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Abstract- We present an analytic and asymptotic solution of an unsteady laminar boundary layer of micropolar fluid 

flow past a moving wedge. Similarity transformations reduce the number of independent variables of partial differential 

equations in the governing system to a coupled system of ordinary differential equations. An exact solution obtained for 

particular values of parameters are extended to obtain an analytical solution for more general values of the parameters 

involved. Analytical results are consistent with the numerical results obtained by employing implicit finite difference 

method. The variations with position, material parameter and time, shown by Velocity, shear stress and gyration profiles 

obtained from both the solutions are analyzed. 

 

Index Terms- Unsteady, Laminar boundary layer, Similarity transformations,  Exact solution, Asymptotic solution 

I. INTRODUCTION 

ost of the fluid flows in real life are unsteady. Flow of water from compressor pump is a perfect example for an 

unsteady flow as the velocity changes with respect to time. Also it is not always possible to maintain steady state 

conditions in fluid flows. Thereby, it becomes important to shift our focus from steady to unsteady flows. Unsteadiness 

is an inevitable feature in many engineering machinery. Some of the unsteady fluid flows of practical interest are the 

helicopter rotor, the cascades of turbo, machinery blade, the ship propeller and so forth. 

In the past few decades, many authors have be successful in finding  numerical solutions of unsteady micropolar 

fluid flows with certain special boundary conditions using different mathematical approaches. Govardhan and Kishan[1] 

have investigated the MHD effects on the early unsteady boundary layer flow over a stretching sheet and solved using 

Adams Predictor-Corrector method of fourth order. Saleh et al[2] worked on unsteady micropolar fluid over a 

permeable curved stretching and shrinking surface and have solved numerically using shooting method. Nazar et al[3] 

worked on analysis of unsteady boundary layer flow and heat transfer of micropolar fluid flow over a stretching sheet 

and solved the system numerically using Keller box method. Lok et al [] in  their paper analyzed the growth of unsteady 

boundary layer flow of a Micropolar fluid which was started impulsively from rest near the forward[4] and also rear[5] 

stagnation point and solved numerically using Keller box method. Kumari and Nath[6] considered the flow , heat and 

mass transfer on the unsteady laminar layer in micropolar fluid flow at the stagnation point and have solved numerically 

using a quasilinear finite difference scheme. Many authors have employed a solution methodology based on the group 

theoretic method  to reduce the number of independent variables of the partial differential equations of the governing 

equations and convert it into a system of ODE which is then solved by any of the DNS.  

In this paper, we propose exact solution of an unsteady, laminar, incompressible, two dimensional boundary layer 

of micropolar fluid flow past a moving wedge. Exact solutions of the fluid flows are rare in fluid mechanics due to the 

complexity of the problem with an extra independent time variable even more so when immersed in micropolar fluid 

with microrotating microelements [23]. Also, nonlinear problems do not permit a superposition principle thereby ruling 

out the building up of complex solutions of simple ones. But exact solutions are important in their own right as solutions 

of particular problems but also more important in checking accuracy of numerical solutions. The exact method 

employed to obtain solution of two- dimensional, laminar, incompressible, unsteady boundary layer of micropolar fluid 

flow past a moving wedge is based on the derivation obtained by Kolomenskiy and Moffat [2012] which is similar to 

the derivation from the Lighthill's complex potential theory [8] 

II. FORMULATION 

An unsteady, two dimensional laminar boundary layer flow of an incompressible, viscous, micropolar fluid over a wall 

of a moving wedge with a constant velocity ( , )wU x t   is considered. x - axis is taken parallel to the wedge and y-axis is 

normal to it. Under usual boundary layer approximations [9] the governing equations for micropolar fluid flow past  a  

wedge moving  in the non-dimensional form with the absence of body forces and body couples, are  

M 
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                                                                   Figure1: Schematic diagram of boundary layer 
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Conservation of micro-inertia:               0
s s s
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  
  

  
                                                          (4)  

                                                            

where u and v are the velocity components in the x and y directions ,  is the kinematic viscosity of the fluid , ( , )U x t is 

the free stream velocity given by the  power law ( , ) ( ) mU x t U A t x [7] where x is the distance measured from the 

onset of the boundary layer, ( ) 0A t  ,U , m are constants and ( , )wU x t is the stretching surface velocity which obeys 

the power-law relation 0( , ) ( ) m

w wU x t U A t x . Boundary conditions on velocity and microrotation are 

                                                              at  
1

0, ,0 , 0,
2

w

u
y u U x v w

y


   


              (5) 

                                                          as ,
y


 , 0, 0u U v w  

                                        (6)                  

 Introducing the stream function     ( , , )x y t with   u
y





 and v
x


 


and adopting the   co-ordinate 

transformations from the variables (x,y) to the new dimensionless similarity variables( [10] [11] [12])                       
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The boundary layer equations transform to the following non-linear ordinary differential equations                                    

 22
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The boundary conditions are 

                               
' ''1

(0) 0, (0) , (0) 0, (0) (0)
2

f f i h f                                                  (11) 

                                          
'( ) 1, ( ) 0f h     

where  η is a new similarity  variable , f (η) is the  non-dimensional stream-  function and  0( )wU

U




       is 

the ratio of free stream velocity and boundary value 0   corresponds to wedge moving in the direction of stream 

velocity  whereas and  0   corresponds to that of opposite direction. k



   where     is the 

dimensionless viscosity  ratio[22].  the stream  wise pressure gradient is favorable pressure gradient when m > 0 

and adverse pressure gradient when m < 0 whereas  Blasius flow over a flat plate  when m = 0[12]. The flow 

corresponding to stagnation point when m = 1[8] .  

III   ANALYTICAL SOLUTION 

When D = 0, the solution of micro inertia density equation (10) satisfying boundary conditions (11) is 

                                                       

2( 1)

( 1)

m

mi Af



                                                                                           (12) 

where 

2

( 1)mA C   is a non- dimensional  constant of integration. Using the   boundary condition i(0) = 0 leads to 

i(η) = 0 which is a trivial  solution, in which case (9) reduces to 
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''1

2
h f                                                                                         (13)   

substituting (12) and (13) in (8) we get 

                                                 22
(1 ) 1 0

2 1

k m
f ff f

m
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In this paper, we obtain  the  solution  analytically, asymptotically and  numerically  of this equation  with the 

boundary conditions 

                                          
' '(0) 0, (0) , ( ) 1f f f                                                 (15)    

where primes  denote  differentiation with respect  to η  .We seek exact solution[16] of (14) with (15) .Exact 

Solution of (13) for  m = -1/3[17] is obtained by integrating (14)twice and applying the boundary conditions (15)which 

results in a Riccati type equation and leads to the solution of (14)as 
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.To obtain  an exact analytical solution of the system (13) with (14) for  

different values of m and k, we rewrite  the solution  (15) as 
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Substituting (17) into (19) and (20), we get 
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with the boundary conditions 

                                                              (0) 1, (0) , ( ) 0
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The solution of (21) for  
1

,
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m
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  subject to (22) is given by (16). The error and exponential functions  in 

equation  (18) are entire  functions  with infinite radius  of convergence about  η = 0 and therefore  can be expanded  

using Taylor  series. 

Further the solution (17) which is in series representation [20] for 
1

,
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  plays  an important role in further  

analysis  for general values of m.  Thus we let 
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for general m and k. Substituting (23) into (21) and equating  the coefficients of 
n   to zero we get the 

coefficients na  and in general 
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24)

where n = 1, 2, 3... and the coefficients na  have been expressed in terms  of 2 , , ,a k m . The value  of  

coefficient  of  skin  friction  2a   that satisfies  the  derivative   boundary condition  at far away from the wall  

has to be determined. This is same as determining the value of either 2a   of series (20) or (0)f   of the  system  

(14) and  (15) as they  are intrinsically related  to each other  by the following
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The  coefficients 
na   consists  of two  arbitrary constants, namely  ''(0)f and   .For 

1
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This  constant   plays  an important role 

in this  analysis. The solution of   (14) exists only when the expression under  the  square  root in  ,is positive. The 

other constant or 2a   needs to be determined. Thus, (14 - 15) have infinite solutions in the form of (23).    The   

constant  ''(0)f  is determined in the following manner. We integrate (14) from 0 or    and use (15) to get 
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 Since skin friction (0)f   appears  on both sides of (25) and (26) it has to be determined iteratively using an 

appropriate initial  approximations for it,  taken  from the  known exact  solution(16),  (20)  and  (26)  for  all  values  of 

k,  m  and  λ . (0)f  converges when  the  derivative   condition   at  far  distance   in  (14)  is  satisfied (Kudenatti et  al 

2013).   It is known that the series behaves well for small values of η enabling its integration. So Pade’s approximants are 

used for the summation of the series.  With an  initial  approximation of (0)f  and  a fewer iterations, ''(0)f  can  be 

obtained up to  desired  accuracy  without any  difficulty  by  numerically   integrating the  integral relation.  Thus we 

obtain an exact solution of the equation for all the values of m, D and k.  To prove  the  robustness  of the  method  the  

values  of skin friction (0)f   obtained analytically are compared  with that of direct  numerical  solution  of the equation  

(14) with  boundary condition  (15) obtained using Keller Box method(Cebeci[14])  ,based on finite difference.  It is 

observed that results agree well with the Numerical solution for all the values of parameters 

 

IV   ASYMPTOTIC SOLUTION 
 

We analyze  the  far-field behavior  of (19) with boundary condition ( 2 0 ) asymptotically for which we study  large η behavior  

i.e  '( ) 1f  = as    because  the  derivative  boundary condition  '( )f  becomes linear as   increases away from 

zero.  This helps us to define a new function 

                                            ( ) ( )f E  :                                                                          (27)                    

where  ( )E    and  their  derivatives are  assumed  to  be small.   Substituting (23)   with ( ) 1 ( ) 1 ( )f E F       ,  

( ) ( ) 1 ( )f E F        and ( ) ( ) 1 ( )f E F        
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into  (19)  with  the  boundary conditions  (20)  and  linearizing  the  resulting  ordinary differential  equation,  we get 
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m
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                                                         (28) 

 

and boundary conditions  take  the form 

                                             (0) (1 ) , ( ) 0F F                                                                                                (29) 

whose solution   eventually   results   in,  Kummer’s   equation   [27] with  solution involving confluent hypergeometric 

series[26].Thus the solution  to (28) is given by 
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                        

   
  

                                                                                                                                        

 

                         The solution in terms  of ( )f  is given by '( ) 1 '( ) 1 ( )f E F       

 

                                                                                                V   RESULTS AND DISCUSSION 

 

Exact solution of unsteady boundary layer of a micropolar fluid flow past a moving wedge is obtained by using error and exponential 

function for particular values of pressure gradient m and unsteady parameter D and is then extended using series solution to more 

general values of  m, D. To substantiate the method of exact solution, the analytical results of skin friction are compared with those 

obtained by DNS (Keller box method) and presented in table 1. Analysis of velocity profiles helps to know the significance of the 

method employed and the physical nature of the unsteady micropolar flow in the boundary layer. Also, interesting physical dynamics 

of the model over the range of parameters is shown in the profiles. 

             Table 1:   Comparison of the skin friction (0)f  obtained by analytical method and numerical method. 

 

 

 

              

 

K = 0.0 K = 1.0 K = 2.0 

  Exact Numerical Exact Numerical Exact Numerical 

-1.1 -0.2000956 -0.201269 -0.161143    -0.162525 -0.137365 -0.139835 

-1.2 -0.405645 -0.406175   -0.326743    -0.328015 -0.281375 -0.282235 

-1.3 -0.613243 -0.614666 -0.494653    -0.4964291 -0.425126 -0.427165   

-1.4 -0.824321 -0.826697 -0.665643 -0.667726 -0.5727634   -0.574589 

-1.5 -1.040943 -1.042217   -0.840876   -0.841868 -0.722734 -0.724476 

http://dx.doi.org/10.29322/IJSRP.10.09.2020.p10585
http://ijsrp.org/


International Journal of Scientific and Research Publications, Volume 10, Issue 9, September 2020                                                               716 

ISSN 2250-3153   

  This publication is licensed under Creative Commons Attribution CC BY. 

http://dx.doi.org/10.29322/IJSRP.10.09.2020.p10585   www.ijsrp.org 

  
                                                  (2)                                                                                                 (3) 

 

           Figure : Variation of velocity profiles '( )f   and ( )h   with  for different values of unsteady parameter D. 

 

In figure 2, the velocity curves decrease monotonically to achieve the derivative boundary condition at infinity. When D = 0 velocity 

curve represents the steady flow model which is shown in dashed line in the figure. It is also observed that as unsteady parameter D 

increases the velocity of the fluid is found to be increasing which results into an increase in the Reynolds number, and thus, the 

boundary layer thickness is thinner.  Since, for positive D, flow is considered to be accelerated, it is expected that the velocity is 

essentially increases. It is anticipated that, though the large D asymptotics is not performed here, for increasing D the flow turns out to 

be steady for which wall shear stress is almost constant. In figure 3, we also see the gyration profile ( )h  plotted against non-

dimensional co-ordinate in which angular velocity decreases satisfying the boundary condition far away from the wedge wall. As D 

increases the angular velocity increases when closer to the wall but decreases with increase of D at a certain distance from the wall. 

 
(4) 

Figure : Variation of velocity profiles ( )f    with  for different values of pressure gradient m for k=1 and k=12 when unsteady 

parameter is 3.5 is taken 

 

In figure 4, as the pressure gradient increases the increases and the boundary layer thickness decreases.for  a value of material 

parameter k =1.The same pattern  is observed for k=12.  However the velocity decreases with increase of the material parameter 

showing increase in the boundary layer thickness. 
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                                               (5)                                                                                                   (6) 

                 Figure :   Asymptotic velocity profiles '( )f   with  for different values of m when D=0 and D=-2.0 

 

 

Figure 5 presents the asymptotic results obtained from (30) when values of pressure gradient m are held negative this corresponds to 

the adverse pressure gradient. As interesting velocity profiles are noticed in the unsteady boundary layer which are rather new. There 

are finite number of oscillations in the boundary layer for example m =-1/5 there are four modes in the velocity curve before decaying 

onto the mainstream, This corresponds to undershoots ( i.e., '( )f  <1for some  ) in the boundary layer . Oskam and  

Veldman (1982) have also noticed the similar oscillatory-type boundary layer profiles for negative pressure gradient. The same typical 

trend is observed for all negative values of m. 

 We intentionally plotted the velocity profiles for other set of m and D in figure 6. It is noticed that the same typical nature 

occurs quite often. Since k and D are different, we observe that there are less number of oscillations compared to the resulta of figure 

5. 

 

 

 

  

Table 2: Comparison of the skin friction ''(0)f obtained by asymptotic method with Numerical method. 

 

 

 

 

 

 

                                                                     

 

 

 

 

 

 

 

Table 2 shows the comparison of the asymptotic values of skin friction with the numerical values. We see that the values 

agree closely with each other though asymptotic results are obtained at far distance. Hence, there is a slight variation in the skin-

friction but however the corresponding velocity profiles satisfy the derivative conditions. 

In figure 7, it is observed that wedge velocity for increasing   is greater than the main stream velocity .Therefore different 

velocity nature is observed for different   .For  = -1.0, there is no boundary layer  formation and hence coincides with wedge wall.  

 

 

                     K = 0.0 K = 1.0   K = 2.0 

  Asymptotic numerical Asymptotic numerical Asymptotic      numerical 

-1.1 -0.364038 -0.277144 -0.210177 -0.157831 -0.171609 -0.128443 

-1.2 -0.728076 -0.561549 -0.420355 -0.319899 -0.343218 -0.260352 

-1.3 -1.09211 -0.853064 -0.630532 -0.486115 -0.514827 -0.395656 

-1.4 -1.45615 -1.151545 -0.840709 -0.656395 -0.686436 -0.534284 

-1.5 -1.82019 -1.456854 -1.05089 -0.830662 -0.858045 -0.676173 
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 (7) 

 

Figure: Asymptotic velocity profiles '( )f  with  for different values of   
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