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Abstract- In this paper we address the sparse-dense matrix product (SDMP) problem where the first (resp. second) matrix is sparse 
(resp. dense). We start with an initial DO loop nest structured algorithm corresponding to the most used sparse matrix compressed 
formats i.e. DNS, CSR and COO. Then, we derive other versions by applying optimization techniques such as scalar replacement, 
loop invariant motion and loop unrolling. In addition, we use different compiler optimization options such as -O0, -O1, -O2, -O3, 
-O4, -Os and -Funroll-loops. We particularly focus on the GAXPY-Row body kernel where the matrices are accessed row-wise. 
A theoretical multi-fold performance study permits to establish accurate comparisons between the different versions. Our 
contribution is validated through a series of experiments achieved on a set of real matrices, having different sizes and densities 
on Grid5000 Intel Xeon Processors. Our aim is to detect the optimal version for each format as well as the best compression 
format giving the best performances for SDMP. 
 
Index Terms- compression formats, loop unrolling technique, Intel Xeon architecture, algorithm optimization. 
 

I. INTRODUCTION 

parse linear algebra concerns the study of matrix algorithms processing large size sparse matrices. These latter are very 
frequent in real world applications covering diverse domains such as electromagnetism, semiconductors, image processing, 

networks, graphs, molecular dynamics, fluid dynamics, etc [1, 2, 3, 4, 5, 6, 7]. A matrix is called sparse if it has a large (resp. 
small) number of zero (resp. nonzero) elements [3, 4, 5, 6, 7]. The mostly used kernels in these applications are (i) Sparse Matrix-
Vector Product (SMVP) [4,5,6,7,8], (ii) Sparse-Dense Matrix Product (SDMP) [2],[4], (iii) The symmetric case of the SDMP 
problem, i.e. Dense-Sparse Matrix Product (DSPM) where the first matrix is dense and the second is sparse [3], and (iv) Sparse 
Matrix Product (SMP) where both input matrices are sparse [5,6]. We address here the case of Sparse-Dense Matrix Product 
(SDMP) denoted C=A.B where A (resp. B) is sparse (resp. dense). On the other hand, we underline that processing large sparse 
matrices requires, for reasons of space-time complexity reduction, the use of storing formats. These latter may be either general 
i.e. adapted to any sparse structure e.g. DNS (DeNSe), CSR (Compressed Sparse Row), CSC (Compressed Sparse Column) and 
COO (COOrdinate), or special i.e convenient for a matrix structure as MSR (Modified Storage Row) for triangular structure, 
BND (BaND) for band structure, DIA (Diagonal) for diagonal structure [3,4,5,6,7], etc. Our aim here is (i) to determine the best 
optimization techniques for each version corresponding to a compressed format. (ii) to determine the best SCF for SDMP i.e. 
leading to the best performances. The remainder of the paper is organized as follows. In section 2, we present the related work. 
In section 3, we recall some useful concepts. Then in section 4, we present a theoretical study of the intra and inter algorithms 
optimization for the SDMP corresponding to the three chosen compression formats. Section 5 is devoted to an experimental study 
validating our theoretical contribution. 
 
 

II. RELATED WORK 

          Many works are interested in solving the problem of Matrix Product such as the Sparse Matrix-Vector Product (SMVP) [4, 
5, 6, 7, 8], the Sparse-Dense Matrix Product (SDMP) [2], [4], the symmetric case of the SDMP problem, i.e. the Dense-Sparse 
Matrix Product (DSPM) [3] and the Sparse Matrix Product (SMP) [5,6]. Few works in the state-of-the-art concern the SDMP 
optimization especially for the sequential version of the algorithm. Indeed, most of the works are dealing with the parallelization 
of the kernel. 
          In [10], the authors use two different workstations with a total of eight CPU cores: one Xeon workstation that holds two 
quad core processors (2,66 GHz), and a Barcelona test platform that holds two AMD Opteron 2347 processors (Barcelona, quad 
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core, 1.9 GHz). We note that they use the respective block-oriented data structure to store sparse matrices [10]. However, our 
goal is to study the SDMP versions corresponding to different SCFs. 
          In [11], the authors study the SDMP parallelization. However, we are interested in the sequential version. 
Note that the present work is a continuation of the works carried out and published in [5],[16]. The used techniques are inspired 
from the work on the SMVP optimization presented in [7,8]. 
 

III. GENERAL CONCEPTS 

A. Compression Formats for Sparse Matrices 
          We recall that a matrix is called sparse (dense) if it has a large (resp. small) number of zero (resp. nonzero) elements [3, 4, 
5, 6, 7]. Let NNZ be the number of nonzero elements. As previously mentioned, processing sparse matrices requires using special 
SCFs restricted to the nonzero elements. In this paper, we are especially interested in three among the most used storage formats 
namely DNS, CSR and COO. We underline that for storing a sparse matrix, say A of size N having NNZ nonzero elements, DNS 
corresponds to a 2D array where the whole N2 elements are stored. However, CSR corresponds to data structure consisting of 
three arrays denoted AA, JA and IA, where AA [1...NNZ] is a real array for row-wise storing the NNZ nonzero elements of A. 
JA [1…NNZ] is an integer array to store the column position of the elements in AA, and finally, a pointer array IA [1…N+1], 
where the ith entry points to the beginning of the ith row in arrays AA and JA [4], [7]. As to the COO format, it also consists of 
three arrays, each of which is of size NNZ i.e. a real array AA containing the nonzero elements, an array IA (resp. JA) of integers 
containing their row (resp. column) indices [4]. 
 
B. Sparse-Dense Matrix Product (SDMP) 
The standard algorithm for multiplying two-dimensional N*N matrices, is given by Algorithm 1 below: 
 
Algo-IJK (A, B, C, N) 
DO i=1, N 

DO j=1, N 
DO k= 1, N 
    C (i,j)+= A(i,k)* B(k,j) 
ENDDO 

ENDDO 
ENDDO 
END Algo-IJK 
 
Algorithm 1. Standard Matrix-Matrix Product (MMP) 
 

Algo-IKJ (A, B, C, N) 
DO i=1, N 

DO k=1, N 
DO j= 1, N 
   C (i,j)+= A(i,k)* B(k,j) 
ENDDO 

ENDDO 
ENDDO 
END Algo-IKJ 
 
Algorithm 2. Standard algorithm GAXPY-R kernel 

          Let us recall that we address in this paper the case of the Sparse-Dense Matrix Product (SDMP) denoted C=A.B where the 
first (resp. second) matrix is sparse (resp. dense). We point out that the standard algorithm where A, B and C are stored in 2D 
matrices is a perfect 3-loop nest, denoted IJK (see Algorithm 1). It corresponds to the DOT-R body kernel and has a cubic 
complexity as mentioned above. 
 
          We can derive from algorithm 1 five other versions by permutation of the loops i, k and j. Hence, the permutations IKJ, 
JKI, KIJ, KJI, IJK and JIK respectively correspond to GAXPYs (GAXPY-R and GAXPY-C), AXPYs (AXPY-R and AXPY-C) 
and DOTs (DOT-R and DOT-C) kernels. We recall that there are two variants (Row, denoted R, and Column, denoted C) of each 
body kernel depending on the access mode to matrices A, B and C. We rely on the work of Zouaoui [4], who studied the different 
kernels and she found that the GAXPY-Row (GAXPY-R) kernel where all the matrices are accessed raw-wise is the best among 
the other kernels since it provides the best performances, improves data locality and reduces cache misses. In Algorithm 2, we 
present the structure of the GAXPY-R Kernel. 
 

IV.  A THEORETICAL STUDY OF SDMP 

A. Application of optimization techniques  
          In order to optimize the SDMP loop nest structured algorithms, we have applied particular techniques such as (i) scalar 
replacement (SR) i.e. an array element (indirect memory access) is replaced by a scalar, (ii) loop invariant motion (LIM) where 
useless operations are avoided, and  (iii) loop unrolling (LpU) by duplicating the loop body u times where u is an integer named 
LpU factor [6, 7]. In addition, we use different compiler optimization options denoted by -Oi (i=0 4, s) and Funroll-loops [7], 
[12]. 
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B. Intra- algorithm study 
In this paper, we are limited to formats storing matrices row-wise such as DNS, CSR and COO since nonzero elements 

may be stored and accessed row-wise. Various optimization techniques are applied to the obtained codes corresponding to these 
formats, namely, SR, LIM techniques (Algorithms 3, 6 and 9). In addition, in (Algorithms 4, 7 and 10) we apply the LpU 
technique. 
          For each studied format, we achieve a comparative study between different optimized versions for the SDMP. To make a 
comparative study in order to detect the most optimal optimization techniques, we consider (i) the number of operations (i.e. 
arithmetic and logic), (ii) the number of used memory words (i.e. integers and doubles), (iii) the number of indirect access (i.e. 
access to an array element) (iv) the number of indirect nested access (i.e. where the index of an array element is an array element) 
and (v) the number of reads and writes, as comparison criteria for the different SDMP versions (Tables 1, 2 and 3). Notice that 
unrolling optimizations have no impact on the values of these criteria. However, they have influence on the memory cache 
behaviour [6, 7]. 
 
 

1) SDMP-DNS versions: in Table 1, we compare the optimized version V2 (using tests, SR and LIM) to the non-optimized 
version (V0 version) of the SDMP-DNS algorithm. 

 
 
 
 
 
 
 
 
 

Table 1. Comparative study of SDMP-DNS versions 
 

 
SDMP-DNS-V2 (A, B, C, N) 
DO i=1, N 

DO k=1, N 
s = A(i,k) 
IF (s ≠ 0) THEN 

  DO j= 1, N 
     C(i,j)+ = s * B(k,j) 
  ENDDO 

ENDIF 
ENDDO 

ENDDO 
END SDMP-DNS-V2 
 
Algorithm 3. SDMP-DNS version (V2) optimized with 
logical tests, SR and LIM  
 
 
 
 
 

 
SDMP-DNS-u2 (A,B,C,N) 
m = N mod 2, ne = N-m 
DO i=1, N 

DO k=1, N 
s = A(i,k) 
IF ( s ≠ 0) THEN 

DO j= 1, ne,2 
   C(i,j)+ = s * B(k,j) 

      C(i,(j+1))+= s * B(k,(j+1)) 
ENDDO 
DO j = ne+1, N 

    C(i,j)+= s * B(k,j) 
ENDDO 

ENDIF 
ENDDO 

ENDDO 
END SDMP-DNS-u2 
 
Algorithm 4. SDMP-DNS optimized with logical tests,  
SR, LIM and LpU, factor u=2 

 
2) SDMP-CSR versions: in Table 2, we present a comparative study for the SDMP-CSR algorithms (the non-optimized version 

V0 and the optimized version V2 (using tests, SR and LIM)). 
 

SDMP_CSR 
version 

#operations #memory words #Indirect Access 
#Indirect 
Nested Access 

#Memory I/O 

Non optimized 
(V0) 

2N*NNZ 2NNZ+N+N2 3N*NNZ N*NNZ 4N*NNZ 

Optimized (V2) 2N*NNZ 2NNZ+N+N2 2N+2NNZ+3N*NNZ 0 4N+4NNZ+3N*NNZ 

 
Table 2. Comparative study of SDMP-CSR versions 

SDMP_DNS 
version 

#operations #memory words 
 

#Indirect Access #Indirect 
nested Access 

#Memory I/O 

Non optimized (V0) 2N3 2N2 4N3 0 4N3 

optimized (V2) 2N*NNZ+ N2 2N2 N2+3N*NNZ 
 

0 
 

2N2 +3N*NNZ 
 



 
 
International Journal of Scientific and Research Publications, Volume 10, Issue 10, October 2020                                351 
ISSN 2250-3153   

  This publication is licensed under Creative Commons Attribution CC BY. 
http://dx.doi.org/10.29322/IJSRP.10.10.2020.p10647    www.ijsrp.org 

 
 

 
SDMP-CSR-V0 (IA, JA, A, B, C, N) 
DO i=1, N 

DO k=IA(i), IA(i+1)-1 
DO j= 1, N 
     C(i,j)+= A(k) *B(JA(k),j)) 
ENDDO 

ENDDO 
ENDDO 
END SDMP-CSR-V0 
 
Algorithm 5. SDMP-CSR version (V0) 
non optimized  
 
 

SDMP-CSR-V2 (IA, JA, A, B, C, N) 
DO i=1, N 

ia1=IA(i), ia2= IA(i+1) 
DO k= ia1, ia2-1 

   s= JA(k), s1= A(k) 
DO j= 1, N 

        C(i,j)+= s1 *B(s,j) 
ENDDO 

ENDDO 
ENDDO 
END SDMP-CSR-V2 
 
Algorithm 6. SDMP-CSR version (V2) 
 optimized with SR and LIM  

 
SDMP-CSR-u2 (IA, JA, A, B, C, N) 
m=N mod 2, ne=N-m 
DO i=1, N 

ia1=IA(i), ia2= IA(i+1) 
DO k= ia1, ia2-1 

s= JA(k), s1= A(k) 
DO j= 1, ne-1, 2 
        C(i,j)+= s1 *B(s,j) 
        C(i,(j+1))+= s1 * B(s,(j+1))) 
ENDDO 
DO j= ne+1, N 
      C(i,j)+= s1 *B(s,j) 
ENDDO 

ENDDO 
ENDDO 
END SDMP-CSR-u2 
 
Algorithm 7. SDMP-CSR optimized with SR, LIM and LpU, factor u=2 
 
3) SDMP-COO versions: in Table 3 we present a comparative study for the SDMP-COO algorithms  (Algorithm 8 and 
Algorithm 9). 
 

SDMP_COO version #operations #memory words 
#Indirect 
Access 

#Indirect 
Nested Access 

#Memory I/O 

Non optimized    (V0) 2N*NNZ 3NNZ+N2 N*NNZ 3N*NNZ 4N*NNZ 

optimized (V2) 2N*NNZ 3NNZ+N2 3NNZ+3N*NNZ 0 6NNZ +3N*NNZ 

 
Table 3. Comparative study of SDMP-COO versions 

 
SDMP-COO-V0 (IA, JA, A, B, C, N) 
DO i=1, NNZ 

DO j=1, N 
C(IA(i),j)+= A(i)* B(JA(i),j) 

ENDDO 
ENDDO 
END SDMP-COO-V0 
 
Algorithm 8. SDMP-COO version (V0)  
non optimized 
 
 

SDMP-COO-V2 (IA, JA, A, B, C, N) 
DO i=1, NNZ 

iai= IA(i), jai=JA(i), s=A(i) 
DO j=1, N 

C(iai,j)+= s * B(jai,j)) 
ENDDO 

ENDDO 
END SDMP-COO-V2 
 
Algorithm 9. SDMP-COO version (V2)  
optimized with SR and LIM  
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SDMP-COO-u2 (IA, JA, A, B, C, N) 
m=N mod 2, ne=N-m 
DO i=1, NNZ 

iai= IA(i), jai=JA(i), s=A(i) 
DO j=1, ne-1, 2 

C(iai,j)+= s * B(jai,j)) 
C(iai,(j+1))+= s * B(jai,(j+1)) 

ENDDO   
DO j= ne+1, N 

C(iai,j)+= s * B(jai,j)) 
ENDDO 

ENDDO 
END SDMP-COO-u2 
 
Algorithm 10. SDMP-COO optimized with SR, LIM and LpU, factor u=2 
 
 
C. Inter-algorithm study 
          In this section, we compare the optimized SDMP algorithms corresponding to the formats DNS, CSR and COO in order to detect 
the optimal format which provides the best performances. Notice that in Table 4, we don’t present the nested indirect access number 
because they are equal to zero for the SDMP optimized algorithms. 
 
 

Algorithm 
version 

#operations #memory words # Indirect Access # Memory I/O 

SDMP_DNS 
 

2N*NNZ +N2 2 N² N²+3*NNZ 
 

2N²+3N*NNZ 
 

SDMP_CSR 2N* NNZ 2NNZ+N+N² 2N+2NNZ+3N*NNZ 
 

4N+4NNZ+3N* 
NNZ 

SDMP_COO 2N*NNZ 
 

3NNZ+ N² 3NNZ*(N+1) 6NNZ+3N*NNZ 

 
Table 4. Optimized SDMP versions corresponding to different formats 

 
          Thus, we first compare the number of operations. In the case of equality, we compare the number of indirect access and the number 
of memory I/O. Indeed, we remark that the SDMP-DNS has the largest number of operations. So, it is lastly classified. Concerning 
SDMP-CSR and SDMP-COO, they have the same number of operations. So, we compare their numbers of indirect access. Hence, we 
compute the difference of the indirect access numbers (resp. memory I/O numbers). Then, we study the sign of the obtained quantity 
which leads to three cases: 2N < NNZ, 2N > NNZ and 2N=NNZ. Tables 5, 6 and 7 present the classification of the SDMP versions 
corresponding to DNS, CSR and COO formats. 
 

 
Algorithm 
version 
 

  
# Indirect  Access 

# Memory I/O  Final rank #operations 
  

#memory 
words  Reading Writing 

SDMP_DNS 3 3 3 1 3 3 
SDMP_CSR 1 1 1 1 1 1 
SDMP_COO 1 1 2 1 2 2 

 
Table 5. Comparative SDMP study for 2N > NNZ 
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Algorithm 
version 
 

  
# Indirect  Access 

# Memory I/O Final rank #operations 
  

#memory 
words  Reading Writing 

SDMP_DNS 3 3 3 1 3 3 
SDMP_CSR 1 1 2 1 2 2 
SDMP_COO 1 1 1 1 1 1 

 
Table 6. Comparative SDMP study for 2N < NNZ 

 
 
Algorithm 
version 
 

  
# Indirect  Access 

# Memory I/O Final rank #operations 
  

#memory 
words  Reading Writing 

SDMP_DNS 3 3 3 1 3 3 
SDMP_CSR 1 1 1 1 1 1 
SDMP_COO 1 1 1 1 1 1 

 
Table 7. Comparative SDMP study for 2N=NNZ 

 
We notice that: 

 In the case of 2N > NNZ; SDMP-CSR and SDMP-COO have the same number of operations. However, SDMP-COO 
accomplishes more indirect access and memory I/O. Thus, SDMP-CSR is first classified, and SDMP-COO is second classified. 
the SDMP-DNS algorithm is lastly classified because it provides the worst theoretical performances. 

 In the case of 2N < NNZ; SDMP-CSR and the SDMP-COO have the same number of operations. However, SDMP-CSR 
accomplishes more indirect access and memory I/O. Thus, SDMP-COO is first classified, and SDMP-CSR is second classified. 
The SDMP-DNS algorithm is lastly classified because it provides the worst theoretical performances 

 In the case of 2N=NNZ; SDMP-CSR and SDMP-COO algorithms are first classified because they have the same number of 
operations, the same number of memory access and the same number of memory I/O. The SDMP-DNS algorithm is lastly 
classified because it provides the worst theoretical performances. 

 

V. EXPERIMENTAL WORK 

 

Architectural Models 
 

CPU frequency 
 

L3 
Cache 
memory 

RAM 
 

Sites 
 

Clusters 
 

Intel Xeon E5-2660 
 

2.20GHz 20Mo 64 GB Nantes Econome 

Intel Xeon E5-2650 
 

2.00GHz 20Mo 252 GB Nancy Graphite 

Intel Xeon X5570 
 

2.93GHz 8Mo 24GB Rennes Parapide 

Intel Xeon E5520 
 

2.27GHz 8Mo 24GB Grenoble Edel 

Intel Xeon E5520 
 

2.27 GHZ 8Mo 32GB Sophia Suno 

Intel Xeon E5-2630 
 

2.30 GHZ 15Mo 32GB Lyon Orion 

 
Table 8. The characteristics of the used INTEL XEON models 

        
   In order to evaluate the performances of the SDMP versions, a series of experimentations is accomplished on Intel Xeon processors. 
These last belong to Grid5000 platform and have different architectures (see Table 8). To evaluate the performances of the algorithm 
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versions and validate our theoretical study, we use three storage formats for storing matrix A. For each format we generate eight 
algorithm versions relative to the different optimization techniques. In total, the number of tested algorithms is 24. For each version, we 
apply seven different compiler options, we test ten matrices and we use six different target machines with different characteristics to 
achieve the experimentations. The total number of tests is equal to 15075. 
 
 

 
 
Matrices 
 

N NNZ d Structures 

2N<NNZ 

cry10000 10000 49 699 0.05 
 

FA 10617 72 176 0.06 
 

Trefethen_20000 20000 287 233 0.07 
 

mult_dcop_03 25187 193 216 0.03 
 

bloweybl 30003 70 001 0.008 
 

lhr34 35152 764 014 0.06 
 

obstclae 40000 118 804 0.007 
 

2N>NNZ 

bcsstm25 15439 15 439 0.006 
 

qpband 20000 30 000 0.007 
 

bcsstm37 25503 14 765 0.002 
 

 
Table 9. The characteristics of the real matrices 

 
          For each compressed format (SCF) (i.e. CSR, COO and DNS) used to store the sparse matrix A, we test different versions (i) SCF 
V0, the non-optimized version, (ii) SCF V1, the optimized version with scalar replacement (SR), (iii) SCF V2, the optimized version 
with scalar replacement (SR) and loop invariant motion (LIM) (iii) SCF ui (i=2, 8, 16, 32,36,40), the version SCF V2 optimized using 
the loop unrolling (LpU) such that ui correspond to the unrolling factors. In the same way, we include logical tests in the SDMP-DNS 
algorithm which improves its performances. In addition to the manual optimizations (i.e. SR, LM, and LpU), we use at compile time 
different options that control various hinds of optimizations in the GNU Compiler Collection (GCC) such as the ‘-O’ options (the 
allowed forms are -O0, ’-O1’, ’-O2’, ’-O3’, and ’-Os’), and the ”-Funroll-loops ”. 
          For this purpose, we use a set of matrices from real applications which belong to Tim Davis and Matrix Market collections 
[13][14]. The size (N) of the matrices is in the range [10000, 40000] and the density (%) is varying in ([8.10-3, 7.10-2]) (see Table 9). 
 
A. Intra- algorithm study 
Let Ratio be defined as: 
 

Ratio = (1-tx/ty) * 100 (1) 
 
          Where tx is the runtime of the SDMP version x, ty is the runtime of the SDMP version y, with tx < = ty. In this section, we validate 
the optimization study of the SDMP versions corresponding to the DNS, CSR and COO formats. To optimize the SDMP-DNS, SDMP-
CSR and SDMP-COO algorithms, we include logical tests, SR, LIM, and LpU. The experiments are accomplished on six different 
machines of Grid5000, using ten matrices from real applications. For each format, we present the experimentation results we obtained 
when applying (i) SR and LIM optimizations, (ii) loop unrolling technique and (iii) compiler optimization options. 
 
1) SR and LIM techniques: SR and LIM techniques improve the performance of the different algorithms SDMP-DNS, SDMP-
CSR and SDMP-COO and this is true for all the tested matrices and on the six used architectures (see Figure 1.(a) and Figure 1.(b)). In 
the figures, each curve corresponds to the running time for a couple (matrix size/matrix density). 
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2) Loop unrolling technique: we apply the LpU technique with different factors in the range [2...40] and we obtain interesting 
results. Indeed, the loop unrolling technique when combined with the SR and LIM techniques increases the performances for SDMP-
DNS, SDMP-CSR and SDMP-COO. We precise that the best performances are given by the unrolling factors u8, u16 and u32 for the 
three formats. This result is true on the six tested architectures. For lack of space reasons, we only present the results related to three 
architectures (Grenoble Edel, Nantes Econome and Lyon Orion). For the mentioned unrolling factors:  
(i) for SDMP-DNS, the performances obtained on the different machines are equivalent. Indeed, the difference does not exceed a 

ratio of 1% on the Grenoble Edel processor and 6% on both Nantes Econome and Lyon Orion (see Figure 1.(c)). 
(ii) for SDMP-CSR, the performances obtained on the different machines are also equivalent. The difference does not exceed a 

ratio of 3% on the Grenoble Edel processor, 6% on Nantes Econome and 5% on Lyon Orion (see Figure 1.(d)). 
(iii) for SDMP-COO, the performances obtained on the different machines are also equivalent. The difference does not exceed a 

ratio of 6% on Grenoble Edel processor, 10% on Nantes Econome and 11% on Lyon Orion (see Figure 1.(e)). 
 

  

(a). Performance study of SDMP_CSR optimized with 
(SR, LIM and LpU) on Grenoble_Edel 
 

(b). Performance study of SDMP_DNS optimized with 
(Test, SR, LIM and LpU) on Grenoble_Edel 

  
(c). Comparison for SDMP_DNS of the performances 
obtained  
by using unrolling factors (u8 ... u32) 

(d). Comparison for SDMP_CSR of the performances 
obtained  
by using unrolling factors (u8 ... u32)  
 

  

(e). Comparison for SDMP_ COO of the performances 
obtained by using unrolling factors (u8 ... u32) 
 

(f). Performance study of SDMP_ CSR optimized using 
compiler options where N=10000 on Nantes_Econome 

Figure 1: Experimental results for intra-algorithm comparison 

T
im

T
im
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Recapitulation: we conclude that SDMP optimization using techniques RS, LIM, tests and LpU improves the algorithm performances 
with a ratio reaching 22%. These results are true for all the formats DNS, CSR and COO used for storing matrix A and are valid for the 
six architectures. 
For the three studied formats, the best performance of the SDMP is obtained when we combine manual optimizations and compiler 
options. 
 
B. Inter-algorithms study 
 

  
(a). A comparison of optimized SDMP-DNS, SDMP-COO 
and SDMP-CSR when 2N < NNZ on Lyon_Orion 
architecture 

(b). A comparison of optimized SDMP-DNS, SDMP-COO 
and SDMP-CSR when 2N > NNZ on Grenoble_Edel 
architecture 
 
 
 

 
 
(c). A comparison of the performances of SDMP optimized with LpU to the performances  
of Sparse BLAS on Lyon_Orion architecture 
 
Figure 2: Experimental results for inter-algorithms comparison 
 
The experimental results validate the theoretical results. Indeed, 
 

 In the case of 2N > NNZ; the SDMP-DNS algorithm is the last classified. This is true on different tested architectures. 
On Grenoble Edel, Rennes Parapide and Sophia Suno, the SDMP-CSR algorithm is first classified followed by SDMP-
COO algorithm (see Figure 2.(b)) which is conform with the theoretical study. However, on Nantes Econome, Nancy 
Graphite and Lyon Orion, the SDMP-COO algorithm is first classified followed by SDMP-CSR algorithm. Nevertheless, 
on the six different architectures, both algorithms have close performances. 

 In the case of 2N < NNZ; the SDMP-DNS algorithm is the last classified. This is true on the different tested architectures. 
On Nantes Econome, Nancy graphite and Lyon Orion, the SDMP-COO algorithm is first classified followed by the 
SDMP-CSR algorithm (see Figure 2.(a)). However, on Grenoble Edel, Rennes Parapide and Sophia Suno, the SDMP-
CSR algorithm is first classified followed by SDMP-COO algorithm. Nevertheless, on the six different architectures, 
both algorithms have close performances. 
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 In the case of 2N=NNZ; we don’t find real matrices that respect this case. 
 
          In addition to manual optimizations, we use compiler optimization options, we notice that SDMP-COO and SDMP-CSR 
optimized with option O1 or O2 give the best running time on the six different architectures. 
The obtained results are compared to the Sparse BLAS library, and we find that our optimized algorithms outperform the Sparse 
BLAS with a ratio of 13% (see Figure 2.(d)). 
 
Recapitulation: When we compile SDMP-DNS, SDMP-COO and SDMP-CSR algorithms with compiler options O1 or O2, 
performances are improved, and the versions order is maintained. 
 

VI. CONCLUSION 

          In this paper, we study several algorithm versions of sparse-dense matrix product (SDMP) corresponding to three storage formats 
(DNS, CSR and COO) using particularly the GAXPY-R body kernel. Various optimization techniques are applied and lead to interesting 
improvement, namely manual optimization techniques (i.e. scalar replacement, loop invariant motion and loop unrolling) and compiler 
optimization options (i.e. -O1, -O2, -O3, -O4, -Os and the -Funroll-loops). 
          With manual optimizations, the best performances are obtained when we optimize the SDMP versions using LpU factors u=8, 
u=16 and u=32. On the other hand, when we add the compiler optimizations, we find that the options -Oi (i=1, 2) give the best 
performances. This result is true for SDMP-DNS, SDMP-CSR and SDMP-COO versions and on all the tested Intel Xeon architectures. 
Concerning the optimal format, when the algorithms are optimized using manual optimizations, the best performances are obtained by 
the COO format, after applying the LpU, on Nantes Econome, Nancy  
          Graphite and Lyon Orion architectures. Whereas, the CSR format is the best on Rennes Parapide, Grenoble Edel and Sophia Suno 
architectures. When we add the compiler optimizations, the performances of the algorithms are improved, and the order of the versions 
is maintained. To conclude, our work arises some interesting points which may constitute a second step we intend to study soon. We 
may cite: 
 
 studying the SDMP for regularly structured sparse matrices (triangular, band, …) and the corresponding formats. 
 studying the sparse-dense matrix on other architectures. 
 processing very large sized matrices by parallelizing SDMP algorithms. 
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