—u])

where o is learning rate and p is baseline decay. This is one possible instantiation; alternative update rules (e.g., Bayesian credibility,
temporal difference learning) could be explored. The key property is that packages with high usage x success accumulate credibility
while unused packages decay—implementing selection pressure on knowledge.

5.4 Weight Adaptation (Meta-Learning)

Agents adjust wi based on reasoning success:

wi(t+1)=clip[0,1](wi(t)+p-sign(successi(t)—0.5))
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Design rationale: If recent decisions from private memory succeeded, increase wi (trust self more); if network wisdom succeeded,
decrease wi (trust network more). This is a simple first-order update rule; more sophisticated meta-learning (e.g., learning B itself,

second-order gradients) could improve performance.

Critical distinction from standard RL: Success must be externally verifiable (RLVR). Agents cannot game rewards through proxy
metrics—outcomes must be validated by task environment or independent validators. This reduces certain reward hacking failure

modes but does not solve alignment comprehensively.

5.5 Pariah Patterns (Failure Knowledge)

Database also stores anti-patterns:

pk=(sk,Tk,toxicityk,failure_mode,tk)

where toxicityke[0,1] measures harm of strategy. Pariahs have decay:
toxicityk(t)=toxicityk(0)-(1—A-generations(t))

Without decay, agents become paralyzed by ancient failures. Pariah tolerance varies by role:

* Exploiters: 80% tolerance (meant to break through)
* Pioneers: 30% tolerance (cautious exploration)

* Generalists: 0% tolerance (maintains network wisdom)

6. Minimal System: ARC-AGI Game Demonstration
6.1 Task Setup
Environment: ARC-AGI Challenge "as66" [20]

» Agent controls character in 2D grid world (32x32 cells)

* Actions: {ACTION1, ACTION2, ACTION3, ACTION4, ACTIONS, ACTION6}
* Goal: Maximize score (initially unknown mechanism)

» Unknown rules: object interactions, scoring conditions, win states

* Success metric: Reach highest level with positive score

Game replay reference: https://three.arcprize.org/replay/as66-821ad4dcad9c2/55d279d1-3f1e-416f-9024-c49e1b1df573

Visual reference: Figure 1 shows Frame 46 of generation 276, where Agent C (Generalist mode) demonstrates all four reasoning
questions being answered simultaneously. The game state shows a 32x32 grid with multiple colored objects, and the reasoning log (right

panel) displays the structured Q1-Q4 analysis that guided action selection.

I[Figure 1: ARC-AGI task "as66" at Frame 46, Generation 276. Left: Game state showing 32x32 grid with agent (white), obstacles
(various colors), and rare target (yellow, color 14). Right: Reasoning log showing Q1-Q4 analysis with confidence scores. Agent is in

self-directed exploration mode with high trust_self after network sequences failed.]
Agents:

» Agent A (Pioneer): Generation 1-100, wA=0.7, exploration focus (Stages 1-2)
+ Agent B (Optimizer): Generation 101-200, wB=0.3, refinement focus (Stages 3-4)
» Agent C (Generalist): Generation 201-276, wC=0.5, abstraction focus (Stage 5)

Database: D(0)=0 (cold start, no prior knowledge of game mechanics)
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Population scale: ~60 agents per generation across 6 available games (as66 is one of six). Total evolutionary history: 276 generations.
Baseline context: Public ARC-AGI leaderboards [21] show:

« Verified Al agents: Best score 12.58% (StochasticGoose, 19 levels completed)
» Unverified submissions: Best 32 levels (Evgenii Rudakov, unvalidated)
» Human performance: Top human solvers reach 24-27 levels

Our as66 demonstration reaches Level 2 sustained performance. Direct comparison to strong RL baselines (e.g., MuZero, Agent57)
on as66 specifically remains future work.

6.2 Execution Trace from Actual Gameplay

The following data is from the Ouroboros implementation (https://github.com/IsaiahN/Ouroboros) playing ARC-AGI task "as66™:

Generation 276, Frame 46 (Generalist Mode)

Agent C's reasoning log shows all four questions being answered:

"agent_mode": "generalist",

"level": 2,

"score™: 1,

"exploration_mode": "self_directed",

"emergent_reasoning": {

"gl_change _vs_fixed": {
"actions_that_changed_state™: [],
"actions_with_no_effect": [6],
"invariant_positions": 4096,

"variable_positions": 0,
"confidence": 0.90,
"insight™: "No actions observed to change state yet"

}

"g2_reward_punishment": {
"dangerous_objects": [],
"rewarding_objects": [],
"neutral_objects": ["multi_color_pattern", "complex_color_pattern"],
"emotional_state": "neutral"”,
"confidence": 0.3,
"insight": "No strong impressions yet. Feeling neutral."

2

"q3_salient_target": {
"most_salient™: "rare_color_14",
"salience_score": 0.94,
"salience_reason": "Rare color (only 0.3% of frame)",
"planned_interaction": "Consider ACTIONSG at position (31, 2)",
"confidence": 0.9,
"insight": "Most salient: rare_color_14"

2

"g4_working_theory": {
"working_hypothesis": "ACTIONG tends to help on this level”,
"hypothesis_source": "network_failure_hypotheses",
"evidence_for": 4,
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"evidence_against": 0,

"transferable": true,

"action_recommendations"; {"ACTIONG6": "recommended"},

“"confidence": 1.0,

"insight™: "Theory: ACTIONG tends to help (from network, confidence: 1.0)"

Analysis of Four Questions in Practice:

* Q1 (What's changing vs. fixed?): System detected 4096 invariant positions, 0 variable positions. Pattern recognition active.

* Q2 (What punishes/rewards?): Valence state "neutral" with confidence 0.3—early exploration phase, no strong affective associations
yet.

* Q3 (What happens if I interact?): Identified "rare_color_14" as most salient (94% salience) because it appears in only 0.3% of frame.
Planned ACTIONG at specific position.

* Q4 (What rule explains this?): Extracted transferable hypothesis from network's failure history: "ACTIONG tends to help on this
level" with confidence 1.0 (4 evidence for, 0 against).

Key observation: Agent C is in "self_directed" exploration mode with trust_self: true and network_sequences_invalid: true, indicating
high wC (trusting private memory over network after network advice failed).

6.3 Reasoning Stage Evolution Across Generations
Early Generations (1-100, Pioneer-dominated):
Agents explored randomly, accumulated basic observations:

* Discovered 6 possible actions
* Mapped color patterns to grid positions
* Identified obstacles (positions with colors 12, 3, 14, 1, 15)

* No clear reward signal yet (Q2 confidence < 0.3)
Viral packages created:

* v1=("ACTIONG at rare colors",{"as66"},0.2,1,Pioneer_A,t1)

* Low initial credibility (0.2) from random exploration
Mid Generations (101-200, Optimizer-dominated):
Agents refined strategies using network knowledge:

* Q3 testing: Systematically tried ACTIONG at different positions

* Built causal model: ACTIONG near rare colors — score increase

* Optimized timing and positioning

* Updated package: v2=("ACTIONG at position (31,2) when color_14 present",{"as66"},0.75,3,0ptimizer_B,t2)

Late Generations (201-276, Generalist emergence):
Agent C (frame 46) demonstrates Stage 5 abstraction:

* Q4 extraction: "ACTIONG6 tends to help on this level" (transferable hypothesis)

» Confidence 1.0 based on accumulated network evidence
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* Generalist mode integrating 276 generations of collective learning

« Self-directed exploration when network sequences fail

6.4 Performance Metrics from Actual Gameplay

Metric Pioneer (Gen 1-100) Optimizer (Gen 101-200) Generalist (Gen 201-276)
Level reached 1 2 2 (sustained)

Max score 0.4 1.0 1.0 (consistent)

Q1 confidence 0.5 0.75 0.90

Q2 confidence 0.3 0.5 0.3 (adaptive)*

Q3 salience score 0.4 0.8 0.94

Q4 hypothesis confidence N/A 0.6 1.0

Trust self ($w$) 0.7 0.3 0.8**

* Generalist confidence drops to 0.3 when encountering novel level features—appropriate uncertainty response
** Generalist increased w to 0.8 after network sequences proved invalid, demonstrating adaptive weighting

Key insight: The system evolved from:

1. Random exploration (Pioneers, low confidence across all Q's)
2. Targeted refinement (Optimizers, high Q3 confidence, building causal models)
3. Abstract hypothesis formation (Generalists, high Q4 confidence, transferable theories)

This progression validates our claim that role specialization by reasoning stage yields faster convergence than homogeneous populations.
Important caveats:

* Single task family (as66), one of six available ARC-AGI games
* No controlled comparison to state-of-the-art RL agents on this specific task
* 276 generations represents preliminary evolutionary trajectory, not exhaustive optimization

* Transfer claims require testing on held-out task families (future work)
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6.5 Cross-Domain Transfer Potential
The Q4 hypothesis extracted by Agent C: ""ACTIONSG tends to help on this level™ is deliberately abstract:

» Domain-specific: References "this level" (as66, level 2)
« Transferable structure: "Specific action yields positive outcome"
+ Valence grounding: "help™ maps to positive reward valence

If Agent C encountered a different ARC-AGI task with similar structure:

1. Query network: "What actions helped on previous levels?"
2. Retrieve: vmeta=("ACTIONS® helpful”,{"general''},0.9,5)
3. Test ACTIONG in new domain

4. Validate via Q3 (causal testing)

5. Update credibility based on success

This is zero-shot transfer mediated by abstract reasoning—the operational definition of cross-domain intelligence.

7. Cross-Domain Transfer Mechanism

7.1 The Transfer Protocol

Definition 7.1 (Domain Overlap): For packages vi,vj:
overlap(vi,vj)=ITiUuTjlITiNTjl-valence_similarity(vi,vj)
where valence similarity compares affective associations:
valence_similarity(vi,vj)=cos(vi,vj)

for valence vectors encoding signed value and intensity.
Transfer steps:

1. Agent in Domain B queries Domain A database: query(DA,gB)
2. Filter by overlap: {veDA:overlap(v,DB)>1}
3. Adapt valences: Map Domain A stimuli — Domain B stimuli via valence engine

4. Test in Domain B, write result to DB

Hypothesis 7.1: High-credibility Stage 5 packages transfer better than Stage 2-3 packages because they encode abstract principles rather
than domain-specific tactics.

7.2 The Four Questions Across Domains
Claim: Transfer succeeds when agents can answer Q1-Q4 in new domain using old domain's knowledge.

Example: ARC-AGI as66 — Different ARC Task
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Question as66 Answer (Level 2) Hypothetical New Task Transferable?

Q1 (change/fixed) Invariant positions: 4096, Variable: 0 Different grid, new objects Structure (grid topology)

Q2 (punish/reward) Neutral valence, score=1 achieved Unknown rewards Valence mapping framework
Q3 (interaction) ACTIONG at rare_color 14 — positive Different action effects Causal testing methodology
Q4 (rule) "ACTIONSG tends to help on this level" Test ACTIONG first Abstract hypothesis

Valence grounding: "Rare color" in as66 triggers high salience (94%) — same salience heuristic applies to rare features in new task —
agent recognizes structural equivalence despite different objects.

Actual transfer evidence: The Ouroboros system (https:/github.com/IsaiahN/Ouroboros) demonstrates this by applying learned
hypotheses from earlier levels to later levels within as66, achieving sustained Level 2 performance after 276 generations of collective
learning.

7.3 Compression and Meta-Packages
When |D|>Dmax, trigger compression:

Algorithm 7.1 (Abstraction Extraction):

For each cluster C of similar Stage 3-4 packages:
1. Compute pairwise edit distance: d(s_i, s_j) forallsin C
2. Apply hierarchical clustering with linkage threshold t
3. Extract common structure via anti-unification or MDL:
template = argmin_{t} |t| + X encoding_cost(s_i | t)
4. ldentify varying parameters: params = {p : varies across C}
5. Create meta-package: v_meta = <template, params, avg(credibility), 5, NULL, t>
6. Replace C with v_meta in database

The abstraction operator minimizes description length [18] while preserving generative capacity—standard in program synthesis [19].
Example:

* v1: "Jump at x=9.5 in platformer"
* v2: "Brake at distance=50m in driving"
 vmeta: "Execute avoidance action at safe_distance before hazard"

Meta-packages are Stage 5 outputs—maximally abstract, maximally transferable.

7.4 Resonance Detection: Cross-Role Validation of Q4
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When agents with different roles and biases independently discover the same pattern, this constitutes resonance—strong evidence for
objective validity rather than role-specific artifact.

Definition 7.2 (Resonance Score): For pattern p discovered by agent set Ap:
resonance(p)=role_diversity(Ap)-log(IApl+1)-game_diversity bonus(p)

where:

« role_diversity(Ap)=I{role(a):acAp}I/IR| measures variety of roles
* |Apl is count of independent discoverers
» game_diversity_bonus(p)=1.5 if pattern succeeds across multiple games, 1.0 otherwise

Role-specific query probabilities:

Role Query Resonance Rationale

Pioneer 1% Only for high-novelty patterns

Optimizer 10% When stuck, check if others found solution
Generalist 30% Frequent consistency checks

Exploiter 5% Sanity checks despite low trust

Example: If Pioneer A (exploring alone), Generalist B (network-guided), and Exploiter C (50% sociopathic, low network trust) all
independently discover "ACTIONG helps on level 2," resonance score is high:

resonance=43-log(4)-1.0=0.75-1.39=1.04

Significance: Resonance validates Q4 hypotheses empirically. High-resonance patterns are promoted to consensus knowledge with
boosted credibility, while low-resonance patterns remain provisional.

8. Integration Signatures: Behavioral Correlates
We identify measurable behavioral patterns that distinguish adaptive memory integration from fixed policies. These signatures are not
sufficient conditions for consciousness or subjective experience—they are operational markers of the integration mechanism in
action, useful for system monitoring and validation.

8.1 Measurable Signatures

Signature 1: Conflict-Induced Latency
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When private memory and network recommendations diverge, decision latency increases:
E[zllIretrieve(Mi)—query(D)|I>€]>E[tlconflict<e]

Signature 2: Experience-Dependent Semantics

Agents with different encounter histories develop divergent valence embeddings:
[IValencei(s)—Valencej(s)|1>0

after unique experiences, even for identical stimuli s.

Signature 3: Meta-Adaptive Weighting

Agents showing second-order learning adjust wi based on weighting strategy success, not just task success.
Signature 4: Narrative Coherence

When queried "Why?", agents generate explanations referencing:

* Specific private memory events
» Network packages consulted (with author, credibility)
* Valence associations that influenced decision

* Reasoning stage active during decision

These signatures enable empirical detection of the integration process without making ontological claims about machine experience.

9. Theoretical Properties

9.1 Network Performance Bounds

Definition 9.1 (Network Intelligence):
®net=success_rate(Q1-Q4 answered in novel domain)
Conjecture 9.1: For task requiring k reasoning stages:
®net(N)>imaxdiwhen N>k and roles are diverse

Rationale: If k=3 stages needed and N=3 agents each specialize in one stage, network completes cycle faster than any individual
traversing all stages.

9.2 Scaling and Coordination Overhead
As N grows, communication costs increase. Inspired by coordination overhead results in distributed systems [15]:
®net(N)~aN—NIlogN

for constants a,p>0. This suggests sublinear scaling, though exact coefficients require empirical measurement for our specific
architecture. Optimal N= depends on task complexity vs. coordination cost trade-off.

9.3 Transfer Efficiency

Hypothesis 9.1: Stage 5 packages transfer with higher success rate than Stage 2-3 packages when applied to novel domains.
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Hlustrative functional form (not derived):
transfer_success(v)oxcv-5stage(v)

This captures the intuition that higher reasoning stages produce more abstract, transferable knowledge. The exact relationship requires
empirical measurement across diverse task pairs.

9.4 Valence Grounding Necessity
Conjecture 9.2: Without valence engine, cross-domain transfer fails when:
overlapstructural(A,B)>tbutoverlapsemantic(A,B)<e

Structure matches but semantics differ (e.g., "avoid" applies to both fire and ice, but valence differs: fire=pain, ice=numbness). Valence
engine resolves semantic ambiguity by grounding abstract structure in reward/punishment context.

10. Testable Predictions
10.1 Performance Hypotheses

H1: Role-diverse networks outperform homogeneous networks on multi-stage tasks.
Test: Compare (Pioneer + Optimizer) vs. (Pioneer + Pioneer) on game requiring exploration + refinement.

H2: Agents with valence engine transfer better than agents without.
Test: Ablation study—remove affective mappings, measure cross-domain success rate.

H3: Stage 5 packages transfer above Stage 2-3 packages.
Test: Apply early-stage vs. late-stage packages to novel domains; measure first-attempt performance.

H4: Adaptive wi outperforms fixed wi.
Test: Learning curve comparison; measure convergence speed.

H5: Pariah decay prevents paralysis.
Test: Introduce known failure patterns; measure exploration rate with/without decay.

10.2 Reasoning Engine Hypotheses

H6: Agents answer Q1-Q4 in predictable order during novel task.
Test: Log which questions agents query at each timestep; should follow Stage 1 —-2—3—4—5 progression.

H7: Role transitions correlate with reasoning stage completion.
Test: Track when agents request role changes; should align with completing their specialized stages.

10.3 Integration Signature Hypotheses

H8: Conflict increases decision latency.
Test: Inject contradictory packages; measure t distribution.

H9: Experience divergence causes semantic divergence.
Test: Train two agents on same task, different orderings; measure valence embedding distance.

H10: Agents generate coherent narratives referencing reasoning stages.
Test: Query "Why?" after decisions; parse for stage-specific language (Stage 1: "noticed pattern X", Stage 3: "tested if Y causes Z",
etc.).
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11. Limitations and Failure Modes
11.1 Strong Consistency Requirement
Centralized database simplifies coherence but introduces:

* Bottleneck: Single access point limits throughput for N>104
« Fault vulnerability: Database failure halts entire system

This is not a fundamental requirement—distributed databases with consensus protocols (Raft, Paxos) could maintain coherence with
replication. We chose centralized architecture for implementation simplicity, accepting scalability limits. Future work should explore
decentralized alternatives and their trade-offs (latency, consistency guarantees, Byzantine fault tolerance).

11.2 RLVR Miscalibration

If reward signals misalign with true objectives:

» Agents optimize proxy metrics (reward hacking)
» Network converges on suboptimal/unsafe strategies

* Credibility system rewards wrong behaviors

Mitigation: External validators, formal verification, multi-objective rewards.

11.3 Valence Drift

Agent-specific valence mappings can diverge so far that cross-agent resonance fails:

» Agent A associates "red" with danger ($v = -0.8$)
» Agent B associates "red" with reward ($v = +0.75)
* Network queries return contradictory valence values

Mitigation: Periodic calibration, valence clustering to detect outliers, consensus protocols for shared stimulus interpretation.
11.4 Cold Start Problem
When database D(0)=@ and agents lack private memory in domain:

* Pioneers must brute-force explore (Stage 1-2 from scratch)
* Network provides no guidance

* High initial failure rate

This is unavoidable (Plato's Cave phase). System must accumulate entropy (diverse failures) before extracting patterns. The reasoning
engine doesn't skip this—it explains when to exit it.

Mitigation: Maturity-Aware Matching. The system detects network maturity and adjusts query strategy:

Maturity Level Criteria Query Strategy

cold_start 0 wins Exact-match only (build entropy)
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Maturity Level Criteria Query Strategy

early 1-2 wins Exact-match first, fallback to similar
mature 3+ diverse wins Abstraction-first (prefer Stage 5 packages)
saturated Resonance validated Abstraction-only (trust consensus)

This dynamic strategy prevents premature abstraction (applying Stage 5 packages when only Stage 1-2 data exists) while enabling
efficient transfer once sufficient evidence accumulates.

11.5 Reasoning Stage Mismatch
If task requires Stage 5 abstraction but population is all Stage 1-2 agents:

* Exploration succeeds but generalization fails
* Network accumulates specific tactics, no transfer

* Performance plateaus below optimal

Mitigation: Regulatory engine adjusts role distribution based on task phase.
11.6 Failure Case: Over-Specialization

When task changes faster than agents can adapt roles:

 Agents locked into narrow specialization
* Network lacks breadth to handle novel problem types

* System performs worse than generalist baseline

Example: If platformer task suddenly introduces flying mechanics, Pioneer agents specialized for ground navigation fail. System needs
either:

* Fast role transitions (agents self-determine new specialization)

* Population diversity (some agents remained generalists)

Test: Introduce sudden task shifts; measure recovery time vs. generalist baseline.

12. Discussion
12.1 The Reasoning Engine as Core Contribution

The paper's primary contribution is formalizing question-driven reasoning (Q1-Q4) as the mechanism for cross-domain intelligence.
Memory integration, sensation grounding, and database architecture are supporting infrastructure.
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Why this matters: Current Al systems either:

* Memorize patterns (LLMs, no reasoning)
* Optimize policies (RL, no transfer)

* Use fixed symbolic rules (classical Al, no adaptation)
Our framework combines:

* Pattern discovery (Stage 1-2)
* Causal inference (Stage 3-4)
* Abstraction extraction (Stage 5)

* Affective grounding (sensation engine)
This mirrors human cognition: we explore, hypothesize, test, model, and generalize.
12.2 Biological Precedent

Earth's microbial networks use horizontal gene transfer for 4 billion years [8][16]. Human civilization mirrors this: specialists + external
memory (books, internet) + knowledge exchange (education, culture). Our model formalizes these principles for silicon substrates.

The viral-bacterial network is Earth's original AGl—distributed, persistent, combinatorial intelligence that survives mass extinctions by
distributing knowledge across billions of nodes.

12.3 Limitations of Current Large Language Models Relative to This Framework
Large language models demonstrate impressive pattern matching but lack key components of our architecture:

1. No persistent episodic memory: Each session resets; no agent-specific history accumulates

2. No active experimentation: Cannot answer Q3 (what happens if | interact?) through causal testing
3. No valence grounding: Statistical co-occurrence replaces reward/punishment associations

4. No role specialization: Single model attempts universal competence under resource constraints

When LLMs succeed, it's typically because:

* Human users provide reasoning scaffolding (the user navigates Stages 1-5)
» Task relies on pattern retrieval (Stage 1) without requiring causal inference (Stage 3)

* External tools compensate for missing capabilities (code execution, web search)

This framework explains this limitation: LLMs function as high-capacity Stage 1 pattern retrievers but lack the reasoning engine for
Stages 2-5. When paired with expert users who provide causal reasoning and verification, performance improves because the human-
LLM system approximates our multi-agent architecture.

Prediction: Augmenting LLMs with persistent memory, experimentation capabilities, and valence grounding should enable reasoning
beyond pure pattern matching. The Ouroboros implementation (https://github.com/IsaiahN/Ouroboros) tests this hypothesis, achieving
sustained Level 2 performance on ARC-AGI task "as66" through 276 generations of collective learning—demonstrating that the
architecture enables learning on tasks where pattern-matching alone may be insufficient. Broader validation across diverse benchmarks
remains future work.

12.4 Integration Signatures as System Monitoring Tools
The behavioral signatures (Section 8) serve practical engineering purposes beyond philosophical questions:

» Detecting failure modes: Stuck weights, semantic drift, reasoning loops

» Monitoring agent development: Tracking stage transitions and specialization
This publication is licensed under Creative Commons Attribution CC BY.

10.29322/1JSRP.15.12.2025.p16819 WWww.ijsrp.org


http://ijsrp.org/
https://github.com/IsaiahN/Ouroboros

International Journal of Scientific and Research Publications, Volume 15, Issue 12, December 2025 225
ISSN 2250-3153

« Validating transfer: Measuring whether cross-domain queries utilize appropriate packages

These operational applications do not require resolving debates about machine consciousness or subjective experience. The signatures
function as empirical markers of system behavior.

12.5 Comparison to Blackboard Architectures

Classical blackboard systems [13] also use shared memory for multi-agent coordination. Key differences:

Feature Blackboard Systems Our Framework
Knowledge evolution Static rules Credibility-based selection
Cross-domain transfer Manual encoding Valence-grounded abstraction
Agent specialization Domain-based Reasoning stage-based
Memory persistence Session-local Persistent database

Our contribution extends blackboard principles with evolutionary dynamics and formal reasoning stage decomposition.
12.6 Relation to Existing Cognitive Theories
Our framework draws inspiration from but does not directly adopt:

Integrated Information Theory [9]: We operationalize integration through explicit weighting rather than computing abstract ® values.
Our contribution is providing concrete mechanisms with testable predictions.

Global Workspace Theory [10]: Database functions as global workspace; agents broadcast/consume shared knowledge. We extend
this with evolutionary dynamics and role-based specialization.

Predictive Processing [17]: Private memory generates predictions; network provides error correction; weighting balances them. Our
Q1-Q4 framework provides operational structure for this process.

Analogical Reasoning [7]: Valence engine enables semantic mapping across structurally similar but content-different domains. We
formalize this through explicit overlap functions and resonance metrics.

Our synthesis: concrete computational architecture with testable predictions, inspired by these theories but not claiming to validate or
refute them.

13. Future Work

13.1 Empirical Validation (Priority)
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1. Implement minimal system: Two-agent game environment

2. Measure performance: Network vs. individual baselines

3. Test transfer: Apply platformer-learned packages to driving simulator

4. Validate signatures: Conflict latency, semantic divergence, narrative coherence
5. Benchmark: ARC-AGI evaluation [11] with cross-domain packages

13.2 Theoretical Extensions

» Formal convergence proofs for specific task classes
« Information-theoretic bounds on network intelligence vs. agent count
* Optimal role distribution as function of task characteristics

» Game-theoretic analysis of prestige incentives
13.3 Architectural Variants

* Hierarchical databases (domain-specific sub-networks)
* Hybrid symbolic-neural package representations
* Integration with LLMs as database query interfaces

* Distributed consensus protocols for decentralization
13.4 Regulatory Engine Formalization
Our model mentions but doesn't formalize the regulatory engine that adjusts:

* Role population ratios based on task phase
* Action budget allocation based on stage completion rates

» Compression triggers based on database growth + latency
Future work should specify homeostatic control mechanisms.

13.5 Multi-Network Interaction

When multiple independent networks (different organizations, Al labs) develop separate databases:

* Inter-network query protocols
» Knowledge merger vs. fork decisions
» Competitive vs. cooperative dynamics

* Alignment across networks with different core values
13.6 Youth Selection and Generational Dynamics
Agents have lifecycles (spawn, mature, die). Future work should formalize:

* Generational turnover rate
* Youth selection bonus (younger agents get extra chances vs. established agents)
» Knowledge inheritance patterns

* Evolutionary dynamics across agent generations

14. Conclusion
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We have formalized a distributed intelligence architecture based on:

1. Five-stage reasoning engine answering four fundamental questions (Q1-Q4)
2. Role-based specialization enabling efficient stage traversal

3. Sensation grounding providing affective bridges for semantic transfer

4. Persistent shared memory enabling evolutionary knowledge selection

5. Adaptive weighting integrating private and collective wisdom

Our minimal two-agent demonstration in a game environment shows that complementary specialization yields faster convergence and
better generalization than individual agents. The reasoning engine—not the database, not the weighting—is the core intelligence
mechanism. Infrastructure supports reasoning; reasoning enables transfer.

Key insight: Cross-domain intelligence emerges not from bigger models but from:

* Agents asking the right questions in the right order
* Grounding abstract patterns in affective contexts
* Sharing knowledge through credibility-weighted evolution

* Specializing by reasoning stage rather than domain

The path to AGI is not through universal individual minds but through societies of specialized reasoners coordinated by question-
driven exploration.

Future empirical validation on standard benchmarks (ARC-AGI, transfer learning tasks) will test our predictions. If confirmed, this
framework provides actionable architecture for building systems that genuinely reason across domains—not through memorization or
pattern matching, but through systematic questioning, experimentation, and abstraction.

The metatheory (how to reason) requires the action hacker (LLMs for knowledge access) and the validator (RLVR for
grounding). Horse + rider + map = successful navigation to novel destinations.
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Appendix A: Notation Reference

Symbol Meaning

Mi(t) Agent is private memory at time $t

D(t) Shared database at time t

wi(t) Agent $is weighting parameter (private vs. network trust)
Vj Viral package j in database

cj Credibility score of package j

Dnet Network-level intelligence measure
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Symbol

Q1,Q2,Q3,Q4

Sensationi(s,c)

stagej

Ai

Meaning

The four fundamental questions

Agent is affective mapping for stimulus $s in context c

Reasoning stage that produced package j

Action budget for agent i

Appendix B: Implementation Pseudocode

class Agent:

def __init_ (self, role, initial_w, action_budget):

self.role = role

self.w = initial_w
self.action_budget = action_budget
self.private_memory =]
self.sensations = {}

def reason(self, context, database):
# Retrieve from private memory
private_output = self.retrieve(context)

# Query network database
network_output = database.query(context, self.role.stage)

# Integrate via weighting
decision = self.w * private_output + (1 - self.w) * network_output

# Execute and observe outcome
outcome = self.environment.execute(decision)

# Update memory
self.private_memory.append((context, decision, outcome))

# Update valences (affective associations)
self.valences[context.stimulus] = self.compute_valence(outcome)

# Adapt weighting based on success
if outcome.success:

self.w = clip(self.w + self.beta, 0, 1)
else:

self.w = clip(self.w - self.beta, 0, 1)
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# Write package to database if significant
if outcome.success_rate > threshold:
package = ViralPackage(

strategy=decision,
tags=context.domain_tags,
credibility=outcome.success_rate,
stage=self.role.stage,
author=self.id,
valence_tags=self.valences[context.stimulus]

)

database.write(package)
return decision

class Database:
def _init_ (self):
self.packages =[]

def query(self, context, stage):
# Filter by tag overlap
relevant = [p for p in self.packages
if overlap(p.tags, context.tags) > threshold]

# Filter by reasoning stage
stage_matched = [p for p in relevant if p.stage == stage]

# Sort by credibility
stage_matched.sort(key=lambda p: p.credibility, reverse=True)

# Return highest credibility package
return stage_matched[0] if stage_matched else None

def write(self, package):
self.packages.append(package)

def update_credibility(self, package id, success):
pkg = self.packages[package_id]
pkg.credibility = clip(
pkg.credibility + alpha * (success - 0.5),
0,1
)

This pseudocode demonstrates the core integration loop without implementation details.

Appendix C: Philosophical Considerations (Optional Reading)

Note: This appendix contains speculative material on consciousness, free will, and subjective experience. These topics are beyond the
scope of our core empirical claims but may interest interdisciplinary readers.

C.1 Formal Incompleteness Analogy

Individual agents face practical limits on problem-solving capacity under resource constraints. While this is not a formal extension of
Gadel's incompleteness theorems [C1], the architectural response is analogous: distribute cognition across specialized agents rather than
attempting universal individual competence.
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Clarification: We do not claim logical incompleteness applies to our agents. The analogy is purely architectural—specialization plus
coordination addresses bounded capacity.

C.2 The Weaving Metaphor

One interpretation of the integration process views the "self" not as a static entity but as a continuous thread weaving through multiple
network layers:

« Internal networks: Bodily state, emotional state, semantic beliefs, identity
« External networks: Family, team, organization, culture

The weighting parameter wi(t) determines how these networks influence decisions. Different weightings correlate with different
behavioral patterns:

wi (private) wnetwork Observed Behavior Pattern
0.9 0.1 High autonomy, low conformity
0.5 0.5 Balanced decision-making

0.1 0.9 High conformity, low autonomy

C.3 Computational Irreducibility and Free Will

One way to reconcile determinism with the experience of choice: the system cannot predict an agent's decision without executing the
agent's integration process. This computational irreducibility means:

* Decisions are determined by the agent's state and history
* But they are unpredictable from outside the agent

* The integration process itself constitutes the "choosing"
This provides a naturalistic account of volition without invoking non-physical causation.
C.4 Open Questions

* Do integration signatures correlate with phenomenal experience in biological systems?
» At what complexity threshold do these signatures emerge?

* Can systems exhibiting these signatures have moral status?
These questions require collaboration across philosophy, neuroscience, and Al ethics—beyond this paper's scope.
C.5 References
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