Mott Transition in Strongly Correlated Fermionic Systems: Hubbard Model Review

Moukouri Mikano Jonas¹,²,⁷*, Ndjacka Jean-Marie Bienvenu¹, Mane Mane Jeannot³, Epesse Misse Samuel⁵, Guefano Serge³, Nyangono Kouma Jean Michel⁴,⁷, Bwanga Thomas Christophe⁵, Abanda Esomba Christian Gilles⁵, Asse Jean Bernard³, Libog Laurent⁶, Kouoh Sone Paul-Michel Adolphe⁸

¹Laboratory of Mechanics, Materials and Structure, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
²Department of Mathematics and Physical Sciences, National Advanced school of Engineering, University of Yaoundé I, Yaoundé, Cameroon
³Laboratory of Technology and Applied Sciences, University Institute of Technology, University of Douala, Douala, Cameroon
⁴Laboratory of Computer and Automatic Engineering, Advanced Teachers Training College for Technical Education, University of Douala, Douala, Cameroon
⁵Laboratory of Mechanics and Materials, University Institute of Technology, University of Douala, Douala, Cameroon
⁶Department of Mechanical Engineering, Advanced Teachers Training College for Technical Education, University of Douala, Douala, Cameroon
⁷Basical Scientific Teachings Department, Advanced Teachers Training College for Technical Education, University of Douala, Douala, Cameroon
⁸Laboratory of Applied Physical and Analytical Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon

*Corresponding author: jonasmmoukouri2018@gmail.com
DOI: 10.29322/IJSRP.12.10.2022.p13069
http://dx.doi.org/10.29322/IJSRP.12.10.2022.p13069
Paper Received Date: 14th September 2022
Paper Acceptance Date: 15th October 2022
Paper Publication Date: 21st October 2022

ABSTRACT: --The Hubbard model is one of the lattice models that enables successful treatment of problems of electronic correlations in quantum materials. The centrality of the Hubbard model in the quantum statistical mechanics of interacting fermions is comparable with the Ising model in classical mechanics. The constant expansion of Hubbard Hamiltonians indicates the great interest in the physics related to the Hubbard model. The present paper reviews this important model which plays a major role in the study of strong correlated fermionic systems. Starting with the basic approach of the model (the one-band model), we introduce others aspects, such as the multi-band and the extended Hubbard model. Due to presence of the repulsive Coulomb interaction, Mott insulators are different from the conventional insulators, and they are one of the strongest correlated fermionic systems. Mott insulators have been analyzed as well as the metal-insulator transition (MIT) in the perspective of the Hubbard model. The Mott transition addresses directly the competition between the kinetic energy and correlation energy, that is the wavelike and the particle character of electrons in the solid. Thus, the Hubbard model turns out to be appropriate in the study of such phase transition, this is the reason why it is still called Mott-Hubbard transition.

KEYWORDS: Hubbard model, local Coulomb interaction, Mott insulator, metal-insulator transition, correlated fermionic systems, second quantization

1. Introduction
Electronic transport mechanisms in materials always attract more attention of the scientists since the discovery of the electron by Sir Joseph John Thomson in 1897. Three years after that discovery, Paul Drude was the first physicist to present a microscopic theory to explain the transport properties of electron in materials (especially metals) [1-4].

Drude model provides a classical mechanics approach to describing conductivity in metals. This model makes several key assumptions. Here are two of them:

- Electrons in metal behave much like particles in an ideal gas (no Coulomb interaction and no collisions between particles). This is called the independent electron approximation.
- Positive charges are located on immobile ions. The electrons do not experience Coulomb interaction with the ions (free electron approximation), but they do collide with the ions and can change direction and velocity. The so-called free electrons are ruled by the Maxwell-Boltzmann statistics.

The conductivity of metal (solid) is computed by the formula below:

\[\sigma = \frac{ne^2 \tau}{m} \]

(1)

with \(\tau \) called relaxation time, \(n \) is the number of free electrons per volume (the density), \(e \) is the charge of an electron and \(m \) the mass of an electron.

The electronic velocity distribution, like that of an ordinary classical gas of density \(n \) is given in equilibrium at temperature \(T \) by Maxwell-Boltzmann distribution:

\[f_{MB}(v) = n \left(\frac{m}{2\pi k_B T} \right)^{3/2} \frac{mv^2}{e^{\frac{mv^2}{2k_B T}} - 1} \]

(2)

where \(v \) is the electronic velocity and \(k_B \) is the Boltzmann’s constant.

This simplistic model is pre-quantum mechanical semi-classical model which is still roughly applicable for simple alkaline metals.

Arnold Sommerfeld was the first physicist to successfully apply quantum mechanics to the physics of transport in solids. Shortly after the discovery that the Pauli exclusion principle was needed to account the bound electronic states of atoms, Sommerfeld applied the same principle to the free electrons gas of metals [1]. In accordance with the Pauli exclusion principle, the classical Maxwell-Boltzmann velocity distribution was replaced by a new distribution, named Fermi-Dirac distribution and expressed as follows:

\[f_{FD}(v) = \left(\frac{m}{\hbar} \right)^3 \frac{1}{4\pi^3} \frac{1}{\exp\left(\frac{mv^2}{2k_B T_0} - k_B T_0\right) + 1} \]

(3)

where \(\hbar \) is the Planck’s constant divided par \(2\pi \) and \(T_0 \) is temperature determined by the normalized condition. The density of states \((D(\varepsilon) = \alpha\sqrt{\varepsilon}) \) of conduction electrons in 3D systems indicates that the electron states are fully occupied below the Fermi energy \(\varepsilon_F \) (Fermi-Dirac statistics) [4]. The conductivity has the same form, but the relaxation time is now a function of energy Fermi \((\tau(\varepsilon_F)) \). This energy dependence on the relaxation time has little significant effect on the most of quantities of interest in a metal [1].

Although the free electron model has recorded interesting results, it has however experienced many failures. The conventional theory of solids has emerged as being able to overcome some of these failures. This theory is based on the quantum mechanics of single electrons moving in periodic potentials and it has provided an excellent description of substances ranging from semiconducting silicon to superconducting aluminum [5]. Unfortunately, the conventional theory has also experienced limitations due to the electronic correlations present in certain substances.

The present review aims to show, on the one hand, the importance of Hubbard model in the attempt of probing electronic properties of strong correlated fermionic systems, and on another hand, how the strong repulsive Coulomb interaction affects the behavior of these systems. This paper is organized as follows: in section 2, the basic approach of
the Hubbard model (one-band model) is presented, and also the multi-band and extended versions of the Hubbard Hamiltonian. Section 3 is devoted to describing the metal-insulator transition (MIT) and the Mott insulators (Mott-Hubbard- and charge-transfer insulators). Conclusions are presented in section 4.

2. Hubbard model

Lacking a working ab-initio theory, strongly-correlated systems have been studied for a long time through low-energy model Hamiltonians. The minimal model to describe a system with a narrow band at the Fermi level is the Hubbard model [6] and is one of the fundamental models in condensed matter physics. The centrality of the Hubbard model in the quantum statistical mechanics of interacting fermions is comparable with the Ising model in classical mechanics [7]. It offers one of the most simple ways to get insight into how the interactions between electrons give rise to insulating, magnetic, and even novel superconducting effects in a solid [8]. This model was introduced independently by J. Hubbard, M. C. Gutzwiller and J. Kanomori around the same period [9-13]. It was written down in the early 1960’s and initially applied to understanding the behavior of the transition metal monoxides (FeO, NiO, CoO). This compounds exhibit antiferromagnetic insulator behavior, while they were predicted to be metallic by studies which do not deal with strongest electronic interactions [8].

The Hubbard model describes the fundamental dichotomy between itinerancy and locality for correlated electrons on a lattice [6]. This Hubbard Hamiltonian is expressed in a real-space second quantization formalism which is ideally suited to describe systems with electrons localized at the atomic orbital [14].

2.1- One-band Hubbard model

A conventional starting point for the study of strongly correlated electron systems is the single-band version of the Hubbard Hamiltonian [6] written as follows:

$$H = -t \sum_{(i,j),\sigma} (c_{i\sigma}^\dagger c_{j\sigma} + h.c.) + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

(4)

where \((i,j)\) denotes the nearest-neighbor atomic sites, \(c_{i\sigma}^\dagger (c_{i\sigma})\) is the fermion creation (annihilation) operator at site \(i\) with spin \(\sigma \in \{\uparrow, \downarrow\}\). \(n_{i\sigma} = c_{i\sigma}^\dagger c_{i\sigma}\) is the density of fermions with spin \(\sigma\), \(t\) parameterizes the hopping amplitude, the so-called Hubbard \(U\) is the on-site Coulomb interaction and \(h.c.\) denotes the Hermitian conjugate. The hopping parameter \(t\) for the kinetic energy of the electrons is determined by the overlap of atomic wave functions on neighboring sites [15]. Imada et al. [16] in their important study of Metal-Insulator Transitions (MIT) have expressed the hopping integral \(t\):

$$t = \int d\mathbf{r} \phi_{i\sigma}^{\dagger}(\mathbf{r}) \frac{1}{2m} \nabla^2 \phi_{i\sigma}(\mathbf{r})$$

(5)

where \(\phi_{i\sigma}(\mathbf{r})\) and \(\phi_{j\sigma}(\mathbf{r})\) are two atomic Wannier orbitals on sites \(i\) and \(j\) respectively, \(m\) is the electron mass and the Planck constant \(\hbar\) is set to unity.

The Hubbard \(U\) means the repulsive Coulomb interaction between electrons on the same lattice site. The term \(U n_{i\uparrow} n_{i\downarrow}\) represents an energy cost \(U\) for the site \(i\) has two electrons and describes a local repulsion between electrons [15]. \(U\) is also an integral calculated in the following equation [16]:

$$U = \int d\mathbf{r} d\mathbf{r}' \phi_{i\sigma}^{\dagger}(\mathbf{r}) \phi_{i\sigma}(\mathbf{r}) \frac{e^2}{|\mathbf{r} - \mathbf{r}'|} \phi_{j\sigma}^{\dagger}(\mathbf{r}') \phi_{j\sigma}(\mathbf{r}')$$

(6)

The hopping amplitude and the on-site Coulomb repulsion represent the minimal set of parameters necessary to capture the physics of Mott insulators. A schematic picture of the Hubbard model is shown in the Fig.1.
J. Bünemann, in the study of the Gutzwiller variational theory [6] has presented the single-band Hubbard Hamiltonian in another form:

$$H = \sum_{ij} \sum_{\sigma} t_{ij} c^\dagger_{i\sigma} c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow}$$ \hspace{1cm} (7)$$

where t_{ij} is a bond-dependent hopping matrix element on near-neighbor sites $\langle ij \rangle$ [18].

Y. Claveau et al. [19] has considered the simplest Hubbard model as the non-degenerate band Hubbard Hamiltonian which is expressed in this way:

$$H = -\sum_{ij\sigma} t_{ij} c^\dagger_{i\sigma} c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow}$$ \hspace{1cm} (8)$$

And the same authors have defined the term t_{ij} as the translation in the second-quantization language of both the kinetic energy and the crystal-potential energy associated with an electron at site i:

$$t_{ij} = \int d\mathbf{r} \psi^*_i(r) (-\frac{\hbar^2}{2m} \nabla^2 + V(r)) \psi_{j\sigma}(r)$$ \hspace{1cm} (9)$$

The term $V(r)$ represents the periodic crystal-potential energy, and $t_{ij} = (t_{ji})^\dagger$ because the Hamiltonian is Hermitian. An approximation that is usually employed for the hopping term t_{ij} is to consider it as being different from zero only when i and j are considered to be the nearest-neighbor ($t_{ij} = t$) [19].

Equations (7) and (8) are identical insofar as both terms of itinerancy and locality are present. This two terms demonstrate the interplay between kinetic energy gain and cost of Coulomb interaction. F. Lechermann in his notes of Model Hamiltonians and Basic Techniques [20] add another term scaling by the local single-particle level energy ε_0 which is not strictly mandatory:

$$H = -\sum_{ij\sigma} t_{ij} c^\dagger_{i\sigma} c_{j\sigma} + \varepsilon_0 \sum_i n_{i\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow}$$ \hspace{1cm} (10)$$

The Fourier transform of t_{ij} is the dispersion relation ε_k [6]. Finally, the Fourier transform of the kinetic energy term involves the dispersion ε_k and the momentum distribution operator $n_{k\sigma}$:

$$\sum_{ij\sigma} t_{ij} c^\dagger_{i\sigma} c_{j\sigma} = \sum_{k\sigma} \varepsilon_k c^\dagger_{k\sigma} c_{k\sigma} = \sum_{k\sigma} \varepsilon_k n_{k\sigma}$$ \hspace{1cm} (11)$$
Let’s remind some useful Fourier transform relations concerning fermion creation and annihilation operators:

\[
c_{k\sigma}^+ = \frac{1}{\sqrt{N}} \sum_{R_j} e^{i k \cdot R_j} c_{R_j \sigma}^\dagger
\]

(12)

\[
c_{k\sigma} = \frac{1}{\sqrt{N}} \sum_{R_j} e^{i k \cdot R_j} c_{R_j \sigma}
\]

(13)

The creation operator \(c_{i\sigma}^+\) and annihilation operator \(c_{i\sigma}\) are anticommuting:

\[
\{c_{i\sigma}, c_{j\sigma'}^+\} = \delta_{ij} \delta_{\sigma \sigma'}
\]

(14)

\[
\{c_{i\sigma}^+, c_{j\sigma'}\} = 0
\]

(15)

\[
\{c_{i\sigma}, c_{j\sigma'}\} = 0
\]

(16)

The change in “ basis ” from the site indices to momentum indices does not affect the anticommutation relations.

Richard T. Scalettar [8] has presented another formulation of the single-band Hubbard Hamiltonian:

\[
H = -t \sum_{\langle ij \rangle, \sigma} \left(c_{i\sigma}^+ c_{j\sigma} + h.c. \right) + U \sum_i n_{i\uparrow} n_{i\downarrow} - \mu \sum_i \left(n_{i\uparrow} + n_{i\downarrow} \right)
\]

(17)

The final term is a chemical potential which controls the filling. The situation where the filling is one electron per site is referred to as ‘half-filling’ since the lattice contains half as many electrons as the maximum number (two per site) [18]. At the half-filling, \(\mu = U/2\). Studies of the Hubbard Hamiltonian (HH) often focus on the half-filled case because it exhibits a lot of interesting phenomena (Mott insulating behavior, anti-ferromagnetic order, etc.) [8]. Therefore, it has been found convenient to rewrite (17) in the following form called PHS-form:

\[
H = -t \sum_{\langle ij \rangle, \sigma} \left(c_{i\sigma}^+ c_{j\sigma} + h.c. \right) + U \sum_i \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right) - \mu \sum_i \left(n_{i\uparrow} + n_{i\downarrow} \right)
\]

(18)

The PHS-form is a Hubbard Hamiltonian version which takes into account the Particle-Hole Symmetry (PHS). The latter is important because it is the basis of very useful mappings between the attractive and repulsive HH and because it plays a crucial role in QMC (Quantum Monte Carlo) simulations.

Clearly, the one-band HH is a simplification that is valid in the strict sense only when the atom has only one s orbital, as in hydrogen atom. The next subsection will present the multi-band HH.

2.2- Multi-band Hubbard model

The applicability of the one-band Hubbard model to d or f electron systems is a priori questionable since the partially filled bands correspond to atomic orbitals which are 5-fold and 7-fold degenerate (for each spin direction), respectively. Bands in a lattice are more complicated than orbitals of isolated atoms [6]. The bands that are formed are under the strong influence of anisotropic crystal fields in solids. Because the 3d orbital has the total angular momentum \(L = 2\), it has fivefold degeneracy \((L_z = 2, 1, 0, -1, -2)\) for each spin and hence a total of tenfold degeneracy including spins. This degeneracy is lifted by the anisotropic crystal field.

Fig. 2 shows an example of the crystal field splitting, where the cubic lattice symmetry leads to a higher energy level of fourfold degenerate \(e_g\) orbitals and sixfold degenerate lower orbitals, \(t_{2g}\) [16]. The \(t_{2g}\) orbitals \((\{d_{xy}, d_{yz}, d_{zx}\})\) and the \(e_g\) orbitals \((\{d_{x^2-y^2}, d_{z^2-r^2}\})\) give rise to threefold degenerate and twofold degenerate band respectively [6]. For light elements of transition-metal, such as V and Ti, the Fermi level is on the \(t_{2g}\) bands, which are threefold degenerate under the cubic crystal field -as this has been noticed before- with possible weak splitting of this degeneracy under the Jahn-Teller distortion in the perovskite structure \((\text{Li}_{1-x}\text{Sr}_x\text{VO}_3; \text{R}_{1-x}\text{Ti}_x\text{O}_3)\). When the Fermi level is on the \(e_g\) bands, as in Ni and Cu compounds, the degeneracy is twofold in the absence of the Jahn-Teller

This publication is licensed under Creative Commons Attribution CC BY.

http://dx.doi.org/10.29322/IJSRP.12.10.2022.p13069

www.ijsrp.org
distortion. In the compounds with light transition-metal elements such as Ti, V, Cr,..., only a few bands formed from 3d orbitals are occupied by electrons per atom. By contrast, in transition-metal compounds with heavy transition-metal elements such as Cu and Ni, the \(t_{2g} \) band is fully occupied far below the Fermi level [16].

Fig. 2. Crystal-field splitting of 3d orbitals under cubic, tetragonal, and orthorhombic symmetries. The numbers cited near the levels are the degeneracy including spins [16].

HH in transition-metal systems:

\[
H_{\text{mband}} = - \sum_{i} \sum_{\sigma} \sum_{m,m'} n_{i,m}^{\uparrow} n_{i,m}^{\downarrow} c_{i,m}^\dagger c_{i,m'}^\sigma + \sum_{i} \sum_{\sigma} \sum_{m,m'} \sum_{\alpha} U_{i,m,m',m'} c_{i,m}^\dagger c_{i,m'}^\sigma c_{i,m}\alpha c_{i,m'}\sigma \tag{19}
\]

Where \(c_{i,m}^\dagger \) creates an electron at site \(i \) with spin \(\sigma \) and orbital quantum number \(m \), and the parameter \(t_{i,m,m'}^{\sigma} \) are the hopping integrals (\(i \neq i' \)) or the crystal-field splittings (\(i = i' \)). \(U_{i,m,m',m'} \) is the Coulomb interaction tensor and its elements can be expressed in terms of Slater integrals.

Another formulation of the multi-band Hubbard Hamiltonian called generalized rotationally invariant multi-band Hubbard Hamiltonian is given in [20]. This Hubbard model is derived from the rotationally invariant slave boson (RISB) theory [22], an elaborate generalization of original ideas for manifest multi-orbital problems:

\[
H_{\text{mband}} = \sum_{i,j,m,m',\sigma} n_{i,m}^{\uparrow} n_{i,m}^{\downarrow} c_{j,m,\sigma}^\dagger c_{j,m',\sigma} + U \sum_{i,m} n_{i,m}^{\uparrow} n_{i,m}^{\downarrow} + \frac{1}{2} \sum_{i,m,m',\sigma} \left[U'n_{i,m}^{\uparrow} n_{i,m}^{\downarrow} + U''n_{i,m}^{\uparrow} n_{i,m}^{\downarrow} \right] \\
+ \frac{1}{2} \sum_{i,m,m',\sigma} \left[J_{c_{i,m}^\dagger c_{i,m'}^\sigma} + J_{c_{i,m'}^\dagger c_{i,m}^\sigma} \right] \tag{20}
\]

where \(m, m' \) are here either \(t_{2g} \) or \(e_g \) states, \(U_{i,m,m,m'} = U_{i,m,m'} = U \cdot 2J(1-\delta_{m,m'}) \) and, for \(m \neq m' \), \(U_{m,m',m,m'} = J_{m,m'} = J \).

Y. Claveau et al. [19] have underlined in the study of multi-orbital Hubbard Hamiltonian that several intra-atomic Coulomb terms appear, depending on whether intra-orbital (\(U_{i,m,m} \) with \(m = m' \)) or inter-orbital (\(U_{i,m,m'} \) with \(m \neq m' \)) Coulomb repulsion is concerned. And the Hund’s exchange term \(J \) for \((m \neq m') \) also appears because of the multi-dimensional orbital of the degree of freedom. B. Himmetoglu et al. [23], M. Cococcioni [14] and R. Eder [8] have expressed the interactions parameters in terms of the Slater Condon parameters \(F^k \) and the products of Gaunt coefficients \(a^k \) and \(b^k \):

\[
U_{i,m,m'} = \sum_{k \in \{0,2,4\}} a^k(m,m') F^k \quad J_{i,m,m'} = \sum_{k \in \{0,2,4\}} b^k(m,m') F^k \tag{21}
\]
For more information about these coefficients and parameters, one can be referred to [8] and [14].

J. Büneman has proposed another version of multi-band Hubbard Hamiltonian by distinguishing localized orbitals and delocalized orbitals. And he observed that localized orbitals require more sophisticated treatment of the local Coulomb interaction [14]. More precisely, multi-band Hubbard models are those where several atomic species are present; not all characterized by the same Hubbard U [19].

In the following subsection, another formulation of Hubbard model taking into account off-site interaction will be analyzed.

2.3- Extended Hubbard model

The centrality of the Hubbard model in describing in the most basic way strongly correlated materials is well known. This model exhibits phenomena such as magnetism and metal-insulator transitions with or without magnetic transitions. However, particularly due to neglecting nonlocal interaction, the Hubbard model can be quite far from describing real materials whenever nonlocal interactions are not efficiently screened [24].

The interest of the extended Hubbard model has been revamped in the last decades by the discovery of high Tc superconductors and the intense research activity focusing around them [25]. Several numerical studies suggest that the inter-site interaction plays indeed an important role [26] and superconductivity is predicted in a regime with repulsive interaction, $U > 0$ [27]. M. Schüler et al. have used in their study of the first-order metal-insulator transition with the extended Hubbard model this formulation [24]:

$$H_{\text{exhub}} = -t \sum_{\langle ij \rangle, \sigma} c_{i \sigma}^+ n_j + U \sum_i n_{i \uparrow} n_{i \downarrow} + \frac{1}{2} \sum_{ij} V_{ij} n_i n_j$$

with U the local interaction (on-site Coulomb interaction) and V_{ij} the nonlocal interaction (inter-site Coulomb interaction) between electrons at sites i and j.

F. Dolcini and his colleague [27], investigating the integrable extended Hubbard Hamiltonians from symmetric group equations, have considered the most general form of extended Hubbard model, invariant under spin-flip and conserving the total number of electrons and the magnetization:

$$H_{\text{exhub}} = -t \sum_{\langle ij \rangle, \sigma} [c_{i \sigma}^+ n_{j \sigma} + \bar{X} n_{i \sigma} n_{j \sigma}] c_{j \sigma}^+ c_{i \sigma} + U \sum_i n_{i \uparrow} n_{i \downarrow} + \frac{V}{2} \sum_{\langle ij \rangle} n_i n_j + \frac{W}{2} \sum_{\langle ij \rangle, \sigma, \sigma'} c_{i \sigma}^+ c_{j \sigma'}^+ c_{i \sigma'} c_{j \sigma}$$

$$+ Y \sum_{\langle ij \rangle} c_{i \sigma}^+ c_{i \sigma'}^+ c_{j \sigma'} + P \sum_{\langle ij \rangle} n_{i \uparrow} n_{i \downarrow} n_{j \uparrow} + Q \sum_{\langle ij \rangle} n_{i \uparrow} n_{i \downarrow} n_{j \downarrow} + \mu \sum_i n_{i \sigma}$$

This Extended Hubbard Hamiltonian contains 10 coefficients t, X, \bar{X}, U, V, W, P, Q, μ such that t is a hopping constant, U - on-site Coulomb interaction as in the ordinary Hubbard model, V is the neighboring site charge interaction, X the bond-charge interaction, W the exchange term, and Y the pair-hopping term. \bar{X} correlates hopping with on-site occupation number, and P and Q describe three and four-electron interactions. And μ is the chemical potential. The choice of these parameters t, X, \bar{X} and others implies the Hamiltonian symmetry [28].

Gurin and Gulácsi analyzed an extended Hubbard model containing next-nearest-neighbor terms, the reader can refer to their paper in [29]. Delannoy et al. also presented an extended Hubbard model with next-nearest-neighbor (first, second and third neighbors) in the study of interaction strengths in cuprate superconductors and an effective spin-only description of La_2CuO_4 by the so-called low energy theory of the t-t'-t''-U Hubbard Model at half-filling [30]. The t-t'-t''-U Hubbard Hamiltonian is:

$$H_{\text{exhub}} = -t \sum_{\langle ij \rangle, \sigma} c_{i \sigma}^+ c_{j \sigma} - t' \sum_{\langle \langle ij \rangle \rangle, \sigma} c_{i \sigma}^+ c_{j \sigma} - t'' \sum_{\langle \langle \langle ij \rangle \rangle \rangle, \sigma} c_{i \sigma}^+ c_{j \sigma} + U \sum_i n_{i \uparrow} n_{i \downarrow}$$

This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.12.10.2022.p13069
www.ijsrp.org
where \(t, t' \) and \(t'' \) are energy scales which characterize direct hopping to first \(\langle \langle ij \rangle \rangle \), second \(\langle \langle ij \rangle \rangle \) and third \(\langle \langle \langle ij \rangle \rangle \rangle \) nearest-neighbor respectively.

3. **Metal – insulator transition (MIT) and Mott insulator**

 3.1- Metal – insulator transition

 Although the metal-insulator transition (MIT) has certainly been one of the most studied phenomenon in condensed-matter physics, it is only in recent years that important progress has been achieved. This is mainly due to careful experimental and numerical studies but also to the improvement of the theoretical tools [31]. The insulating phase and its fluctuations in metals are indeed the most outstanding and prominent features of strongly correlated electrons [16]. The Mott transition is central to the problem of modeling strongly correlated electrons because it addresses directly the competition between the kinetic energy and correlation energy - that is the wavelike and the particle character of electrons in the solid [32]. In another words, D. Vollhardt [17] has observed that the Mott transition also called “Mott-Hubbard Metal-Insulator Transition” (MIT) is a delocalization-localization transition, demonstrating the particle-wave duality of electrons.

 The two important parameters in the Hubbard model are the electron correlation strength \(U/t \) and the band filling \(n \). In the case of a nondegenerate band, the \(n=0 \) and \(n=2 \) fillings correspond to the band insulator. For the half-filled case \((n=1) \), it is believed that the change of \(U/t \) drives the insulator-to-metal transition (Mott transition) at a critical value of \(U/t \) except in the case of perfect nesting, where the critical value \(U_c \) is zero. This transition at a finite \(U_c \) is called a bandwidth control (BC)-MIT. The schematic metal-insulator phase diagram in terms of parameters \(U/t \) and \(n \) is shown in Fig.3. The shaded area in that figure is in principle metallic but under the strong influence of the metal-insulator transition, in which carriers are easily localized by extrinsic forces such as randomness and electron-lattice coupling.

 Two routes for the MIT (metal-insulator transition) are shown: the FC-MIT (filling-control MIT) and the BC-MIT (bandwidth-control MIT) [16].

 According to Kotliar and Vollhardt [32] the parameters that determine the properties described by the Hubbard model are the ratio of the Coulomb interaction \(U \) and the bandwidth \(W \), the temperature \(T \), and the doping or number of electrons. The computation of the DOS (density of state) as a function of \(U/W \) in the framework of DMFT (Dynamic Mean Field Theory), a numerical approach to solve HH, has shown the opening of a gap \((E_g=U-W) \) with the increasing of \(U \) [32][33].

 ![Fig.3 Metal-insulator phase diagram based on the Hubbard model in the plane of \(U/t \) and filling \(n \) [16].](image)

3.2- Mott insulator

Mott insulator is defined by Imada et al. as an insulator caused by intrasite Coulomb repulsion, as in the Hubbard model [16]. Unlike conventional band insulators (which are shown in Fig.4) and semiconductors, Mott insulators contain unpaired electrons in their ground state [34].

 According to the band theory of metals (Bloch theorem), a half-filled band (valence band) leads to a metallic conductivity. A fully filled band (valence band) leads to an insulator. There is an energy gap between the valence band and the conduction band. There is no electrical conduction. In this band theory no interaction between electrons is taken...
into account and depending on the number of electrons, the system becomes metallic for the odd number and insulator for the even number [36]. Considering the same band theory (the independent-electron description of crystals), according to P. Fazekas [37], a material predicted to be metallic if the density of states at the Fermi level in non-vanishing ($\rho(E_F)\neq0$) and the material must be insulator (or semi-conductor, etc) if ($\rho(E_F)=0$).

The failure of the band theory was recorded in 1937, when de Boer and Verwey [38] reported that many transition metal oxides such as NiO and CoO are insulator, but not a metal in spite of the fact that the d-band of these systems is partially filled by electrons. Peierls pointed out that such a behavior may be caused by the electron correlation. In 1949, Mott [39] proposed a model for NiO as insulator with the bandgap energy E_g. The latter can be understood as the competition between the Coulomb potential U between $3d$-electrons and the transfer integral t between $3d$-electrons of neighboring atoms. Let’s remind that $E_g=U-W$ with $W=2zt$, where z is the number of the nearest-neighbor atoms.

In general, Mott insulators occur when the repulsive Coulomb potential U is large enough to create an energy gap. In that conditions, where U exceeds the bandwidth W, the half-filled band splits into two sub-bands, the lower (LHB) and the upper (UHB) Hubbard bands [34] (see Fig.5). Frésard and Kotliar expressed in thy paper titled “Interplay of Mott transition and ferromagnetism in the orbitally degenerate Hubbard model” the (LHB) and (UHB) bandwidths by $W_{LHB}=\langle c_{La}^\dagger c_{La} \rangle$ and $W_{UHB}=\langle c_{Ua}^\dagger c_{Ua} \rangle$ respectively. And c_{La}^\dagger (c_{Ua}^\dagger) is the contribution to c_{a}^\dagger (see more in [40]).

In their insulating phase, transition-metal oxides can present two types of insulators: the Mott-Hubbard insulator and the charge transfer insulator (CT) [16] [35] [41]. These compounds made of $3d$-orbital and p-orbital have characterized by two parameters: $\Delta=|\varepsilon_d-\varepsilon_p|$ (charge transfer energy) and U. When the oxygen p_x level, ε_p, is much lower than ε_d, the oxygen p-orbital contributes only through virtual processes and $|\varepsilon_d-\varepsilon_p|>U_{dd}$, this type of transition-metal oxide is called a Mott-Hubbard-type compound. In contrast, if $|\varepsilon_d-\varepsilon_p|<U_{dd}$, in this case, the type of transition-metal oxide is called charge-transfer-type compound. The difference between the two cases is schematically illustrated in Fig.6.

![Fig.4: Conventional band insulator (a) and metal (b) in band theory [35].](image-url)
LaM\textsubscript{O}3 compounds are Mott-Hubbard-type with \textit{M} corresponding to Co and Fe, and CT-type if \textit{M} is Ti or V [41]. Moreover, the most prominent examples of strongly correlated systems, known as Mott insulators, are (V\textsubscript{1-x}Cr\textsubscript{x})\textsubscript{2}O\textsubscript{3} , NiS\textsubscript{2-x}Se\textsubscript{x} and AM\textsubscript{4}Q\textsubscript{8} [34]. The so-called the narrow gap Mott insulator AM\textsubscript{4}Q\textsubscript{8} (A = Ga, Ge; M = V, Nb, Ta; Q = S, Se) exhibit very interesting electronic properties such as a very small Mott-Hubbard gap (0.2 ± 0.1 eV). And the direct consequence of this low gap value is the high sensitivity of this compounds to external perturbations. AM4Q8 materials belong to a new class of Mott-memories for which Joule heating, thermochemical or electrochemical effects are not involved [42].

4. Conclusion

Problems of strongly interacting electrons can be greatly simplified by reducing them to effective quantum spin models, such as the Hubbard model. As that has been observed, the literature of Hubbard model is vast. This paper has provided an overview of different approaches to the Hubbard model such as: the basic approach (the one-band approximation) and others versions which are the multi-band and the extended Hubbard model. Although various symmetries that the Hubbard model exhibits have not been discussed, little attention has been paid to the so-called...
Particle-Hole Symmetry (PHS), due to the crucial role it plays in QMC simulations. Mott insulator and Metal-Insulator Transition (MIT) have actually been analyzed. The MIT is a delocalization-localization transition, demonstrating the particle-wave duality of electrons. Some compounds which are Mott-Hubbard type have also been presented. It is finally necessary to underline that analytical solutions of HH are not possible in all dimensions.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

