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    Abstract- A trigonometric shear deformation theory for flexure 

of thick beams, taking into account transverse shear deformation 

effects, is developed. The number of variables in the present 

theory is same as that in the first order shear deformation theory. 

The sinusoidal function is used in displacement field in terms of 

thickness coordinate to represent the shear deformation effects. 

The noteworthy feature of this theory is that the transverse shear 

stresses can be obtained directly from the use of constitutive 

relations with excellent accuracy, satisfying the shear stress free 

conditions on the top and bottom surfaces of the beam. Hence, 

the theory obviates the need of shear correction factor. 

Governing differential equations and boundary conditions are 

obtained by using the principle of virtual work. The thick simply 

supported isotropic beams are considered for the numerical 

studies to demonstrate the efficiency of the. Results obtained are 

discussed critically with those of other theories. 

 

    Index Terms- Equilibrium equations flexure, principle of 

virtual work, trigonometric shear deformation, thick beam. 

 

I. INTRODUCTION 

t is well-known that elementary theory of bending of beam 

based on Euler-Bernoulli hypothesis disregards the effects of 

the shear deformation and stress concentration. The theory is 

suitable for slender beams and is not suitable for thick or deep 

beams since it is based on the assumption that the transverse 

normal to neutral axis remains so during bending and after 

bending, implying that the transverse shear strain is zero. Since 

theory neglects the transverse shear deformation, it 

underestimates deflections in case of thick beams where shear 

deformation effects are significant.  

          Bresse [1], Rayleigh [2] and Timoshenko [3] were the 

pioneer investigators to include refined effects such as rotatory 

inertia and shear deformation in the beam theory. Timoshenko 

showed that the effect of transverse vibration of prismatic bars. 

This theory is now widely referred to as Timoshenko beam 

theory or first order shear deformation theory (FSDT) in the 

literature. In this theory transverse shear strain distribution is 

assumed to be constant through the beam thickness and thus 

requires shear correction factor to appropriately represent the 

strain energy of deformation. Cowper [4] has given refined 

expression for the shear correction factor for different cross-

sections of beam. The accuracy of Timoshenko beam theory for 

transverse vibrations of simply supported beam in respect of the 

fundamental frequency is verified by Cowper [5] with a plane 

stress exact elasticity solution. To remove the discrepancies in 

classical and first order shear deformation theories, higher order 

or refined shear deformation theories were developed and are 

available in the open literature for static and vibration analysis of 

beam.  

        Levinson [6], Bickford [7], Rehfield and Murty [8], Krishna 

Murty [9], Baluch, Azad and Khidir [10], Bhimaraddi and 

Chandrashekhara [11] presented parabolic shear deformation 

theories assuming a higher variation of axial displacement in 

terms of thickness coordinate. These theories satisfy shear stress 

free boundary conditions on top and bottom surfaces of beam and 

thus obviate the need of shear correction factor. Irretier [12] 

studied the refined dynamical effects in linear, homogenous 

beam according to theories, which exceed the limits of the Euler-

Bernoulli beam theory. These effects are rotary inertia, shear 

deformation, rotary inertia and shear deformation, axial pre-

stress, twist and coupling between bending and torsion.  

        Kant and Gupta [13], Heyliger and Reddy [14] presented 

finite element models based on higher order shear deformation 

uniform rectangular beams. However, these displacement based 

finite element models are not free from phenomenon of shear 

locking (Averill and Reddy [15], Reddy [16]).  

       There is another class of refined theories, which includes 

trigonometric functions to represent the shear deformation effects 

through the thickness. Vlasov and Leont’ev [17], Stein [18] 

developed refined shear deformation theories for thick beams 

including sinusoidal function in terms of thickness coordinate in 

displacement field. However, with these theories shear stress free 

boundary conditions are not satisfied at top and bottom surfaces 

of the beam. A study of literature by Ghugal and Shimpi [19] 

indicates that the research work dealing with flexural analysis of 

thick beams using refined trigonometric and hyperbolic shear 

deformation theories is very scarce and is still in infancy.   In this 

paper development of theory and its application to thick simply 

supported beam is presented.    

II. DEVELOPMENT OF THEORY 

           The beam under consideration as shown in Fig. 1 occupies 

in 0 x y z   Cartesian coordinate system the region:   

 

0 ; 0 ;
2 2

h h
x L y b z        

 

where x, y, z are Cartesian coordinates,  L and b are the length 

and width of beam in the x and y directions respectively, and h is 

I 
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the thickness of the beam in the z-direction. The beam is made 

up of homogeneous, linearly elastic isotropic material.  
 

 

 

 

 

 

                                   

 

 

 
Fig. 1 Beam under bending in x-z plane 

 

A. The displacement field 

The displacement field of the present beam theory is of the form: 

 

( , ) sin ( )

( , ) ( )

dw h z
u x z z x
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                             (1)      

 

where u  is the axial displacement in x direction and w is the 

transverse displacement in z direction of the beam. The 

sinusoidal function is assigned according to the shear stress 

distribution through the thickness of the beam. The function   

represents rotation of the beam at neutral axis, which is an 

unknown function to be determined. The normal and shear 

strains obtained within the framework of linear theory of 

elasticity using displacement field given by ―(1)‖ are as follows. 

 

Normal strain:   

2

 
2

= sinx

u d w h z d
z

x h dxdx

 





  
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            (2)  

 

Shear strain: coszx

u dw z

z dx h


 


  


                                    (3)     

                                    

The stress-strain relationships used are as follows: 

                   ,x x zx zxE G                                            (4) 

B. Governing Equations and Boundary Conditions  

―Using (2) through (4)‖ and using the principle of virtual 

work, variationally consistent governing differential equations 

and boundary conditions for the beam under consideration can be 

obtained. The principle of virtual work when applied to the beam 

leads to: 
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(5) 

 

where the symbol  denotes the variational operator. 

―Employing Green’s theorem to (4) successively‖, we obtain the 

coupled Euler-Lagrange equations which are the governing 

differential equations and associated boundary conditions of the 

beam. The governing differential equations obtained are as 

follows: 

 

 
4 3

4 3 3

24d w d
EI EI q x
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                                     (6)  

3 2

3 3 2 2

24 6
0

2

d w d GA
EI EI

dx dx




 
  

                               

(7)   

 

The associated consistent natural boundary conditions 

obtained are of following form:  

 

At the ends x = 0 and x = L 

 
3 2
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is prescribed         (10) 

 

Thus the boundary value problem of the beam bending is 

given by the above variationally consistent governing differential 

equations and boundary conditions.  

C. The General Solution of Governing Equilibrium Equations 

of the Beam 

The general solution for transverse displacement w(x) and 

warping function (x) is obtained using ―(6) and (7)‖ using 

method of solution of linear differential equations with constant 

coefficients. Integrating and rearranging ―(6)‖, we obtain the 

following expression  

                                                   

 3 2

3 3 2

24 Q xd w d

EIdx dx




                                                              (11) 

where Q(x) is the generalized shear force for beam and  it is 

given by   1

0

x

Q x qdx C  .  

Now ―(7)‖ is rearranged in the following form:      

       

 
3 2

3 24

d w d

dx dx

 
                                                         (12) 

 

A single equation in terms of  is now obtained using ―(11) and 

(12)‖ as:  
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where constants ,   and   in ―(12) and (13)‖ are as follows  

q(x) 
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The general solution of ―(13)‖ is as follows: 

  2 3
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The equation of transverse displacement w(x) is obtained by 

substituting the expression of  x  in ―(12)‖ and then 

integrating it thrice with respect to x. The general solution for 

w(x) is obtained as follows 
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                                   (15) 

        where
1 2 3 4 5 6, , , , and C C C C C C are arbitrary constants and 

can be obtained by imposing boundary conditions of beam.  
 

III. ILLUSTRATIVE EXAMPLES 

In order to prove the efficacy of the present theory, the 

following numerical examples are considered. The following 

material properties for beam are used  

     E = 210 GPa, μ = 0.3 and  = 7800 kg/m
3
, where E is the 

Young’s modulus,   is the density, and μ is the Poisson’s Units 

A. Simply supported beam subjected to varying load,  

The simply supported beam is having its origin at left support 

and is simply supported at x = 0 and x = L. The beam is 

subjected to varying load, on surface z = +h/2 acting in the 

downward z direction with maximum intensity of load 0q . 

 

 

                              

 

 

 

 

 

 

 

          Figure 2: Simply supported beam with varying load 

 

 

 

 

General expressions obtained for  w x  and  x  are as follows: 
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The axial displacement and stresses obtained based on above 

solutions are as follows 
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IV. RESULTS 

    In this paper, the results for inplane displacement, transverse 

displacement, inplane and transverse stresses are presented in the 

following non dimensional form for the purpose of presenting the 

results in this work. 

 
For beams subjected to parabolic load, q(x) 
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Table I: Non-Dimensional Axial Displacement ( u ) at (x = 

0.75L, z = h/2), Transverse Deflection ( w ) at (x = 0.75L, z =0.0) 

Axial Stress (
x ) at (x = 0.75L, z = h/2) Maximum Transverse 

Shear Stresses CR

zx
 
and EE

zx (x = 0, z = 0.0) of the Simply 

Supported Beam Subjected to Varying Load for Aspect Ratio 4. 

Model u  w  
x  CR

zx  EE

zx  

TSDT -5.6081 0.6891 -5.4746 -1.0320 0.9968 

HPSDT -5.5950 0.6885 -5.4532 -0.9968 0.9959 

HSDT -5.5985 0.6889 -5.4589 -1.0000 0.9971 

FSDT -5.4708 0.6877 -5.2500 -0.1436 1.0000 

ETB -5.4708 0.5811 -5.2500 — 1.0000 

 

Table II: Non-Dimensional Axial Displacement ( u ) at (x = 

0.75L, z = h/2), Transverse Deflection ( w ) at (x = 0.75L, z = 

0.0) Axial Stress (
x ) at (x = 0.75L, z = h/2) Maximum 

Transverse Shear Stresses CR

zx
 
and EE

zx  (x = 0, z = 0.0) of 

the Simply Supported Beam Subjected to Varying Load for 

Aspect Ratio 10. 

Model u  w  
x  CR

zx  EE

zx  

TSDT -86.7057 0.5983 -33.0371 -2.5801 2.4987 

HPSDT -85.7922 0.5983 -33.0156 -2.4922 2.4984 

HSDT -85.8009 0.5983 -33.0214 -2.5000 2.4988 

FSDT -85.4818 0.5981 -32.8125 -0.8974 2.5000 

ETB -85.4818 0.5811 -32.8125 — 2.5000 

 

 

 
 

Figure 3: Variation of axial displacement ( u ) through the 

thickness of simply supported beam at (x = 0.75L, z) when 

subjected to varying load for aspect ratio 4. 

  

 
Figure 4: Variation of maximum transverse displacement ( w ) of 

simply supported beam at (x = 0.75L, z = 0) when subjected to 

varying load with aspect ratio S. 

 

 

 
 

Figure 5: Variation of axial displacement ( u ) through the 

thickness of simply supported beam at (x = 0.75L, z) when 

subjected to varying load for aspect ratio 10. 
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Figure 6: Variation of axial stress ( x ) through the thickness of 

simply supported beam at (x = 0.75L, z) when subjected to 

varying load for aspect ratio 4. 

 

 
 

Figure 7: Variation of axial stress ( x ) through the thickness of 

simply supported beam at (x = 0.75L, z) when subjected to 

varying load for aspect ratio 10. 

 

 
 

 

Figure 8: Variation of transverse shear stress ( zx ) through the 

thickness of simply supported beam at (x = 0, z) when subjected 

to varying load and obtain using constitutive relation for aspect 

ratio 4. 

 
 

 

 

Figure 9: Variation of transverse shear stress ( zx ) through the 

thickness of simply supported beam at (x = 0, z) when subjected 

to varying load and obtain using constitutive relation for aspect 

ratio 10. 
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Figure 10: Variation of transverse shear stress ( zx ) through the 

thickness of simply supported beam at (x = 0, z) when subjected 

to varying load and obtain using equilibrium equation for aspect 

ratio 4. 

 
 

Figure 11: Variation of transverse shear stress ( zx ) through the 

thickness of simply supported beam at (x = 0, z) when subjected 

to varying load and obtain using equilibrium equation for aspect 

ratio 10. 

V. DISCUSSION OF RESULTS 

The comparison of results of maximum non-dimensional axial 

displacement  ( u ) for the aspect ratios of 4 and 10 is presented 

in Tables I and II 26 for simply supported beams subjected to 

linearly varying and parabolic load (see Figure 2). The values of 

axial displacement given by present theory are in close 

agreement with the values of other refined theories for aspect 

ratio 4 and 10. The through thickness distribution of this 

displacement obtained by present theory is in close agreement 

with other refined theories as shown in Figures 3and 5 for aspect 

ratio 4 and 10. 

The comparison of results of maximum non-dimensional 

transverse displacement ( w ) for the aspect ratios of 4 and 10 is 

presented in Tables I and II for simply supported beams 

subjected to linearly varying load. The values of present theory 

are in excellent agreement with the values of other refined 

theories for aspect ratio 4 and 10 except those of classical beam 

theory (ETB) and FSDT of Timoshenko.  The variation of w  

with aspect ratio (S) is shown in Figure 4. The refined theories 

converge to the values of classical beam theory for the higher 

aspect ratios.  

 The results of axial stress (
x ) are shown in Tables I and II for 

aspect ratios 4 and 10. The axial stresses given by present theory 

are compared with other higher order shear deformation theories. 

It is observed that the results by present theory are in excellent 

agreement with other refined theories as well as ETB and FSDT. 

The through the thickness variation of this stress given by all the 

theories is linear at x = 0.75L. The variations of this stress are 

shown in Figures 6 and 7.   

The comparison of maximum non-dimensional transverse shear 

stress for simple beams with varying load obtained by the present  

theory and other refined theories is presented in Tables I and II 

for aspect ratio of 4 and 10 respectively. The maximum 

transverse shear stress obtained by present theory using 

constitutive relation is in good agreement with that of higher 

order theories for aspect ratio 4 and for aspect ratio 10. The 

through thickness variation of this stress obtained via constitutive 

relation are presented graphically in Figures 8 and 9 and those 

obtained via equilibrium equation are presented in Figures 10 

and 11. The through thickness variation of this stress when 

obtained by various theories via equilibrium equation shows the 

excellent agreement with each other. The maximum value of this 

stress occurs at the neutral axis.  

VI. CONCLUSION 

The variationally consistent theoretical formulation of the theory 

with general solution technique of governing differential 

equations is presented. The general solutions for beam with 

varying load are obtained in case of thick simply supported 

beam. The displacements and stresses obtained by present theory 

are in excellent agreement with those of other equivalent refined 

and higher order theories. The present theory yields the realistic 

variation of axial displacement and stresses through the thickness 

of beam. Thus the validity of the present theory is established.  

REFERENCES 

[1] J. A. C. Bresse, ―Cours de Mechanique Applique‖, Mallet-

Bachelier, Paris, 1859. 

[2] J. W. S. Lord Rayleigh, ―The Theory of Sound‖, 

Macmillan Publishers, London, 1877. 

[3] S. P. Timoshenko, J.  N. Goodier, ―Theory of Elasticity‖, 

Third International Edition, McGraw-Hill, Singapore. 

1970. 

0.0 0.2 0.4 0.6 0.8 1.0

zx

-0.50

-0.25

0.00

0.25

0.50

z/h

Present TSDT

HPSDT

HSDT

FSDT

ETB

0.0 0.5 1.0 1.5 2.0 2.5

zx

-0.50

-0.25

0.00

0.25

0.50

z/h

Present TSDT

HPSDT

HSDT

FSDT

ETB

zx

 

zx

 



International Journal of Scientific and Research Publications, Volume 2, Issue 11, November 2012      7 

ISSN 2250-3153  

www.ijsrp.org 

[4] G. R. Cowper, ―The shear coefficients in Timoshenko 

beam theory‖, ASME Journal of Applied Mechanic, vol. 

33, no. 2, 1966, pp. 335-340. 

[5] G. R. Cowper, ―On the accuracy of Timoshenko beam 

theory‖, ASCE J. of  Engineering Mechanics Division. vol. 

94, no. EM6, 1968, pp. 1447-1453,  

[6] M. Levinson, ―A new rectangular beam theory‖, Journal 

of  Sound and Vibration, Vol. 74, No.1, 1981, pp. 81-87. 

[7] W. B.  Bickford, ―A consistent higher order beam theory‖, 

International Proceeding of Development in Theoretical 

and Applied Mechanics (SECTAM), vol. 11, 1982, pp. 

137-150, 

[8] L. W. Rehfield, P. L. N. Murthy, ―Toward a new 

engineering theory of bending: fundamentals‖, AIAA 

Journal, vol.  20, no. 5, 1982, pp. 693-699. 

[9] A. V.  Krishna Murty, ―Towards a consistent beam 

theory‖, AIAA Journal, vol. 22,  no. 6, 1984, pp. 811-816. 

[10] M. H. Baluch, A. K. Azad, and M. A. Khidir, ―Technical 

theory of beams with normal strain‖, ASCE Journal of 

Engineering Mechanics, vol. 110, no. 8, 1984, pp. 1233-

1237. 

[11] A. Bhimaraddi, K. Chandrashekhara, ―Observations on 

higher order beam Theory‖, ASCE Journal of Aerospace 

Engineering, vol. 6, no. 4, 1993, pp.  408-413, 

[12] H. Irretier, ―Refined effects in beam theories and their 

influence on natural frequencies of beam‖, International 

Proceeding of Euromech Colloquium, 219, on Refined  

Dynamical Theories  of Beam, Plates and Shells and Their 

Applications, Edited by I. Elishak off and H. Irretier, 

Springer-Verlag, Berlin,  1986, pp. 163-179. 

[13] T. Kant, A. Gupta, ―A finite element model for higher 

order shears deformable beam theory”, Journal of Sound 

and Vibration, vol. 125, no. 2,  1988, pp. 193-202. 

[14] P. R. Heyliger, J.N. Reddy, ―A higher order beam finite 

element for bending and vibration problems‖, Journal of 

Sound and Vibration, vol. 126,  no. 2, 1988. pp. 309-326. 

[15] R. C. Averill, J. N. Reddy, ―An assessment of four-noded 

plate finite elements based on a generalized third order 

theory‖, International Journal of Numerical Methods in 

Engineering, vol. 33,  1992, pp. 1553-1572. 

[16] J.  N. Reddy, ―An Introduction to Finite Element Method‖. 

2nd Ed., McGraw-Hill, Inc., New York, 1993. 

[17] V. Z. Vlasov, U. N. Leont’ev, ―Beams, Plates and Shells 

on Elastic Foundations‖ Moskva, Chapter 1, 1-8. 

Translated from the Russian by A. Barouch and T. Plez 

Israel Program for Scientific Translation Ltd., Jerusalem, 

1966. 

[18] M. Stein, ―Vibration of beams and plate strips with three 

dimensional flexibility‖, ASME J. of Applied  Mechanics, 

vol. 56, no. 1, 1989, pp. 228-231. 

[19] Y. M. Ghugal, R. P. Shmipi, ―A review of refined shear 

deformation theories for isotropic and anisotropic 

laminated beams‖, Journal of Reinforced Plastics and 

Composites, vol. 20, no. 3, , 2001, pp. 255-272. 

[20] Y. M. Ghugal, R. Sharma, ―A hyperbolic shear 

deformation theory for flexure and vibration of thick 

isotropic beams‖, International Journal of Computational 

Methods, vol. 6, no. 4, 2009, pp. 585-604. 

[21] F. B. Hildebrand, E. C. Reissner, ―Distribution of Stress in 

Built-In Beam of Narrow Rectangular Cross Section‖, 

Journal of Applied Mechanics, vol. 64, 1942, pp. 109-116. 

[22] S.P. Timoshenko, ―On the correction for shear of the 

differential equation for transverse vibrations of prismatic 

bars‖, Philosophical Magazine, vol. 41, no. 6, 1921, pp. 

742-746. 

APPENDIX 

Notations 

A    Cross sectional area of beam = bh 

b   Width of beam in y directions 

E, G, μ                Elastic constants of the material 

h Thickness of beam 

I Moment of inertia of beam 

L Span of the beam 

q Intensity of uniformly distributed 

transverse load 

S Aspect ratio for beam = L / h 
w  Transverse displacement in z direction 

w  Non-dimensional transverse displacement 

u  Non-dimensional axial displacement 

x, y , z                 Rectangular Cartesian coordinates 

x
 

Non-dimensional axial stress in x 

directions 
CR

ZX
 

Non-dimensional transverse shear stress 

via constitutive relations 
EE

ZX
 

Non-dimensional transverse shear stress 

via equilibrium equation 

 x
 

Unknown functions associated with the 

shear slopes 

 

List of abbreviations 

ETB Elementary Theory of Beam 

CR Constitutive Relations 

EE     Equilibrium Equations  

TSDT Trigonometric Shear Deformation Theory 

HPSDT Hyperbolic Shear Deformation Theory 

HSDT Third Order Shear Deformation Theory 

FSDT First Order Shear Deformation Theory 
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