# Groundwater Exploration In Parts Of Mangu-Halle North-Central Nigeria.

# I. Mamuda<sup>\*</sup>, P.M. Akushai<sup>\*\*</sup> & J.A. Ramadan<sup>\*\*</sup>

<sup>1</sup>Department of Minerals and Petroleum Resources Engineering, Plateau State Polytechnic, P.M.B 02023, Barkin Ladi.

*Abstract* - Geophysical survey using the Vertical Electrical Sounding (VES) technique of investigation was carried out for the determination of groundwater potentials in parts of Mangu-Halle and surrounding areas. The ABEM Terrameter (SAS 1000), precisely the Schlumberger array with  $^{AB}_{/2}$  electrode spread of 1.5m-215m was employed in the data collection. A total of thirty-five (35) VES points were collected. The field data were interpreted using WIN RESIST computer iterative program. The results obtained from the interpretations were illustrated as geo-electric sections and depth to basement maps which revealed 3-4 geo-electric layers. The first layer consists of topsoil / lateritic cap with resistivity values of 123-2908Ω, the second layer consist of weathered zone with resistivity value of 6.0379Ω, the third and the fourth layers consists of fractured basement with resistivity from 194-4968Ω and possibly aquiferous, promising good quantity of groundwater source; and the fifth layer consists of fresh basement. With reference to the interpretation of data acquired i.e aquifer thickness and material constituents in the subsurface, the area was classified into high, medium and low groundwater potential zones with the sole aim of providing the background information for detailed groundwater exploration and development within the area.

Keywords: Investigation, Geo-electric, Vertical Electrical Sounding, Aquifer

## 1. INTRODUCTION

The electrical resistivity method is suitably used for groundwater exploration which makes it a well known method that can be successfully employed for groundwater investigations, especially where there is a good contrast in the electrical properties between the saturated and unsaturated sub surface layers[1]. This method is regularly used to solve a wide range of groundwater problems[2,3].

The provision of adequate water supply and sanitation to the rapidly growing urban populations is increasingly becoming a problem for governments throughout the world. Due to the rapid increase in the population growth within the study area and surrounding villages, which resulted to the consequent increase in the demand for potable water supply, this research was carried out in order to explore the possibilities of groundwater supply which is more reliable. The availability of groundwater is therefore, a major asset that can greatly influence agricultural production, domestic use, industrial use etc. improving the growth and sustainability of the area in order to meet the development agenda for Nigeria.

The purpose of this research therefore is to investigate the subsurface using the vertical electrical sounding technique as well as identify the aquiferous zones that could be harnessed for groundwater resources so as to meet the increasing demand.

## 2. LOCATION AND GEOLOGIC SETTING

The study area is located in north central Nigeria, it lies within latitudes  $N09^0$  30'50'' and  $N09^031'47''$  and longitudes  $E009^005'17''$  and  $E009^006'13''$  (Fig. 1) on the Maijuju sheet 169 SW and covers an area extent of about  $16km^2$  The study area is accessible through Barkin Ladi- Mangu road or the Jos-Bisichi-Korot-Fan-Mangu-Halle road.





Fig. 1.Location Map of the Study Area Showing Settlements and Road-networks

The study area is underlain by rocks of the basement complex which forms smooth dome features with gentle slope, and exposures along the river channels. The entire study area is composed of granitic gneisses (Fig 2) which are predominantly medium-grained texture, although some samples showed granoblastic with coarse porphyroblastic texture. The rocks are crystalline, non-porous and therefore a poor source of groundwater unless weathered or fractured.

#### 3. MATERIALS AND METHOD

A total of thirty five (35) VES were acquired using the ABEM terrameter SAS 1000 model. Other accessories attached to the terrameter include a power source, tapes, electrodes (current and potential), cables, clips and hammers. The Sclumberger array configuration was applied to carry out the investigation with an electrode spacing of 1.5m to 215m. The VES stations were sounded randomly within the study area with their corresponding coordinates noted using the Global Positioning System (GPS); these are displayed on figure 2 below.



Fig. 2. Geological Map of the Study Area Showing the VES Points

## 4. DATA PROCESSING AND INTERPRETATION

Field data obtained were processed and interpreted qualitatively and quantitatively. The qualitative interpretation was the type-curve inspection to discern the layering. Furthermore, the type curves were quantitatively interpreted using computer iterative software (WIN RESIST Program), which were eventually presented in the form of geoelectric sections and maps.

The VES data acquired were plotted as depth sounding curves in terms of apparent resistivity versus AB/2 spread (electrode spacing). The different type-curves were classified based on their characteristics layering as shown in Table 1 below which ranges from 2 to 5 layers. From the VES interpretations 3-5 geo electric layers were delineated in the study area.

| VES Points            | Longitude  | Latitude   | Elevation    | Curves | No. Of | Curve Range                   |
|-----------------------|------------|------------|--------------|--------|--------|-------------------------------|
|                       |            |            | ( <b>m</b> ) | Types  | Layers |                               |
| P <sub>1</sub>        | E008.53261 | N009.39452 | 1262         | QA     | 4      | $P_1 > P_2 < P_3 < P_4$       |
| P <sub>2</sub>        | E009.09588 | N009.52352 | 1130         | HA     | 3      | $P_1 > P_2 < P_3$             |
| <b>P</b> <sub>3</sub> | E009.09534 | N009.52433 | 1147         | HA     | 3      | $P_1 > P_2 < P_3$             |
| $P_4$                 | E009.09490 | N009.52513 | 1141         | Н      | 5      | $P_1 > P_2 < P_3 < P_4 < P_5$ |
| P <sub>5</sub>        | E009.09750 | N009.52195 | 1134         | Н      | 3      | $P_1 > P_2 < P_3$             |
| P <sub>6</sub>        | E009.09533 | N009.52875 | 1142         | KH     | 4      | $P_1 < P_2 > P_3 < P_4$       |
| <b>P</b> <sub>7</sub> | E009.09573 | N009.52761 | 1145         | QH     | 3      | $P_1 > P_2 < P_3$             |
| P <sub>8</sub>        | E009.09652 | N009.52651 | 1139         | KA     | 3      | $P_1 < P_2 > P_3$             |
| P <sub>9</sub>        | E009.09757 | N009.52541 | 1136         | HK     | 3      | $P_1 > P_2 < P_3$             |
| P <sub>10</sub>       | E009.09852 | N009.52416 | 1133         | Н      | 3      | $P_1 > P_2 < P_3$             |
| P <sub>11</sub>       | E009.09933 | N009.52264 | 1132         | Н      | 3      | $P_1 > P_2 < P_3$             |
| P <sub>12</sub>       | E009.09855 | N009.52124 | 1130         | А      | 3      | $P_1 < P_2 > P_3$             |
| P <sub>13</sub>       | E009.09933 | N009.52034 | 1124         | HA     | 3      | $P_1 < P_2 > P_3$             |
| P <sub>14</sub>       | E009.10038 | N009.51898 | 1116         | HA     | 4      | $P_1 > P_2 < P_3 > P_4$       |
| P <sub>15</sub>       | E009.10143 | N009.51712 | 1122         | QH     | 5      | $P_1 > P_2 < P_3 < P_4 > P_5$ |
| P <sub>16</sub>       | E009.10192 | N009.51608 | 1126         | HA     | 4      | $P_1 > P_2 < P_3 < P_4$       |
| P <sub>17</sub>       | E009.09980 | N009.51705 | 1122         | AK     | 5      | $P_1 < P_2 > P_3 > P_4 < P_5$ |
| P <sub>18</sub>       | E009.09841 | N009.51706 | 1119         | KHA    | 4      | $P_1 < P_2 > P_3 < P_4$       |
| P <sub>19</sub>       | E009.09844 | N009.51568 | 1122         | HK     | 5      | $P_1 > P_2 < P_3 > P_4 < P_5$ |
| P <sub>20</sub>       | E009.09692 | N009.51685 | 1119         | KH     | 4      | $P_1 < P_2 > P_3 < P_4$       |
| P <sub>21</sub>       | E009.09433 | N009.51721 | 1120         | Н      | 4      | $P_1 > P_2 < P_3 > P_4$       |
| P <sub>22</sub>       | E009.09322 | N009.51795 | 1108         | HA     | 3      | $P_1 > P_2 < P_3$             |
| P <sub>23</sub>       | E009.09264 | N009.51833 | 1144         | HA     | 3      | $P_1 > P_2 < P_3$             |
| P <sub>24</sub>       | E009.09464 | N009.51858 | 1131         | HA     | 3      | $P_1 > P_2 < P_3$             |
| P <sub>25</sub>       | E009.09593 | N009.52141 | 1137         | Н      | 3      | $P_1 > P_2 < P_3$             |
| P <sub>26</sub>       | E009.09218 | N009.51986 | 1142         | Н      | 3      | $P_1 > P_2 < P_3$             |
| P <sub>27</sub>       | E009.09165 | N009.51978 | 1150         | QH     | 4      | $P_1 > P_2 > P_3 < P_4$       |
| P <sub>28</sub>       | E009.09274 | N009.52155 | 1136         | Н      | 3      | $P_1 > P_2 < P_3$             |
| P <sub>29</sub>       | E009.09636 | N009.51834 | 1124         | Н      | 3      | $P_1 > P_2 < P_3$             |
| P <sub>30</sub>       | E009.09751 | N009.51943 | 1123         | Н      | 3      | $P_1 > P_2 < P_3$             |
| P <sub>31</sub>       | E009.09770 | N009.52014 | 1133         | HA     | 3      | $P_1 > P_2 < P_3$             |
| P <sub>32</sub>       | E009.09856 | N009.52000 | 1131         | HA     | 3      | $P_1 < P_2 > P_3$             |
| P <sub>33</sub>       | E009.09813 | N009.52300 | 1152         | QH     | 2      | $P_1 > P_2$                   |
| P <sub>34</sub>       | E009.09980 | N009.52416 | 1133         | KA     | 3      | $P_1 > P_2 < P_3$             |
| P <sub>35</sub>       | E009.09701 | N009.52189 | 1124         | Н      | 4      | $P_1 > P_2 > P_3 < P_4$       |

Table 1: Summarized Table of the Vertical Electrical Sounding (VES) Locations

Furthermore, geo-electric sections were taken along 3 different profiles i.e A-A', B-B' and C-C', as shown on Figures 3a, 3b and 3c below. These section revealed 3-4 major geo-electric layers underlain within the area under investigation. The first layer consists of topsoil/laterite, the second layer comprises the laterite/weathered basement, the third and the fourth layers consist of fractured basement grading to fresh basement respectively.

The various depth of overburden to fresh basement generated at each VES points were plotted and contoured using the suffer GIS Program as Isopach of overburden thickness (fig, 4), the overburden thickness ranges from 2m- 40m. As a result, the depth to basement maps, geo-electric sections, and lithologic sections reveal factual character about the subsurface which have aided to classify the groundwater potentials within the area as displayed on Fig. 5 below. Thus, he groundwater potential of the study area has been characterized into high, medium, and low water potential zones with the following characteristics:

International Journal of Scientific and Research Publications, Volume 7, Issue 10, October 2017 ISSN 2250-3153

- i. High groundwater potential zones which are areas with intense and deep weathering/overburden thickness of 28-40m coupled with fractured basement. For this reason, such regions are promising with good quantity of groundwater source.
- ii. Medium groundwater potential zones include area with weathering depth from 16-28m and also some fractured basement.
- iii. Low groundwater potential zones comprise areas with depth of weathering from 2-16m.

Fig. 3a. Geo-electric section along A-A' profile

Fig. 3b: Geo-electric section along B-B' profile

Fig. 3c: Geo-electric along C-C' profile



Fig. 4: Depth to Basement Map



Fig. 5: Groundwater Potential Map

### 5. CONCLUSION

The electrical resistivity method of investigation adopted in this study has proven useful in the identification of groundwater potential zones within the study area. High groundwater prospective areas encompass P2, P3, P9, P10, P11, P18, P20, P29 and P30. On the other hand, areas that must be avoided include P6, P12, P13, P14, P15, P17, P32 and P34 because of the low groundwater potential nature of these points. However, areas with moderate groundwater potentials include P1, P4, P5, P7, P8, P16, P19, P21, P22, P23, P24, P25 others are P26, P27, P28, P31 and P33 as illustrated in figure 5 above.

By way of contributing to knowledge, this research has helped characterize the entire study area for future groundwater development which will serve to benefit the inhabitants and Plateau state at large.

## REFERENCES

- [1] Ahila,J. and G.R.S Kumar, (2011). Identification of Aquifer zones by VES Method: A case study from Mangalore block, Tamil Nadu, S.India Arch. Applied Sci. Res, 3: 414 -421
- [2] George, N.J., Obianwu, V.I. and Obot, I.B. (2011).Estimation of Groundwater reserve in unconfined frequently exploited depth of aquifer using a combined surficial geophysical and laboratory techniques in the Niger Delta, South South, Nigeria. Adv. Applied Sci. Res., 2: 163-177
- [3] Joshua E.O., Odeyemi, O.O. and Fawehinmi, O.O (2011). Geoelectric Investigation of the Groundwater Potential of Moniya Area, Ibadan. J.Geol. Min. Res., 3: 54-62