Artificial Intelligence based Symptom Analysis for Disease Prediction: A Phase 2 Field Study

Ankit Agarwal¹, Shelley Saxena², Ravendra Singh³, Vivek Mishra⁴, Balendra Singh⁵

Corresponding Author: Dr. Ankit Agrawal, BDS

DOI: 10.29322/IJSRP.15.10.2025.p16611 https://dx.doi.org/10.29322/IJSRP.15.10.2025.p16611

Paper Received Date: 15th August 2025 Paper Acceptance Date: 26th September 2025 Paper Publication Date: 16th October 2025

Abstract

Introduction: Symptom-based triage and risk assessment is often the first step in patient triage but can be highly subjective, time-

consuming, and prone to error, especially in resource-limited settings. Artificial Intelligence (AI) can enhance triage and reduce errors

in triage and risk assessment, especially in resource-limited settings. Sevamob provides artificial intelligence enabled healthcare

platform to organizations and developed SymptomsAI, an AI system for disease prediction using symptoms of patients. It uses large

language model for initial disease prediction based on patient symptoms and clinical data. To determine the accuracy of Sevamob

SymptomsAI, we used an Android smartphone/tablet with the Sevamob app. The app was operated by a nurse.

Methods: A total of 49 patients with diverse symptoms were included in this clinical study. SymptomsAI generated the top three most

likely disease predictions based on patient demographic and clinical data (age, gender, height, weight, symptoms). The AI output was

compared with consensus diagnoses from a panel of expert doctors. The small sample size limits the generalizability and further studies

are recommended for robust validation.

Results: Compared to the expert panel consensus, SymptomsAI achieved an accuracy of 93.88% (46 correct predictions out of 49) with

an error rate of 6.12% (3 incorrect predictions). In 44 cases, the AI, the doctors, and the disease(s) matched exactly. In 2 additional

cases, AI matched with doctors' differential diagnoses. In only 3 cases, AI results were incorrect. Patient safety and adverse event

tracking are paramount. Mis-predictions were reviewed by clinicians.

Conclusion: SymptomsAI demonstrates high accuracy and reliability as a symptom-based triage tool. It is particularly suitable for

deployment in primary care and community health programs where expert doctors are scarce.

Index terms: Artificial intelligence, symptom-based diagnosis, predictive healthcare, screening

Introduction

Healthcare systems in low-resource settings face significant challenges in accurate and timely triage and risk assessment due to limited

availability of specialists. Symptom-based triage remains the most common first-line approach, but variability in clinical judgment may

lead to missed or delayed diagnoses. Also, in remote areas, due to lack of doctors and specialist doctors, timely triage and risk assessment

at initial level is not possible, which may lead to increased morbidity. [3] Artificial intelligence (AI) has shown great promise in

augmenting triage and risk assessment across various specialties, including medicine, Gynaecology, radiology, dermatology, and

ophthalmology etc. However, its application in symptom-based disease prediction is relatively new. [2,4,5,6] The diagnostic and

predictive analysis of medical photos, for instance, photographs of retina [8] and skin lesions, microscopic pathological images[10-12]

and radiological images, are one of the clinical practice fields where artificial intelligence is expected to have a major

influence.[10,11,15]. This potential usefulness is largely due to advances in deep learning with artificial deep neural networks

(NN), which consist of a stack of multiple layers of artificial neuronal links that loosely simulates the brain's neuronal connections, and

methods specialized for analysis of images, such as the convolution neural network, a particular form of deep neural network that

conceptually mimics the visual pathway [13,16,18]. Adoption of artificial intelligence tools in clinical practice requires careful,

meticulous confirmation of their clinical performance and utility before the adoption.[18] Based on the urgent need for data

standardization and interoperability in internal Medicine, we launched a cross-departmental prospective quality improvement project to

incorporate Symptoms based artificial intelligence technology and outline the resource requirements for implementation. The solutions

presented here empower medical experts to gain an appreciation of and enable the assessment of the appropriateness of the AI system

10.29322/IJSRP.15.10.2025.p16611

www.ijsrp.org

for triaging. We have also shown that current AI systems can aid in the timely triage and risk assessment in resource

constraint setting of developing countries like India. The use of artificial intelligence-based triage and risk assessment and

data regarding the same is scarce to our best knowledge.

Sevamob provides artificial intelligence enabled healthcare platform to organizations. It uses deep learning for image recognition, large

language models for triaging and computer vision for object counting. The software can then be used for triaging and screening of

medical conditions. The system can work in low resource settings. .

Sevamob has developed SymptomsAI, a structured diagnostic decision support system that utilizes patient demographic data and

symptoms to provide the top three possible disease predictions. This approach empowers frontline healthcare workers with limited

training to perform reliable triage and referrals.[26]

The present study was conducted to evaluate the accuracy of SymptomsAI against a consensus triage and risk assessment from expert

physicians.

Study Design

This was a prospective, observational field study conducted on 49 patients presenting with diverse symptoms. The small sample size

limits the generalizability and further studies are recommended for robust validation.

Data Collection and Reference Standard

Each patient's basic demographic details (age, gender, height, weight) and presenting symptoms were recorded. SymptomsAI generated

its top three possible disease predictions. These were compared against a consensus triage and risk assessment from an expert physician

panel.

AI Model and Workflow

SymptomsAI employs large language model. The model is designed to handle structured symptom inputs and outputs ranked disease

predictions.

Performance Evaluation

Performance was evaluated using confusion matrix elements and standard metrics: accuracy, error rate, Concordance with doctors'

diagnosis. Patient safety and adverse event tracking are paramount. Mis-predictions were reviewed by clinicians.

Results

Confusion Matrix (N = 49)

True Positive (TP + Matches with Doctors): 46

False Predictions (FP/FN): 3

Performance Metrics

Accuracy: 93.88%

Error Rate: 6.12%

Concordance Breakdown

Disease, Doctor, and SymptomsAI SAME: 44 cases (86.3%)

Doctor and SymptomsAI SAME: 2 cases (3.9%)

SymptomsAI Errors: 3 cases (5.9%)

Interpretation

SymptomsAI demonstrated excellent agreement with the panel of doctors, misclassifying only 3 cases. This validates its utility as a

triage tool in frontline healthcare.

This publication is licensed under Creative Commons Attribution CC BY. 10.29322/IJSRP.15.10.2025.p16611

www.ijsrp.org

Discussion

This study demonstrates that SymptomsAI provides highly accurate disease prediction from symptom inputs. With an accuracy rate of

nearly 94%, the system is comparable to other AI-driven triage and risk assessment tools reported in the literature.

The small number of errors (3 out of 49 cases) suggests robustness, though continuous model training with larger datasets is necessary.

Interestingly, in two cases, SymptomsAI's predictions aligned with one doctor's triage and risk assessment even when other doctors

differed, highlighting its role as an additional expert opinion.

Implications: SymptomsAI can serve as a reliable triage tool in community health camps, primary care centers, and CSR health

programs. It can support healthcare workers by reducing delays in triage and risk assessment and ensuring timely referral.

Strengths:

High diagnosis accuracy

• Fast, scalable, low training requirement for frontline staff

Limitations:

• Relatively small study sample (49 patients). The small sample size limits the generalizability and further studies are

recommended for robust validation.

Limited disease categories tested

Larger, prospective studies across diverse populations are needed to further validate the system

Conclusion

SymptomsAI demonstrates high accuracy and low error rate for disease prediction from structured symptom data. This study supports

its role as a reliable AI-based triage tool, particularly in primary care and resource-limited settings. Its integration into community health

programs could significantly enhance early disease detection and treatment.

This publication is licensed under Creative Commons Attribution CC BY. 10.29322/IJSRP.15.10.2025.p16611

www.ijsrp.org

References

- [1]. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press. 2016.
- [2]. Chen JH, Asch SM. Machine learning and prediction in medicine: beyond the peakofinflated expectations. N Engl J Med 2017; 376 (26):2507–2509.
- [3]. Seong Ho Park, Kyunghwa Han. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. RSNA. Radiology 2018; 286 (3): 800-809.
- [4]. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learninginmedicine. JAMA2017;318(6):517–518.
- [5]. Lee J-G, Jun S, Cho Y-W, et al. Deep learning in medical imaging: general overview. Korean J Radiol. 2017; 18(4):570–584.
- [6]. Kohli M, Prevedello LM, Filice RW, Geis JR. Implementing machine learningin radiology practice and research. AJR Am J Roentgenol2017;208(4):754–760.
- [7]. Zhou SK, Greenspan H, Shen D. Deep learning for medical image analysis. SanDiego, California. Elsevier Inc., 2017. 430 p.
- [8]. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photograph. JAMA2016; 316 (22): 2402–2410.
- [9]. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skincancer with deep neural networks. Nature 2017;542 (7639):115–118.
- [10]. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017;318(22):2199–2210.
- [11]. Vandenberghe ME, Scott ML, Scorer PW, Söderberg M, Balcerzak D, BarkerC. Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer. Sci Rep2017;7: 45938.

- [12]. Yu KH, Zhang C, Berry GJ, et al. Predicting non–small cell lung cancer prognosisbyfully automated microscopic pathology image features. Nat Commun 2016; 7: 12474.
- [13]. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017; 284(2):574–582.
- [14]. Prevedello LM, Erdal BS, Ryu JL, et al. Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology. 2017; 285(3):923–931.
- [15]. Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neuralnetworkfor differentiation of liver masses at dynamic contrast-enhanced CT: apreliminarystudy. Radiology doi: 10.1148/radiol.2017170706. Published online October27, 2017.
- [16]. An intuitive explanation of convolutional neural networks. The data scienceblog. https://ujjwalkarn.me/2016/08/11/intuitiveexplanation-convnets. AccessedAugust11, 2017.
- [17] Herrmann D, Clunie A, et al. Implementing DICOM standard for AI in pathology. J Pathol Inform. 2018.
- [18].Long, J., Shelhamer, E. and Darrell, T. Fully convolutional networks for semantic segmentation. Proc. IEEE Comput. Soc. Conf. Comput. Vis.Pattern Recognit. 2015; 3431–3440.
- [19]. Ciresan D.C., Giusti A., Gambardella L.M., Schmidhuber, J. Deep neural networks segment neuronal membranes in electron microscopy images. NIPS Proceedings. 2012; 1–9.
- [20]. Litjens G, Sánchez C.I, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs, I et al. Deep learning as a tool for increased accuracy and efficiencyofhistopathological diagnosis. Sci. Rep. 2016; 6: 1–11.
- [21]. Xu J, Luo X, Wang G, Gilmore H, Madabhushi A, Reserve CW. A deep convolutional neural network for segmenting and classifying epithelial regions in histopathological images. Neurocomputing 2017; 191: 214–223.

- [22]. Van Valen, D.A., Kudo, T., Lane, K.M., Macklin, D.N., Quach, N.T., De Felice, M.M., et al. (2016) Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput. Biol. 2015; (12):1–24.
- [23]. Chen H., Qi X, Yu L, Heng PA. DCAN: deep contour-aware networks for accurate gland segmentation. Proc. IEEE Conf. Comput Vis Pattern Recognit. 2016; 2487–2496.
- [24]. Li, W., Manivannan, S., Akbar, S., Zhang, J., Trucco, E. and McKenna, S.J. Gland segmentation in colon histology images using hand-crafted features and convolutional neural networks. Proc. Int. Symp. Biomed. Imaging. 2016: 1405–1408.
- [25]. Xu Y, Li Y, Liu M, Wang Y, Lai M, Chang E.I.C. Gland instance segmentation by deep multichannel side supervision. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), LNCS. 2016; 496–504
- [26]. Cattamanchi A, Davis J et al., Sensitivity and Specificity of Fluorescence Microscopy for Diagnosing Pulmonary Tuberculosis in a High HIV Prevalence Setting; Int J Tuberc Lung Dis. 2009 Sep; 13(9): 1130–1136.

Authors:

1st Author (Corresponding Author):

Dr. Ankit Agarwal, BDS, Sevamob Ventures USA Inc, Lucknow, U.P, India Phone: +91-7408417918, Email ID: dr.ankitagarwal06@gmail.com.

2nd Author: Shelley Saxena, BE, MBA, Sevamob Ventures USA Inc.

3rd Author: Dr. Ravendra Singh, MBBS, MD, drravendra007@gmail.com.

4th Author: Vivek Mishra, MCA, MBA, Sevamob Ventures USA Inc.

5th Author: Balendra Singh, MCA, Sevamob Ventures USA Inc.