

International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020 348
ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647 www.ijsrp.org

Performance Evaluation of Algorithms for Sparse-Dense
Matrix Product

Olfa Hamdi-Larbi†‡, Elwsaef Rim†

†University of Tunis El Manar - Faculty of Sciences of Tunis, Tunis, Tunisia
‡Taibah University-College of Business Administration, Madinah, KSA

DOI: 10.29322/IJSRP.10.10.2020.p10647

http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647

Abstract- In this paper we address the sparse-dense matrix product (SDMP) problem where the first (resp. second) matrix is sparse
(resp. dense). We start with an initial DO loop nest structured algorithm corresponding to the most used sparse matrix compressed
formats i.e. DNS, CSR and COO. Then, we derive other versions by applying optimization techniques such as scalar replacement,
loop invariant motion and loop unrolling. In addition, we use different compiler optimization options such as -O0, -O1, -O2, -O3,
-O4, -Os and -Funroll-loops. We particularly focus on the GAXPY-Row body kernel where the matrices are accessed row-wise.
A theoretical multi-fold performance study permits to establish accurate comparisons between the different versions. Our
contribution is validated through a series of experiments achieved on a set of real matrices, having different sizes and densities
on Grid5000 Intel Xeon Processors. Our aim is to detect the optimal version for each format as well as the best compression
format giving the best performances for SDMP.

Index Terms- compression formats, loop unrolling technique, Intel Xeon architecture, algorithm optimization.

I. INTRODUCTION

parse linear algebra concerns the study of matrix algorithms processing large size sparse matrices. These latter are very
frequent in real world applications covering diverse domains such as electromagnetism, semiconductors, image processing,

networks, graphs, molecular dynamics, fluid dynamics, etc [1, 2, 3, 4, 5, 6, 7]. A matrix is called sparse if it has a large (resp.
small) number of zero (resp. nonzero) elements [3, 4, 5, 6, 7]. The mostly used kernels in these applications are (i) Sparse Matrix-
Vector Product (SMVP) [4,5,6,7,8], (ii) Sparse-Dense Matrix Product (SDMP) [2],[4], (iii) The symmetric case of the SDMP
problem, i.e. Dense-Sparse Matrix Product (DSPM) where the first matrix is dense and the second is sparse [3], and (iv) Sparse
Matrix Product (SMP) where both input matrices are sparse [5,6]. We address here the case of Sparse-Dense Matrix Product
(SDMP) denoted C=A.B where A (resp. B) is sparse (resp. dense). On the other hand, we underline that processing large sparse
matrices requires, for reasons of space-time complexity reduction, the use of storing formats. These latter may be either general
i.e. adapted to any sparse structure e.g. DNS (DeNSe), CSR (Compressed Sparse Row), CSC (Compressed Sparse Column) and
COO (COOrdinate), or special i.e convenient for a matrix structure as MSR (Modified Storage Row) for triangular structure,
BND (BaND) for band structure, DIA (Diagonal) for diagonal structure [3,4,5,6,7], etc. Our aim here is (i) to determine the best
optimization techniques for each version corresponding to a compressed format. (ii) to determine the best SCF for SDMP i.e.
leading to the best performances. The remainder of the paper is organized as follows. In section 2, we present the related work.
In section 3, we recall some useful concepts. Then in section 4, we present a theoretical study of the intra and inter algorithms
optimization for the SDMP corresponding to the three chosen compression formats. Section 5 is devoted to an experimental study
validating our theoretical contribution.

II. RELATED WORK

 Many works are interested in solving the problem of Matrix Product such as the Sparse Matrix-Vector Product (SMVP) [4,
5, 6, 7, 8], the Sparse-Dense Matrix Product (SDMP) [2], [4], the symmetric case of the SDMP problem, i.e. the Dense-Sparse
Matrix Product (DSPM) [3] and the Sparse Matrix Product (SMP) [5,6]. Few works in the state-of-the-art concern the SDMP
optimization especially for the sequential version of the algorithm. Indeed, most of the works are dealing with the parallelization
of the kernel.
 In [10], the authors use two different workstations with a total of eight CPU cores: one Xeon workstation that holds two
quad core processors (2,66 GHz), and a Barcelona test platform that holds two AMD Opteron 2347 processors (Barcelona, quad

S

International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020 349
ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647 www.ijsrp.org

core, 1.9 GHz). We note that they use the respective block-oriented data structure to store sparse matrices [10]. However, our
goal is to study the SDMP versions corresponding to different SCFs.
 In [11], the authors study the SDMP parallelization. However, we are interested in the sequential version.
Note that the present work is a continuation of the works carried out and published in [5],[16]. The used techniques are inspired
from the work on the SMVP optimization presented in [7,8].

III. GENERAL CONCEPTS

A. Compression Formats for Sparse Matrices
 We recall that a matrix is called sparse (dense) if it has a large (resp. small) number of zero (resp. nonzero) elements [3, 4,
5, 6, 7]. Let NNZ be the number of nonzero elements. As previously mentioned, processing sparse matrices requires using special
SCFs restricted to the nonzero elements. In this paper, we are especially interested in three among the most used storage formats
namely DNS, CSR and COO. We underline that for storing a sparse matrix, say A of size N having NNZ nonzero elements, DNS
corresponds to a 2D array where the whole N2 elements are stored. However, CSR corresponds to data structure consisting of
three arrays denoted AA, JA and IA, where AA [1...NNZ] is a real array for row-wise storing the NNZ nonzero elements of A.
JA [1…NNZ] is an integer array to store the column position of the elements in AA, and finally, a pointer array IA [1…N+1],
where the ith entry points to the beginning of the ith row in arrays AA and JA [4], [7]. As to the COO format, it also consists of
three arrays, each of which is of size NNZ i.e. a real array AA containing the nonzero elements, an array IA (resp. JA) of integers
containing their row (resp. column) indices [4].

B. Sparse-Dense Matrix Product (SDMP)
The standard algorithm for multiplying two-dimensional N*N matrices, is given by Algorithm 1 below:

Algo-IJK (A, B, C, N)
DO i=1, N

DO j=1, N
DO k= 1, N
 C (i,j)+= A(i,k)* B(k,j)
ENDDO

ENDDO
ENDDO
END Algo-IJK

Algorithm 1. Standard Matrix-Matrix Product (MMP)

Algo-IKJ (A, B, C, N)
DO i=1, N

DO k=1, N
DO j= 1, N
 C (i,j)+= A(i,k)* B(k,j)
ENDDO

ENDDO
ENDDO
END Algo-IKJ

Algorithm 2. Standard algorithm GAXPY-R kernel

 Let us recall that we address in this paper the case of the Sparse-Dense Matrix Product (SDMP) denoted C=A.B where the
first (resp. second) matrix is sparse (resp. dense). We point out that the standard algorithm where A, B and C are stored in 2D
matrices is a perfect 3-loop nest, denoted IJK (see Algorithm 1). It corresponds to the DOT-R body kernel and has a cubic
complexity as mentioned above.

 We can derive from algorithm 1 five other versions by permutation of the loops i, k and j. Hence, the permutations IKJ,
JKI, KIJ, KJI, IJK and JIK respectively correspond to GAXPYs (GAXPY-R and GAXPY-C), AXPYs (AXPY-R and AXPY-C)
and DOTs (DOT-R and DOT-C) kernels. We recall that there are two variants (Row, denoted R, and Column, denoted C) of each
body kernel depending on the access mode to matrices A, B and C. We rely on the work of Zouaoui [4], who studied the different
kernels and she found that the GAXPY-Row (GAXPY-R) kernel where all the matrices are accessed raw-wise is the best among
the other kernels since it provides the best performances, improves data locality and reduces cache misses. In Algorithm 2, we
present the structure of the GAXPY-R Kernel.

IV. A THEORETICAL STUDY OF SDMP

A. Application of optimization techniques
 In order to optimize the SDMP loop nest structured algorithms, we have applied particular techniques such as (i) scalar
replacement (SR) i.e. an array element (indirect memory access) is replaced by a scalar, (ii) loop invariant motion (LIM) where
useless operations are avoided, and (iii) loop unrolling (LpU) by duplicating the loop body u times where u is an integer named
LpU factor [6, 7]. In addition, we use different compiler optimization options denoted by -Oi (i=0 4, s) and Funroll-loops [7],
[12].

International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020 350
ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647 www.ijsrp.org

B. Intra- algorithm study
In this paper, we are limited to formats storing matrices row-wise such as DNS, CSR and COO since nonzero elements

may be stored and accessed row-wise. Various optimization techniques are applied to the obtained codes corresponding to these
formats, namely, SR, LIM techniques (Algorithms 3, 6 and 9). In addition, in (Algorithms 4, 7 and 10) we apply the LpU
technique.
 For each studied format, we achieve a comparative study between different optimized versions for the SDMP. To make a
comparative study in order to detect the most optimal optimization techniques, we consider (i) the number of operations (i.e.
arithmetic and logic), (ii) the number of used memory words (i.e. integers and doubles), (iii) the number of indirect access (i.e.
access to an array element) (iv) the number of indirect nested access (i.e. where the index of an array element is an array element)
and (v) the number of reads and writes, as comparison criteria for the different SDMP versions (Tables 1, 2 and 3). Notice that
unrolling optimizations have no impact on the values of these criteria. However, they have influence on the memory cache
behaviour [6, 7].

1) SDMP-DNS versions: in Table 1, we compare the optimized version V2 (using tests, SR and LIM) to the non-optimized
version (V0 version) of the SDMP-DNS algorithm.

Table 1. Comparative study of SDMP-DNS versions

SDMP-DNS-V2 (A, B, C, N)
DO i=1, N

DO k=1, N
s = A(i,k)
IF (s ≠ 0) THEN

 DO j= 1, N
 C(i,j)+ = s * B(k,j)
 ENDDO

ENDIF
ENDDO

ENDDO
END SDMP-DNS-V2

Algorithm 3. SDMP-DNS version (V2) optimized with
logical tests, SR and LIM

SDMP-DNS-u2 (A,B,C,N)
m = N mod 2, ne = N-m
DO i=1, N

DO k=1, N
s = A(i,k)
IF (s ≠ 0) THEN

DO j= 1, ne,2
 C(i,j)+ = s * B(k,j)

 C(i,(j+1))+= s * B(k,(j+1))
ENDDO
DO j = ne+1, N

 C(i,j)+= s * B(k,j)
ENDDO

ENDIF
ENDDO

ENDDO
END SDMP-DNS-u2

Algorithm 4. SDMP-DNS optimized with logical tests,
SR, LIM and LpU, factor u=2

2) SDMP-CSR versions: in Table 2, we present a comparative study for the SDMP-CSR algorithms (the non-optimized version

V0 and the optimized version V2 (using tests, SR and LIM)).

SDMP_CSR
version

#operations #memory words #Indirect Access
#Indirect
Nested Access

#Memory I/O

Non optimized
(V0)

2N*NNZ 2NNZ+N+N2 3N*NNZ N*NNZ 4N*NNZ

Optimized (V2) 2N*NNZ 2NNZ+N+N2 2N+2NNZ+3N*NNZ 0 4N+4NNZ+3N*NNZ

Table 2. Comparative study of SDMP-CSR versions

SDMP_DNS
version

#operations #memory words

#Indirect Access #Indirect
nested Access

#Memory I/O

Non optimized (V0) 2N3 2N2 4N3 0 4N3

optimized (V2) 2N*NNZ+ N2 2N2 N2+3N*NNZ

0

2N2 +3N*NNZ

International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020 351
ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647 www.ijsrp.org

SDMP-CSR-V0 (IA, JA, A, B, C, N)
DO i=1, N

DO k=IA(i), IA(i+1)-1
DO j= 1, N
 C(i,j)+= A(k) *B(JA(k),j))
ENDDO

ENDDO
ENDDO
END SDMP-CSR-V0

Algorithm 5. SDMP-CSR version (V0)
non optimized

SDMP-CSR-V2 (IA, JA, A, B, C, N)
DO i=1, N

ia1=IA(i), ia2= IA(i+1)
DO k= ia1, ia2-1

 s= JA(k), s1= A(k)
DO j= 1, N

 C(i,j)+= s1 *B(s,j)
ENDDO

ENDDO
ENDDO
END SDMP-CSR-V2

Algorithm 6. SDMP-CSR version (V2)
 optimized with SR and LIM

SDMP-CSR-u2 (IA, JA, A, B, C, N)
m=N mod 2, ne=N-m
DO i=1, N

ia1=IA(i), ia2= IA(i+1)
DO k= ia1, ia2-1

s= JA(k), s1= A(k)
DO j= 1, ne-1, 2
 C(i,j)+= s1 *B(s,j)
 C(i,(j+1))+= s1 * B(s,(j+1)))
ENDDO
DO j= ne+1, N
 C(i,j)+= s1 *B(s,j)
ENDDO

ENDDO
ENDDO
END SDMP-CSR-u2

Algorithm 7. SDMP-CSR optimized with SR, LIM and LpU, factor u=2

3) SDMP-COO versions: in Table 3 we present a comparative study for the SDMP-COO algorithms (Algorithm 8 and
Algorithm 9).

SDMP_COO version #operations #memory words
#Indirect
Access

#Indirect
Nested Access

#Memory I/O

Non optimized (V0) 2N*NNZ 3NNZ+N2 N*NNZ 3N*NNZ 4N*NNZ

optimized (V2) 2N*NNZ 3NNZ+N2 3NNZ+3N*NNZ 0 6NNZ +3N*NNZ

Table 3. Comparative study of SDMP-COO versions

SDMP-COO-V0 (IA, JA, A, B, C, N)
DO i=1, NNZ

DO j=1, N
C(IA(i),j)+= A(i)* B(JA(i),j)

ENDDO
ENDDO
END SDMP-COO-V0

Algorithm 8. SDMP-COO version (V0)
non optimized

SDMP-COO-V2 (IA, JA, A, B, C, N)
DO i=1, NNZ

iai= IA(i), jai=JA(i), s=A(i)
DO j=1, N

C(iai,j)+= s * B(jai,j))
ENDDO

ENDDO
END SDMP-COO-V2

Algorithm 9. SDMP-COO version (V2)
optimized with SR and LIM

International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020 352
ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647 www.ijsrp.org

SDMP-COO-u2 (IA, JA, A, B, C, N)
m=N mod 2, ne=N-m
DO i=1, NNZ

iai= IA(i), jai=JA(i), s=A(i)
DO j=1, ne-1, 2

C(iai,j)+= s * B(jai,j))
C(iai,(j+1))+= s * B(jai,(j+1))

ENDDO
DO j= ne+1, N

C(iai,j)+= s * B(jai,j))
ENDDO

ENDDO
END SDMP-COO-u2

Algorithm 10. SDMP-COO optimized with SR, LIM and LpU, factor u=2

C. Inter-algorithm study
 In this section, we compare the optimized SDMP algorithms corresponding to the formats DNS, CSR and COO in order to detect
the optimal format which provides the best performances. Notice that in Table 4, we don’t present the nested indirect access number
because they are equal to zero for the SDMP optimized algorithms.

Algorithm
version

#operations #memory words # Indirect Access # Memory I/O

SDMP_DNS

2N*NNZ +N2 2 N² N²+3*NNZ

2N²+3N*NNZ

SDMP_CSR 2N* NNZ 2NNZ+N+N² 2N+2NNZ+3N*NNZ

4N+4NNZ+3N*
NNZ

SDMP_COO 2N*NNZ

3NNZ+ N² 3NNZ*(N+1) 6NNZ+3N*NNZ

Table 4. Optimized SDMP versions corresponding to different formats

 Thus, we first compare the number of operations. In the case of equality, we compare the number of indirect access and the number
of memory I/O. Indeed, we remark that the SDMP-DNS has the largest number of operations. So, it is lastly classified. Concerning
SDMP-CSR and SDMP-COO, they have the same number of operations. So, we compare their numbers of indirect access. Hence, we
compute the difference of the indirect access numbers (resp. memory I/O numbers). Then, we study the sign of the obtained quantity
which leads to three cases: 2N < NNZ, 2N > NNZ and 2N=NNZ. Tables 5, 6 and 7 present the classification of the SDMP versions
corresponding to DNS, CSR and COO formats.

Algorithm
version

Indirect Access

Memory I/O Final rank #operations

#memory
words Reading Writing

SDMP_DNS 3 3 3 1 3 3
SDMP_CSR 1 1 1 1 1 1
SDMP_COO 1 1 2 1 2 2

Table 5. Comparative SDMP study for 2N > NNZ

International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020 353
ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647 www.ijsrp.org

Algorithm
version

Indirect Access

Memory I/O Final rank #operations

#memory
words Reading Writing

SDMP_DNS 3 3 3 1 3 3
SDMP_CSR 1 1 2 1 2 2
SDMP_COO 1 1 1 1 1 1

Table 6. Comparative SDMP study for 2N < NNZ

Algorithm
version

Indirect Access

Memory I/O Final rank #operations

#memory
words Reading Writing

SDMP_DNS 3 3 3 1 3 3
SDMP_CSR 1 1 1 1 1 1
SDMP_COO 1 1 1 1 1 1

Table 7. Comparative SDMP study for 2N=NNZ

We notice that:

 In the case of 2N > NNZ; SDMP-CSR and SDMP-COO have the same number of operations. However, SDMP-COO
accomplishes more indirect access and memory I/O. Thus, SDMP-CSR is first classified, and SDMP-COO is second classified.
the SDMP-DNS algorithm is lastly classified because it provides the worst theoretical performances.

 In the case of 2N < NNZ; SDMP-CSR and the SDMP-COO have the same number of operations. However, SDMP-CSR
accomplishes more indirect access and memory I/O. Thus, SDMP-COO is first classified, and SDMP-CSR is second classified.
The SDMP-DNS algorithm is lastly classified because it provides the worst theoretical performances

 In the case of 2N=NNZ; SDMP-CSR and SDMP-COO algorithms are first classified because they have the same number of
operations, the same number of memory access and the same number of memory I/O. The SDMP-DNS algorithm is lastly
classified because it provides the worst theoretical performances.

V. EXPERIMENTAL WORK

Architectural Models

CPU frequency

L3
Cache
memory

RAM

Sites

Clusters

Intel Xeon E5-2660

2.20GHz 20Mo 64 GB Nantes Econome

Intel Xeon E5-2650

2.00GHz 20Mo 252 GB Nancy Graphite

Intel Xeon X5570

2.93GHz 8Mo 24GB Rennes Parapide

Intel Xeon E5520

2.27GHz 8Mo 24GB Grenoble Edel

Intel Xeon E5520

2.27 GHZ 8Mo 32GB Sophia Suno

Intel Xeon E5-2630

2.30 GHZ 15Mo 32GB Lyon Orion

Table 8. The characteristics of the used INTEL XEON models

 In order to evaluate the performances of the SDMP versions, a series of experimentations is accomplished on Intel Xeon processors.
These last belong to Grid5000 platform and have different architectures (see Table 8). To evaluate the performances of the algorithm

International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020 354
ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647 www.ijsrp.org

versions and validate our theoretical study, we use three storage formats for storing matrix A. For each format we generate eight
algorithm versions relative to the different optimization techniques. In total, the number of tested algorithms is 24. For each version, we
apply seven different compiler options, we test ten matrices and we use six different target machines with different characteristics to
achieve the experimentations. The total number of tests is equal to 15075.

Matrices

N NNZ d Structures

2N<NNZ

cry10000 10000 49 699 0.05

FA 10617 72 176 0.06

Trefethen_20000 20000 287 233 0.07

mult_dcop_03 25187 193 216 0.03

bloweybl 30003 70 001 0.008

lhr34 35152 764 014 0.06

obstclae 40000 118 804 0.007

2N>NNZ

bcsstm25 15439 15 439 0.006

qpband 20000 30 000 0.007

bcsstm37 25503 14 765 0.002

Table 9. The characteristics of the real matrices

 For each compressed format (SCF) (i.e. CSR, COO and DNS) used to store the sparse matrix A, we test different versions (i) SCF
V0, the non-optimized version, (ii) SCF V1, the optimized version with scalar replacement (SR), (iii) SCF V2, the optimized version
with scalar replacement (SR) and loop invariant motion (LIM) (iii) SCF ui (i=2, 8, 16, 32,36,40), the version SCF V2 optimized using
the loop unrolling (LpU) such that ui correspond to the unrolling factors. In the same way, we include logical tests in the SDMP-DNS
algorithm which improves its performances. In addition to the manual optimizations (i.e. SR, LM, and LpU), we use at compile time
different options that control various hinds of optimizations in the GNU Compiler Collection (GCC) such as the ‘-O’ options (the
allowed forms are -O0, ’-O1’, ’-O2’, ’-O3’, and ’-Os’), and the ”-Funroll-loops ”.
 For this purpose, we use a set of matrices from real applications which belong to Tim Davis and Matrix Market collections
[13][14]. The size (N) of the matrices is in the range [10000, 40000] and the density (%) is varying in ([8.10-3, 7.10-2]) (see Table 9).

A. Intra- algorithm study
Let Ratio be defined as:

Ratio = (1-tx/ty) * 100 (1)

 Where tx is the runtime of the SDMP version x, ty is the runtime of the SDMP version y, with tx < = ty. In this section, we validate
the optimization study of the SDMP versions corresponding to the DNS, CSR and COO formats. To optimize the SDMP-DNS, SDMP-
CSR and SDMP-COO algorithms, we include logical tests, SR, LIM, and LpU. The experiments are accomplished on six different
machines of Grid5000, using ten matrices from real applications. For each format, we present the experimentation results we obtained
when applying (i) SR and LIM optimizations, (ii) loop unrolling technique and (iii) compiler optimization options.

1) SR and LIM techniques: SR and LIM techniques improve the performance of the different algorithms SDMP-DNS, SDMP-
CSR and SDMP-COO and this is true for all the tested matrices and on the six used architectures (see Figure 1.(a) and Figure 1.(b)). In
the figures, each curve corresponds to the running time for a couple (matrix size/matrix density).

International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020 355
ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647 www.ijsrp.org

2) Loop unrolling technique: we apply the LpU technique with different factors in the range [2...40] and we obtain interesting
results. Indeed, the loop unrolling technique when combined with the SR and LIM techniques increases the performances for SDMP-
DNS, SDMP-CSR and SDMP-COO. We precise that the best performances are given by the unrolling factors u8, u16 and u32 for the
three formats. This result is true on the six tested architectures. For lack of space reasons, we only present the results related to three
architectures (Grenoble Edel, Nantes Econome and Lyon Orion). For the mentioned unrolling factors:
(i) for SDMP-DNS, the performances obtained on the different machines are equivalent. Indeed, the difference does not exceed a

ratio of 1% on the Grenoble Edel processor and 6% on both Nantes Econome and Lyon Orion (see Figure 1.(c)).
(ii) for SDMP-CSR, the performances obtained on the different machines are also equivalent. The difference does not exceed a

ratio of 3% on the Grenoble Edel processor, 6% on Nantes Econome and 5% on Lyon Orion (see Figure 1.(d)).
(iii) for SDMP-COO, the performances obtained on the different machines are also equivalent. The difference does not exceed a

ratio of 6% on Grenoble Edel processor, 10% on Nantes Econome and 11% on Lyon Orion (see Figure 1.(e)).

(a). Performance study of SDMP_CSR optimized with
(SR, LIM and LpU) on Grenoble_Edel

(b). Performance study of SDMP_DNS optimized with
(Test, SR, LIM and LpU) on Grenoble_Edel

(c). Comparison for SDMP_DNS of the performances
obtained
by using unrolling factors (u8 ... u32)

(d). Comparison for SDMP_CSR of the performances
obtained
by using unrolling factors (u8 ... u32)

(e). Comparison for SDMP_ COO of the performances
obtained by using unrolling factors (u8 ... u32)

(f). Performance study of SDMP_ CSR optimized using
compiler options where N=10000 on Nantes_Econome

Figure 1: Experimental results for intra-algorithm comparison

T
im

T
im

International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020 356
ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647 www.ijsrp.org

Recapitulation: we conclude that SDMP optimization using techniques RS, LIM, tests and LpU improves the algorithm performances
with a ratio reaching 22%. These results are true for all the formats DNS, CSR and COO used for storing matrix A and are valid for the
six architectures.
For the three studied formats, the best performance of the SDMP is obtained when we combine manual optimizations and compiler
options.

B. Inter-algorithms study

(a). A comparison of optimized SDMP-DNS, SDMP-COO
and SDMP-CSR when 2N < NNZ on Lyon_Orion
architecture

(b). A comparison of optimized SDMP-DNS, SDMP-COO
and SDMP-CSR when 2N > NNZ on Grenoble_Edel
architecture

(c). A comparison of the performances of SDMP optimized with LpU to the performances
of Sparse BLAS on Lyon_Orion architecture

Figure 2: Experimental results for inter-algorithms comparison

The experimental results validate the theoretical results. Indeed,

 In the case of 2N > NNZ; the SDMP-DNS algorithm is the last classified. This is true on different tested architectures.
On Grenoble Edel, Rennes Parapide and Sophia Suno, the SDMP-CSR algorithm is first classified followed by SDMP-
COO algorithm (see Figure 2.(b)) which is conform with the theoretical study. However, on Nantes Econome, Nancy
Graphite and Lyon Orion, the SDMP-COO algorithm is first classified followed by SDMP-CSR algorithm. Nevertheless,
on the six different architectures, both algorithms have close performances.

 In the case of 2N < NNZ; the SDMP-DNS algorithm is the last classified. This is true on the different tested architectures.
On Nantes Econome, Nancy graphite and Lyon Orion, the SDMP-COO algorithm is first classified followed by the
SDMP-CSR algorithm (see Figure 2.(a)). However, on Grenoble Edel, Rennes Parapide and Sophia Suno, the SDMP-
CSR algorithm is first classified followed by SDMP-COO algorithm. Nevertheless, on the six different architectures,
both algorithms have close performances.

0
50

100
150
200
250
300
350

T
im

e(
s)

N

COO

CSR

DNS

SpBLAS

International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020 357
ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647 www.ijsrp.org

 In the case of 2N=NNZ; we don’t find real matrices that respect this case.

 In addition to manual optimizations, we use compiler optimization options, we notice that SDMP-COO and SDMP-CSR
optimized with option O1 or O2 give the best running time on the six different architectures.
The obtained results are compared to the Sparse BLAS library, and we find that our optimized algorithms outperform the Sparse
BLAS with a ratio of 13% (see Figure 2.(d)).

Recapitulation: When we compile SDMP-DNS, SDMP-COO and SDMP-CSR algorithms with compiler options O1 or O2,
performances are improved, and the versions order is maintained.

VI. CONCLUSION

 In this paper, we study several algorithm versions of sparse-dense matrix product (SDMP) corresponding to three storage formats
(DNS, CSR and COO) using particularly the GAXPY-R body kernel. Various optimization techniques are applied and lead to interesting
improvement, namely manual optimization techniques (i.e. scalar replacement, loop invariant motion and loop unrolling) and compiler
optimization options (i.e. -O1, -O2, -O3, -O4, -Os and the -Funroll-loops).
 With manual optimizations, the best performances are obtained when we optimize the SDMP versions using LpU factors u=8,
u=16 and u=32. On the other hand, when we add the compiler optimizations, we find that the options -Oi (i=1, 2) give the best
performances. This result is true for SDMP-DNS, SDMP-CSR and SDMP-COO versions and on all the tested Intel Xeon architectures.
Concerning the optimal format, when the algorithms are optimized using manual optimizations, the best performances are obtained by
the COO format, after applying the LpU, on Nantes Econome, Nancy
 Graphite and Lyon Orion architectures. Whereas, the CSR format is the best on Rennes Parapide, Grenoble Edel and Sophia Suno
architectures. When we add the compiler optimizations, the performances of the algorithms are improved, and the order of the versions
is maintained. To conclude, our work arises some interesting points which may constitute a second step we intend to study soon. We
may cite:

 studying the SDMP for regularly structured sparse matrices (triangular, band, …) and the corresponding formats.
 studying the sparse-dense matrix on other architectures.
 processing very large sized matrices by parallelizing SDMP algorithms.

REFERENCES
[1] Emad, N., Hamdi-Larbi, O., Mahjoub, Z.: On sparse matrix-vector product performance evaluation for efficient distribution on large scale systems. In The 9th

Hellenic European Research on Computer Mathematics and its Applications Conference (HERCMA09), Athens, Greece (2009).

[2] Buluc, A., Gilbert, J. R.: On the representation and multiplication of hyper sparse matrices. In Parallel and Distributed Processing, IEEE International Symposium
on (pp. 1-11), IPDPS (2008).

[3] Ezouaoui, S., Hamdi-Larbi, O., Mahjoub, Z.: Dense-Sparse Matrix Multiplication: Algorithms and Performance Evaluation, In ACECS’14, pp.8794, Sousse,
Tunisia, (2014).

[4] Ezouaoui, S., Mahjoub, Z., Mendili, L., Selmi, S.: Performance Evaluation of Algorithms for Sparse Dense Matrix Product, In IMEC13, pp. 257262, Kowloon,
Hong Kong, (2013).

[5] Ezouaoui, S., Hamdi-Larbi, O., Design, Analysis and Performance Comparison of Sparse Matrix Product Algorithms, University of Tunis El Manar Faculty of
Sciences of Tunis, Tunis, Tunisia, (2015).

[6] Ezouaoui, S., Hamdi-Larbi, O., Mahjoub Z., Towards Efficient Algorithms for Compressed Sparse-Sparse Matrix Product., HPCS 2017, Genoa, Italy, July 17-21,
(2017).

[7] Hamdi-Larbi, O.: Etude de la Distribution sur Système Grande Echelle de Calcul Numérique Traitant des Matrices Creuses Compresses , Thesis, University of
Tunis El Manar, Faculty of Sciences of Tunis, (2010).

[8] Hamdi-Larbi, O., Emad, N., Mahjoub, Z.: On Sparse Matrix-Vector Product Optimization, In AICCSA05, Cairo, Egypt, (2005).

[9] Howell, G.W.: Wide or Tall and Sparse Matrix Dense Matrix Multiplications, Proceedings of the 19th High Performance Computing Symposia, CA, USA, (2011).

[10] Bader, M., Heinecke, A.: Cache oblivious dense and sparse matrix multiplication based on peano curves, In Proceedings of the PARA, 8, Germany, (2008).

[11] Koanantakool, P., Azad, A., Buluc, A., Morozov, D., Oh, S., Oliker, L., Yelick, K.: Communication-Avoiding Parallel Sparse-Dense Matrix-Matrix Multiplication,
IEEE International Parallel and Distributed Processing Symposium (IPDPS), USA, (2016).

[12] Hoste, Kenneth, Eeckhout, l.: Cole: compiler optimization level exploration, Proceedings of the 6th Annual IEEE/ACM International Symposium on Code
Generation and Optimization. ACM, (2008).

[13] Matrix Market, www.math.nist.gov/MatrixMarket, 2020.

[14] Tim Davis Matrix, www.cise.ufl.edu/research/sparse/matrices, 2020.

International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020 358
ISSN 2250-3153

 This publication is licensed under Creative Commons Attribution CC BY.
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647 www.ijsrp.org

AUTHORS

First Author – Olfa Hamdi-Larbi, University of Tunis El Manar - Faculty of Sciences of Tunis, Tunis, Tunisia, oarbi@taibahu.edu.sa
Second Author – Elwsaef Rim, Taibah University-College of Business Administration, Madinah, KSA, elwsaefrim@gmail.com

