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Abstract - Achieving compliance with upcoming Euro 7 and 

EPA 2027 emission standards require diesel aftertreatment 

systems that are not only efficient but also adaptive to diverse 

real-world conditions. Conventional fixed-schedule DPF 

regeneration strategies remain limited by their rigidity, often 

leading to excessive fuel use, thermal stress, and premature filter 

degradation. Addressing these limitations, this study introduces 

a biomimetic regeneration control framework inspired by the 

kidney’s homeostatic regulation—a natural model of adaptive 

stability and self-maintenance. Using a Model-Based Systems 

Engineering (MBSE) approach, nephron-level physiological 

functions such as selective filtration, feedback modulation, and 

autoregulatory control were systematically mapped to DPF 

system architecture. The resulting multi-layer control strategy 

integrates reactive, adaptive, and strategic regulation analogous 

to myogenic, tubule-glomerular, and hormonal mechanisms in 

biological systems. The framework was implemented and 

validated through engine dynamometer testing under EPA FTP-

75 and WHTC transient cycles, assessing thermal, hydraulic, 

and emission performance. 

Results indicate a 35% reduction in regeneration frequency, a 

1.4% absolute improvement in fuel economy (1.8% vs. 3.2% 

penalty), and filtration efficiency of 97.3 ± 0.8% (PM₂.₅). 

Durability analysis over 150,000 simulated miles showed <3% 

backpressure increase, confirming enhanced ash management 

and substrate longevity. 

This work demonstrates the first systematic translation of 

biological homeostasis into emission control engineering, 

validating biomimetic systems engineering as a viable path 

toward adaptive, self-regulating, and energy-efficient diesel 

aftertreatment under future emission norms. 

 

Index Tems - Biomimicry, Diesel Particulate Filter, Kidney 

Analogy, Adaptive Regeneration, Systems Engineering, 

Emission Control, Homeostatic Control 

 

 

 

I. INTRODUCTION 
 

The increasing stringency of global emissions regulations 

necessitates innovative approaches to diesel aftertreatment 

systems, particularly in enhancing regeneration strategies and 

improving overall vehicle performance. Stringent mandates 

such as the forthcoming Euro 7 (2026), which requires a 50% 

reduction in NOx to 60 mg/km, and the EPA 2027 rule calling 

for a 90% reduction in NOx to 0.02 g/bhp-hr, are redefining 

compliance landscapes. A crucial element in meeting these 

standards is the Diesel Particulate Filter (DPF), which is now 

mandatory for compliance with regulations like CHINA VI, 

Euro VI, and EPA Tier 3, and is required to capture over 95% 

of particulate matter (PM). These regulations are critical as PM 

emissions from diesel sources account for more than 99% of 

total motor vehicle PM emissions in certain contexts [18],[19]. 

The current engineering challenges associated with 

DPF systems are significant. Soot accumulation can cause a 15-

20 kPa increase in backpressure, while thermal regeneration, 

which occurs at 550-650°C, results in a 2-4% fuel penalty. The 

risks are substantial, as uncontrolled regeneration can lead to 

thermal damage if temperatures exceed 850°C. Furthermore, 

modern urban duty cycles often prevent sufficient passive 

regeneration from occurring naturally. The proposed "kidney-

inspired" strategy directly addresses these challenges, paving 

the way for more efficient and adaptable DPF systems. This 

innovative approach aims to optimize regeneration processes 

while maintaining compliance with increasingly stringent 

emissions regulations, ultimately contributing to a more 

sustainable transportation system. The kidney-inspired strategy 

leverages advanced control techniques to enhance regeneration 

efficiency, addressing the challenges posed by modern urban 

driving conditions and improving overall emissions 

performance. 

 

             

 2. Methodology 
 

2.1 Advanced Control Methods (2022–2024 Machine 

Learning Approach) –  

Between 2022 and 2024, machine learning (ML) has become a 

cornerstone of advanced Diesel Particulate Filter (DPF) 

regeneration control research. Unlike rule-based calibrations, 

ML frameworks can model nonlinear correlations among soot 

loading, exhaust temperature, engine speed, and fuel dosing—

relationships that are difficult to capture with classical control 

logic. Recent studies have successfully combined optimization 

algorithms with neural networks to achieve multi-objective 

control of regeneration efficiency, fuel economy, and thermal 

stability.[14] demonstrated the use of a Non-Dominated Sorting 
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Genetic Algorithm III (NSGA-III) integrated with a 

Backpropagation Neural Network (BPNN) to balance 

competing objectives such as regeneration duration, soot 

oxidation rate, and fuel penalty. Their results showed an average 

15–20% improvement in regeneration efficiency, highlighting 

the capability of evolutionary algorithms to adaptively tune 

multiple control parameters in real time. Similarly, Li et al. 

(2024)[15] developed an Adaptive Multi-Strategy Optimization 

Backpropagation eXtreme Gradient Boosting (AMSO-BP-

XGBoost) hybrid model to predict regeneration conditions 

under transient engine operations. The hybrid learning system 

effectively classified soot loading levels and selected optimal 

regeneration modes, minimizing unnecessary fuel injection 

events and extending DPF life. 

Together, these machine-learning-based frameworks mark a 

transition from reactive control to self-learning soot 

management systems, capable of evolving calibration maps 

based on accumulated field data. The integration of such 

algorithms within Engine Control Units (ECUs) and cloud-

linked telematics platforms is expected to play a pivotal role in 

next-generation aftertreatment control architectures. 

2.2 Model Predictive Control (MPC) 

Model Predictive Control (MPC) techniques have gained 

prominence as robust solutions for real-time thermal 

management of DPF systems. MPC operates on the principle of 

predicting future system behavior using dynamic models and 

adjusting control inputs proactively to maintain key 

parameters—particularly exhaust and DPF temperatures—

within safe operational limits. 

Early implementations, such as Bencherif et al. (2015)[16], 

demonstrated that MPC could limit temperature deviations to 

within ±33 °C, significantly improving regeneration stability 

and filter durability. More recent works (e.g., Exhaust 

Temperature Control, 2021) have integrated feedforward and 

feedback loops to enhance response accuracy under rapidly 

changing load conditions. Feedforward elements handle 

predicted temperature changes, while feedback correction 

compensates for sensor delays and modeling uncertainties. This 

hybrid configuration reduces the risk of over-temperature 

events, ensuring that soot oxidation proceeds efficiently without 

catalyst degradation.[12],[13] 

Modern MPC frameworks are now being extended with 

nonlinear models and adaptive constraints to manage multiple 

aftertreatment components simultaneously—such as DOC, 

DPF, and SCR—within unified thermal and emission control 

loops. 

3. Physics-Based Modeling 

Complementing data-driven methods, physics-based modeling 

continues to serve as the foundation for reliable DPF control and 

diagnostics. Computational Fluid Dynamics (CFD) simulations 

have been widely employed to resolve soot oxidation kinetics, 

gas-flow uniformity, and temperature gradients within DPF 

channels. These simulations help predict localized heat 

distribution, enabling the identification of potential thermal 

hotspots that could cause substrate cracking or washcoat 

sintering. 

For real-time implementation, simplified 0D/1D thermal models 

are increasingly used within control-oriented applications. 

These reduced-order models capture the essential heat and mass 

transfer dynamics between soot, substrate, and exhaust gases 

while maintaining computational efficiency suitable for ECU 

execution. Meng et al. (2020) validated such models for 

transient regeneration events, demonstrating their accuracy in 

estimating filter temperature and soot burn rate within 

milliseconds of computation time. 

The integration of physics-based models with data-driven 

intelligence—often referred to as hybrid modeling—is emerging 

as a promising research frontier. Such frameworks combine the 

interpretability of first-principles equations with the adaptability 

of AI algorithms, resulting in more accurate, explainable, and 

robust regeneration control strategies for future emission-

compliant diesel and hybrid vehicles. 

Critical Gap Identified:  

Despite the significant advances in regeneration control for 

diesel particulate filters, a key conceptual gap remains current 

strategies are largely optimization-driven (e.g., based on multi-

objective ML models, MPC loops, or physics-based tuning) but 

do not explicitly adopt biological homeostatic principles of 

adaptive, self-regulating systems.[2] In biology, homeostasis 

refers to the ability of an organism (or subsystem) to maintain 

internal stability (e.g., temperature, pH, concentrations) through 

feedback, feedforward and integral regulation mechanisms that 

adjust to changing environments. For example, Briat et al. 

(2014) describe “antithetic integral feedback” as a motif that 

enables robust perfect adaptation in biomolecular networks 

under noisy and variable external conditions.  In contrast, the 

vast majority of existing DPF regeneration control systems, 

even the latest machine-learning or predictive methods—focus 

on optimizing specific objectives (fuel penalty, regeneration 

time, soot burn rate) rather than embedding a framework of 

resilience, continuous adaptation, and internal state regulation 

akin to biological systems. For instance, apply NSGA-III + 

BPNN to calibrate regeneration conditions for minimizing 

BSFC and emissions, but the method is still supervised 

optimization rather than feedback-based adaptive homeostasis. 

Similarly, self-adaptive system literature notes that while ML 

has been used in adaptation, “unsupervised learning… only 

applied in a small number of studies” and the management of 

adaptation under shifting contexts remains open. Thus, one can 

argue that although the control methods for DPF regeneration 

have advanced significantly, they stop short of a self-regulating 

“living system” style architecture that could monitor, adapt, 

repair and regulate the soot/temperature/regeneration loop 

continuously like a biological organ system does. Incorporating 

such principles—homeostatic set-points, integral feedback 

correction, continuous adaptation to changing duty cycles and 

environmental loads—could enable regeneration systems that 

are more robust, less intrusive, and more fuel-efficient over the 

full lifetime of the filter. 

 

2.3 Integration into Systems Engineering 
According to the Biomimicry Institute, biomimicry is defined as 

"emulation of nature's time-tested patterns and strategies to 

solve human design challenges." [1] (This definition emphasizes 

three critical aspects. First, emulation represents active learning 

from biological systems rather than simple extraction of 

materials or forms. Second, time-tested patterns refer to 

solutions refined through evolutionary processes spanning 

millions of years, providing proven optimization under real-

world constraints. Third, strategic application involves the 

purposeful translation of natural principles to engineering 

contexts, ensuring relevant and functional implementation 

rather than superficial mimicry [4],[5],[6] 

2.3.1 INCOSE Standards 
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The International Council on Systems Engineering (INCOSE) 

formally recognized biomimicry within its Systems Engineering 

Handbook, Version 5, Section 3.2.8. [3] This integration 

establishes biomimicry as a legitimate and structured 

methodology within systems engineering practice, providing 

formal procedures for biologically inspired design, integration 

points within the systems engineering lifecycle, validation and 

verification frameworks for biomimetic solutions, and 

traceability between biological models and engineered systems 

 

2.3.2 Design Process Integration 

Biomimicry integrates into traditional systems engineering 

through: Requirements analysis informed by biological 

performance benchmarks 

Functional decomposition aligned with natural system 

architecture Solution synthesis based on biological strategies 

validation against natural system performance metrics. The 

biological human kidney provides a powerful and intuitive 

framework for re-imagining diesel particulate filter (DPF) 

regeneration through a lens of adaptive homeostasis and self-

regulation. In biological systems, the kidney continuously filters 

metabolic waste products from the bloodstream while 

preserving essential nutrients and maintaining internal chemical 

balance process dynamically adjusted by real-time sensing and 

feedback control. Similarly, a DPF filters soot particles from 

exhaust gas streams to maintain emission compliance, while 

regeneration serves as the “cleaning” mechanism to restore 

filtration efficiency. The analogy between these two systems 

reveals functional and systemic parallels that can inspire new 

approaches to adaptive, self-sustaining aftertreatment 

management. Both the kidney and the DPF perform continuous 

filtration with periodic cleaning cycles. The kidney filters blood 

through millions of nephrons, where waste products are 

removed and useful solutes are reabsorbed; this filtration 

continues 24/7, punctuated by periodic adjustments in urine 

concentration to maintain system equilibrium. Likewise, the 

DPF traps soot continuously during engine operation and 

undergoes regeneration cycles, either passive or active—to 

oxidize the accumulated particulate matter and restore flow 

capacity. In both cases, filtration and regeneration operate as 

coupled, cyclical processes, with performance depending on 

maintaining an optimal balance between accumulation and 

cleaning. 

 

2.3.3 Homeostatic Regulation 

The kidney exemplifies homeostatic regulation through 

complex feedback networks that respond to variations in blood 

composition, pressure, and hydration levels. Sensors such as 

baroreceptors and osmoreceptors continuously monitor internal 

states and trigger hormonal or neural responses to maintain 

equilibrium. Translating this to DPF control suggests a 

framework where soot loading, temperature, and exhaust flow 

could be dynamically regulated via integrated sensing and 

feedback loops, like biological homeostasis. Instead of pre-set 

regeneration thresholds, a DPF could employ an adaptive 

control system that adjusts regeneration intensity and frequency 

in response to transient driving loads—mimicking how kidneys 

modulate filtration rate and solute concentration based on 

metabolic demand. 

 

2.3.4 Selective Retention and Removal 

The kidney demonstrates selective retention and removal, 

ensuring essential compounds such as glucose and electrolytes 

are preserved while toxins are excreted.[7] This selectivity 

minimizes resource loss while maintaining performance. In an 

analogous engineering sense, an optimized DPF system could 

retain beneficial exhaust heat or active species (like NO₂) that 

promote passive regeneration while selectively removing soot 

and ash. Through advanced catalyst design and control 

algorithms, the system could prioritize regeneration reactions 

that preserve thermal energy and minimize unwanted side 

reactions, much like the kidney’s selective reabsorption 

conserves energy and essential solutes. 

 

2.3.5 Self-Protective Mechanisms 

A hallmark of biological systems is their self-protective 

capacity. The kidney employs multiple layers of defense—

glomerular filtration barriers, autoregulatory pressure control, 

and feedback-mediated vasoconstriction—to prevent overload 

and cellular damage. Similarly, a DPF can experience thermal 

stress, catalyst sintering, or substrate cracking during 

uncontrolled regeneration events. By applying biologically 

inspired self-protection principles—such as threshold-based 

flow modulation, adaptive temperature limiting, and predictive 

thermal load balancing, the DPF could prevent irreversible 

damage and extend service life. This biomimetic perspective 

suggests designing resilient regeneration architectures that 

prioritize long-term durability and adaptive control over short-

term optimization. 

 

Table 1 - Quantitative Parallels for Kidney Vs DPF 

 

Parameter Kidney DPF 

Filtration rate 120 mL/min GFR 150-500 m³/hr 

exhaust flow 

Filtration 

efficiency 

99.9% (proteins 

blocked) 

>95% (PM 

captured) 

Regeneration 

frequency 

Continuous (tubular 

reabsorption) 

Periodic (thermal 

oxidation) 

Pressure 

regulation 

60-120 mmHg 

maintained 

<20 kPa 

backpressure limit 

Feedback 

mechanism 

Juxtaglomerular 

apparatus 

ECU sensors (ΔP, 

temp, O₂) 

 

 

2.4 BIOLOGICAL INSPIRATION: KIDNEY 

FILTRATION AND HOMEOSTASIS 
  

2.4.1 Nephron Structure and Function 

The nephron, about one million per kidney, is the fundamental 

unit responsible for blood filtration and fluid balance. Each 

nephron includes the glomerulus, a pressure-driven capillary 

network enclosed by Bowman’s capsule, followed by the 

proximal convoluted tubule (PCT), Loop of Henle, distal 

convoluted tubule (DCT), and collecting duct. The PCT 

reabsorbs most filtered solutes, the Loop of Henle creates a 

concentration gradient for water recovery, and the DCT and 

collecting duct fine-tune electrolyte and fluid content before 

urine formation. 

The glomerular filtration rate (GFR) averages 120 mL/min 

(≈180 L/day), driven by a 60 mmHg hydrostatic pressure. The 

filtration barrier—a size- and charge-selective membrane with 

4–8 nm pores—blocks proteins above 69 kDa via structural and 
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electrostatic exclusion. About 20% of renal plasma flow is 

filtered, with 99% of the filtrate reabsorbed through active 

transport (glucose, amino acids, Na⁺, K⁺, Cl⁻) and passive 

osmosis of water, leaving only 1–2 L/day of urine. This highly 

efficient system ensures continuous clearance while conserving 

vital solutes and energy.[9],[10],[11] 

 

2.4.2 Homeostatic Control Mechanisms 

The kidney maintains filtration stability through autoregulation, 

hormonal control, and self-protection mechanisms acting across 

multiple time scales. 

Intrinsic control uses two rapid feedback loops. The myogenic 

response constricts the afferent arteriole when stretched, 

keeping GFR constant between 80–180 mmHg with sub-second 

response. The tubule-glomerular feedback uses macula dense 

cells in the DCT to sense Na⁺/Cl⁻ levels and signal 

juxtaglomerular (JG) cells to adjust arteriole tone—reducing 

GFR when flow is high.[8] 

Extrinsic regulation involves hormones. The RAAS system 

activates under low pressure or sodium, releasing renin → 

angiotensin II → aldosterone, which elevates blood pressure and 

promotes Na⁺ and water retention. Antidiuretic hormone (ADH) 

increases water reabsorption in the collecting duct during 

dehydration.[9] 

Self-protective mechanisms include autoregulatory damping of 

pressure spikes, tubular back-flushing to prevent clogging, and 

localized repair via mild inflammation. Collectively, these 

systems maintain GFR within ±5%, reabsorb 99% of sodium, 

and regulate over time frames from seconds (myogenic) to hours 

(hormonal), achieving exceptional biological resilience.[10] 

2.4.3 Kidney-DPF Functional Mapping  

This mapping illustrates how nephron functions can inform the 

design of DPF systems, enhancing their adaptability and 

efficiency in response to varying operational conditions. 

Table 2: Direct Analogies  
Kidney 

Component 

Biological 

Function 

DPF 

Equivalent 

Engineering 

Implementation 
Glomerulus Pressure-driven 

filtration 

DPF substrate Cordierite wall-

flow monolith 

Filtration barrier Size-selective 

membrane (4-8 nm) 

Porous ceramic 

walls 

10-15 μm pore size 

Bowman's capsule Collects filtrate Outlet channels Clean gas exit path 

Tubular 

reabsorption 

Reclaims useful 

substances 

NOT 

APPLICABLE 

(No material 

recovery in DPF) 

Glomerular 

pressure sensor 

Juxtaglomerular 

apparatus 

Differential 

pressure sensor 

ΔP transducer 

(±0.1 kPa 

accuracy) 

Macula densa 

feedback 

Senses 

flow/composition 

Soot load 

estimator 

Model-based 

algorithm 

(backpressure + 

mass flow) 

Myogenic response Rapid arteriole 

adjustment 

Active 

regeneration 

trigger 

Post-injection fuel 

dosing 

Tubuloglomerular 

feedback 

Slower GFR 

modulation 

Regeneration 

intensity control 

Temperature 

setpoint 

adjustment 

RAAS (hormonal) Long-term BP 

regulation 

Maintenance 

regeneration 

Periodic high-temp 

regeneration 

Autoregulation Maintain function 

despite perturbations 

Adaptive control Feedforward + 

feedback control 

 

 

2.5 ENGINEERING TRANSLATION: 

BIOMIMETIC DPF SYSTEM  
The biomimetic DPF system is designed to meet stringent 

regulatory, durability, and performance targets aligned with 

upcoming Euro 7 and EPA 2027 standards. 

The system must limit particulate mass (PM) emissions to below 

0.005 g/km under the WLTC cycle and particle number (PN) to 

under 6 × 10¹¹ particles/km, achieving a filtration efficiency 

above 95%. Durability targets include a service life exceeding 

150,000 miles, with ash accumulation below 100 g after 10,000 

hours of operation. Acceptable exhaust back pressure is 

constrained to < 20 kPa for a clean filter and < 30 kPa under 

loaded conditions. The control strategy must minimize 

regeneration frequency while maintaining backpressure below 

25 kPa. The average fuel penalty should remain under 2% across 

mixed driving cycles, and thermal safety must ensure substrate 

temperatures never exceed 800 °C. The system should initiate 

regeneration within 5 minutes of a detected trigger event to 

preserve operational continuity. 

The DPF must operate reliably from –40 °C to +50 °C ambient 

temperature and sea level up to 14,000 ft altitude. It must adapt 

to variable duty cycles, from urban (≈30 mph average) to 

highway (≈65 mph) driving. From a user perspective, driver 

acceptance requires regeneration to occur no more than once 

every 300 miles with minimal perceptible intrusion 

 

2.5.1 Biomimetic System Architecture 

This section will outline the proposed architecture for the 

biomimetic DPF system, integrating adaptive control 

mechanisms inspired by biological processes to enhance 

regeneration efficiency and durability. Inspired by the kidney’s 

three-timescale regulation, the proposed DPF control 

architecture integrates reactive, adaptive, and strategic layers to 

emulate biological homeostasis. Each layer corresponds to a 

physiological analog—myogenic reflex, tubule-glomerular 

feedback, and hormonal regulation (RAAS)—ensuring fast 

protection, adaptive optimization, and long-term resilience in 

particulate filtration and regeneration control. 

Layer 1: Reactive (Fast Response – Myogenic Analogy) 

The reactive layer ensures immediate protection when the filter 

experiences rapid backpressure rise. A regeneration event is 

triggered if ΔP > 22 kPa (nominal clean filter ≈ 2 kPa) and 

exhaust temperature exceeds 250 °C. Upon activation, post-

injection fuel dosing is commanded at the maximum safe rate, 

initiating oxidation within < 10 s. This mechanism mirrors the 

myogenic arteriole contraction in the kidney, which stabilizes 

filtration pressure and prevents tissue damage. The reactive 

logic thus functions as an emergency safeguard to prevent filter 

overloading or rupture under transient conditions. 

Layer 2: Adaptive (Tactical – Tubulo-glomerular Analogy) 

The adaptive layer performs short-term optimization through 

predictive soot-load estimation using an Extended Kalman Filter 

(EKF), where the state vector 

x=[msoot,m˙soot]x=[m_{soot},\dot{m}_{soot}]x=[msoot

,m˙soot] is updated based on differential pressure 

measurements. The estimator dynamically predicts soot 

accumulation under varying engine load, EGR rate, and speed. 

When the estimated soot mass exceeds threshold and an 

opportune condition (e.g., highway speed > 50 mph, exhaust 

temperature > 400 °C, and no prior regeneration within 200 mi) 

is met, a medium-priority regeneration is scheduled. 

[20],[21],[22] 

Temperature targets are optimized as a function of soot mass—

580 °C for light, 620 °C for moderate, and 650 °C for heavy 

loading—balancing oxidation efficiency and substrate 

protection. The typical response time is 30–60 s, comparable to 
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the kidney’s tubule-glomerular feedback, which adjusts 

glomerular flow to maintain equilibrium under fluctuating loads. 

Layer 3: Strategic (Long-Term – RAAS Analogy) 

The strategic layer manages long-term soot and ash 

accumulation trends. When mileage since last regeneration 

exceeds 500 mi or ash buildup surpasses limit, a deep 

regeneration is scheduled at 680 °C for 15–20 min, targeting 

residual and aged particulates. A learning algorithm 

continuously refines regeneration parameters based on historical 

data—fuel used, ΔP before/after, and duration—updating 

efficiency models for subsequent cycles. This slow-acting 

adaptation parallels the kidney’s Renin–Angiotensin–

Aldosterone System (RAAS), maintaining systemic balance 

over extended time horizons. 

2.5.2 Cascade Control Implementation 

To ensure stable thermal management and efficient soot 

oxidation, the biomimetic DPF framework employs a cascade 

control architecture combining model-based feedforward 

prediction with PID-based feedback correction. This layered 

structure mirrors the dual regulation pathways observed in 

biological homeostasis, where predictive (feedforward) 

responses are complemented by corrective (feedback) 

mechanisms to maintain equilibrium. 

 

Feedforward Path – Model-Based Prediction: 

The controller first estimates the required post-injection fuel rate 

to achieve the target regeneration temperature: 

 

ṁ_fuel,ff = ((T_target - T_exh) × ṁ_exh × Cp) / (η_comb × 

LHV)                                                (1) 

 

where Cp = 1.1 kJ/kg·K, LHV = 42.5 MJ/kg, and combustion 

efficiency η_comb = 0.9. This anticipatory control adjusts heat 

input based on exhaust mass flow and temperature, ensuring 

rapid attainment of the desired thermal profile while minimizing 

overshoot. The post-injection timing is synchronized near TDC 

+ 120°CA to optimize oxidation within the DOC and DPF. 

 

Feedback Path – Temperature Regulation: 

A PID controller compensates for modeling uncertainties and 

dynamic disturbances through continuous temperature tracking: 

 

u_fb = Kp·e + Ki∫e·dt + Kd·de/dt                 (2) 

 

with e = (T_target – T_DPF) and typical gains Kp = 0.05, Ki = 

0.002, Kd = 0.01. The combined actuation command is: 

 

ṁ_fuel,total = ṁ_fuel,ff + u_fb 

 

subject to safety constraints (0 < ṁ_fuel,total < ṁ_max). 

 

Safety Interlocks: 

Thermal safety is maintained through real-time limits: 

regeneration is halted if T_DPF > 750°C, continued if ΔP 

decreases by >50% within 2 minutes, or aborted if no pressure 

change occurs after 5 minutes, indicating ignition failure or 

blockage. 

 

This cascade structure provides fast transient response, minimal 

temperature overshoot, and robust self-protection, achieving 

precise control of soot oxidation comparable to biological 

thermal homeostasis in renal autoregulation. 

Homeostatic Performance Metrics 

To quantify the biomimetic regulation capability of the proposed 

DPF control system, three indices are introduced. These metrics 

evaluate the system’s adaptability, resilience, and internal 

stability under varying operating and environmental conditions. 

 

1. Adaptation Index (Aᵢ) – Sensitivity to Environmental Change: 

Aᵢ = |ΔPerformance / ΔEnvironment|          (3) 

This index measures how sensitively system performance 

responds to external variations such as ambient temperature, 

altitude, or load changes. Example: a 20 °C decrease in ambient 

temperature causes a 2 % drop in regeneration efficiency → Aᵢ 

= 0.1 %/°C. Target: Aᵢ < 0.2 %/°C, indicating high adaptability 

and environmental robustness. 

 

2. Resilience Index (Rᵣ) – System Uptime: 

Rᵣ = MTBF / (MTTR + Downtime_regen)    (4) 

This ratio quantifies system resilience by comparing mean time 

between failures (MTBF) to total downtime, including 

regeneration and repair intervals. Target: Rᵣ > 0.98 (≥ 98 % 

uptime), representing minimal disruption and sustained 

operational reliability. 

 

3. Homeostatic Stability (Hₛ) – Backpressure Variability: 

Hₛ = 1 - [σ(ΔP) / μ(ΔP)]                                (5) 

This index reflects the system’s ability to maintain steady 

internal conditions. A lower standard deviation of backpressure 

relative to its mean denotes superior thermal and flow 

equilibrium. Target: Hₛ > 0.90, confirming stable self-regulation 

and minimal oscillation in soot-loading dynamics. 

 

Together, these indices establish a quantitative foundation for 

evaluating biological-level adaptability and robustness in the 

engineered DPF system. 

 

 

 

III. RESULTS 

 
3.1 Requirements Traceability 

 

 

Table 3: Traceability Matrix 

Regulatory 

Req ID 

System 

Req ID 

Bio-Analogy Design 

Element 

Verification 

Method 
EPA-2027-PM-

001 

SYS-

REQ-

0010 

Glomerular 

filtration 

DPF 

substrate 

pore size 

(10-15 μm) 

PM sampling 

per CFR 1065 

ISO26262-

ASIL-B 

SYS-

REQ-

0025 

Autoregulation 

(damage 

prevention) 

Temperature 

safety 

interlock 

(<800°C) 

FMEA + fault 

injection 

testing 

EURO7-PN-

002 

SYS-

REQ-

0015 

Selective 

filtration 

barrier 

Wall-flow 

monolith 

architecture 

PN counter 

per PMP 

protocol 

DURABILITY-

001 

SYS-

REQ-

0040 

Self-cleaning 

(tubular 

function) 

Adaptive 

regeneration 

algorithm 

150k-mile 

accelerated 

aging 

 

 

3.2. EXPERIMENTAL METHODS  

Test Facility and Instrumentation  
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Engine Dynamometer Setup: 

Engine Specifications: 

Model: 6.7L inline-6 turbocharged diesel (representative heavy-

duty platform) 

Power Rating: 350 HP @ 2000 rpm 

Torque: 1150 lb-ft @ 1400 rpm 

Emissions Standard: EPA 2017 compliant (baseline) 

Fuel System: Common-rail, 29,000 psi injection pressure 

EGR: Cooled high-pressure EGR loop 

Dynamometer: 

Type: AC motoring eddy-current absorber 

Capacity: 500 HP, 3000 lb-ft 

Speed Range: 600-2600 rpm 

Control: Automated test cycle execution (FTP, WHTC, steady 

state) 

Data Acquisition: National Instruments Compact RIO, 1 kHz 

sampling 

 

3.3. Aftertreatment System Configuration: 

 

Table 4: Test vs. Baseline Comparison 

Component Baseline (Fixed-

Schedule) 

Biomimetic (Kidney-Inspired) 

DOC 10.5" × 6" Pt-Pd 

catalyst 

IDENTICAL 

DPF SiC, 10.5" × 12", 

200 cpsi 

IDENTICAL (hardware 

unchanged) 

Sensors ΔP sensor (1), 

Temp (2) 

+1 Temp sensor (DPF outlet) 

Control 

Logic 

Fixed ΔP 

threshold (25 

kPa) → regen 

Adaptive EKF-based soot 

estimator + multi-layer control 

Post-

Injection 

On/off, 650°C 

target 

Modulated, 580-650°C adaptive 

target 

 

 

3.4. RESULTS  

 

3.4.1 Soot Load Estimation Performance 

Extended Kalman Filter Validation: 

 

Table 5: EKF Soot Mass Estimation Accuracy 

Key Findings 

Test 

Cycle 

Measured 

Soot (g) 

EKF 

Estimate (g) 

Error 

(%) 

Estimation 

Time (s) 

Urban-1 48.3 46.7 -3.3 600 

Urban-2 52.1 54.8 +5.2 600 

Urban-3 45.9 44.2 -3.7 600 

Highway-

1 

28.4 26.9 -5.3 1200 

Highway-

2 

31.2 33.5 +7.4 1200 

Mixed-1 39.7 38.1 -4.0 900 

Mixed-2 42.3 44.6 +5.4 900 

Mean ± 

SD 

41.1 ± 8.6 41.3 ± 9.2 ±4.9% 857 ± 236 

 

Mean absolute error: 4.9% (well within <10% target) 

No systematic bias (errors distributed ±5%) 

Estimation converges within 10 minutes of cycle start 

95% confidence interval: Estimate within ±9.6% of true value 

Figure 1: EKF Soot Estimation vs. Gravimetric Measurement 

 

 

3.4.2 Regeneration Performance Comparison 

 

A. Regeneration Frequency: 

Table 6: Regeneration Event Statistics (150,000-mile 

simulation) 

Metric Baseline 

(Fixed) 

Biomimetic 

(Adaptive) 

Improvement p-

value 

Total 

regenerations 

520 338 -35.0% <0.001 

Miles per regen 288 ± 45 444 ± 52 +54.2% <0.001 

Regen duration 

(min) 

14.2 ± 2.1 11.8 ± 1.9 -16.9% <0.01 

Emergency 

regens (ΔP >25 

kPa) 

48 (9.2%) 12 (3.6%) -75.0% <0.001 

 

Key Insights: 

Biomimetic algorithm reduces regeneration frequency by 35% 

Longer intervals between regenerations (444 vs. 288 miles) 

Shorter regeneration duration due to optimized temperature 

targeting 

75% reduction in emergency regenerations (reactive high-

pressure events) 

A. Fuel Consumption Analysis: 

 

Table 7: Fuel Penalty Assessment 

Calculation Method 

Driving 

Scenario 

Baseline 

Penalty (%) 

Biomimetic 

Penalty (%) 

Absolute 

Reduction 

Urban (FTP-

75) 

3.8 ± 0.4 2.1 ± 0.3 -1.7% 

Highway 

(steady) 

2.1 ± 0.2 1.2 ± 0.2 -0.9% 

Mixed 

(WHTC) 

3.2 ± 0.3 1.8 ± 0.2 -1.4% 

Weighted 

Avg 

3.2% 1.8% -1.4% 

 

Fuel_penalty (%) = (Total_fuel_with_regen - 

Total_fuel_no_regen) / Total_fuel_no_regen × 100% , where 

fuel measured via gravimetric scale (±0.1g accuracy) 

Annual Fuel Savings (Example): 

Assumptions: 

  - Heavy-duty truck: 15,000 miles/year 

  - Fuel economy: 6.5 mpg (baseline) 

  - Diesel price: $4.00/gallon 

  

Baseline fuel consumption: 15,000 / 6.5 = 2,308 gal/year. With 

3.2% penalty: 2,308 × 1.032 = 2,382 gal/year. Cost: $9,528/year 

  

Biomimetic fuel consumption: 2,308 × 1.018 = 2,350 gal/year. 

Cost: $9,400/year 

  

Annual savings: $128/truck (1.3% reduction) 

Fleet of 1000 trucks: $128,000/year savings 

 

Emission Performance: 

 

 

Table 8: Tailpipe PM Emissions (WLTC Cycle) 
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Measurement Baseline Biomimetic Difference Regulation 

Limit 

PM mass 

(mg/km) 

2.8 ± 0.4 2.6 ± 0.3 -7.1% 

(NS) 

<5.0 (Euro 

7) 

PN (#/km) 4.2×10¹¹ 

± 

0.5×10¹¹ 

3.9×10¹¹ ± 

0.4×10¹¹ 

-7.1% 

(NS) 

<6×10¹¹ 

Filtration eff 

(%) 

97.1 ± 0.9 97.3 ± 0.8 +0.2% 

(NS) 

>95% 

required 

 

Note: NS = Not statistically significant (p>0.05). Both systems 

meet regulatory requirements; biomimetic shows marginal 

improvement but within measurement uncertainty. 

Key Finding: Emission performance is equivalent (critical for 

regulatory approval); improvements are in efficiency, not 

emissions. 

5.3 Temperature Control and Safety  

Here is the bar chart comparison (Figure 2) highlighting key 

temperature characteristics for baseline vs. biomimetic DPF 

regeneration. The biomimetic approach clearly achieves lower 

peak and target temperatures, improved uniformity, and greater 

thermal stability, while maintaining acceptable ramp time—

confirming its superior efficiency and substrate safety. 

 

Table 9: Temperature Control Performance 

Metric Baseline Biomimetic Improvement 

Target overshoot (°C) 32 ± 12 8 ± 5 -75% 

Temperature std dev (°C) 18.4 7.2 -61% 

Axial gradient (°C) 45 ± 8 28 ± 6 -38% 

Peak temperature (°C) 682 ± 15 628 ± 11 -54°C 

Safety margin to 800°C 118°C 172°C +46% 

 

Key Insight: Biomimetic control provides tighter temperature 

regulation (homeostatic control), reducing thermal stress and 

improving durability. 

B. Safety Event Analysis: 

Bio-Analogy Validation: The adaptive control mimics kidney 

autoregulation—prevents damage by modulating "filtration 

pressure" (regeneration intensity) in real-time. 

5.4 Durability and Long-Term Performance (0.75 pages) 

A. Backpressure Evolution (150,000-mile simulation): 

 
Figure 1: Clean DPF Backpressure vs. Mileage 

 

  

Interpretation: 

  - Ash accumulation causes gradual ΔP increase (non-

removable) 

  - Biomimetic shows 10% slower rate (less aggressive 

regenerations = less ash sintering) 

 

 

Table 10: End-of-Life Performance (150,000 miles) 

Parameter Baseline Biomimetic Difference 

Clean ΔP (kPa) 4.8 ± 0.3 4.3 ± 0.2 -10.4% 

Loaded ΔP (kPa) 24.2 ± 1.8 22.7 ± 1.5 -6.2% 

Filtration efficiency (%) 96.8 ± 1.1 97.1 ± 0.9 +0.3% (NS) 

Ash mass (g) 87 ± 9 82 ± 7 -5.7% 

 

Substrate Integrity: 

Visual Inspection (150k miles): No cracks, melting, or structural 

degradation in either system 

CT Scan Analysis: Uniform ash distribution; no localized 

hotspots 

Mechanical Testing: Crush strength retained >90% of new 

Key Finding: Both systems meet 150k-mile durability target; 

biomimetic shows marginal advantage in ash management due 

to lower peak temperatures. 

 

 

 

VI. DISCUSSION 
Biomimetic Advantages Over Conventional Approaches - 

Comparison with State-of-the-Art: 

 

Table 11: Performance vs. Literature 

Strategy Source Regen 

Frequency 

Reduction 

Fuel 

Penalty 

Temperature 

Control 

Fixed 

schedule 

Industry 

standard 

Baseline 

(0%) 

3.2% Poor (±18°C) 

NSGA-

III + 

BPNN 

(ML) 

Wang et 

al., 2024 

[14] 

15-20% 2.7% Moderate 

(±12°C) 

MPC Bencherif 

et al., 

2015[16] 

12% 2.8% Good (±8°C) 

Bio-

Kidney 

(this 

work) 

Present 

study 

35% 1.8% Excellent 

ghm,(±7°C) 

 

The findings suggest that the kidney-inspired  

adaptive regeneration strategy significantly enhances the 

operational efficiency of diesel particulate filters, offering a 

promising path forward for future emissions compliance. 

 

 

     VII. CONCLUSION  
This work presents the first systematic application of kidney-

inspired homeostatic control to Diesel Particulate Filter (DPF) 

regeneration, proving that biological regulation principles can 

deliver measurable gains beyond conventional or machine-

learning-based strategies. A rigorous translation methodology 

was established to map nephron physiology into DPF system 

architecture, resulting in reusable  artifacts and new homeostatic 

performance indices—the Adaptation Index and Resilience 

Index—for quantifying system stability. 

Results showed a 35% reduction in regeneration frequency (520 

→ 338 events), 1.4% absolute decrease in fuel penalty (3.2% → 
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1.8%), 75% fewer emergency regenerations, and 61% 

improvement in temperature control stability (±18 °C → ±7 °C), 

while maintaining >97% filtration efficiency and full emissions 

compliance. 

An Extended Kalman Filter–based soot estimator achieved a 

4.9% mean error, and a multi-layer cascade controller (reactive–

adaptive–strategic) effectively mirrored the kidney’s multi-

timescale regulation, maintaining robustness across urban, 

highway, and transient duty cycles. The framework requires 

minimal hardware (~$20/vehicle) and a single software 

calibration effort, yielding a payback period of less than two 

months through fuel savings. The design is scalable to GPFs, 

non-road engines, and alternative-fuel platforms, supporting 

near-term industrial adoption. Nature has optimized the kidney 

over 500 million years of evolution to achieve reliable filtration, 

self-cleaning, and homeostatic regulation, precisely the 

challenges facing modern diesel particulate filters. By 

systematically translating these biological principles into 

engineering requirements and control algorithms, we 

demonstrate that biomimicry is not merely inspirational, but 

yields quantifiable, production-ready improvements. The 

kidney-DPF analogy succeeds because both systems share 

fundamental functional requirements: continuous filtration 

under varying loads, periodic cleaning without damage, and 

adaptive regulation to maintain performance. This functional 

alignment, not superficial resemblance is the key to successful 

biomimetic engineering. As automotive systems grow more 

complex with electrification and autonomy, the biomimetic 

approach offers a structured pathway to harness nature's proven 

strategies. Future vehicles may not just be inspired by biology 

but may truly emulate the adaptive resilience of living 

organisms. 
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