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NATURE’S GENERAL LEDGER : “THE GRAND DESIGN”
MODEL FOR A SIMULATED UNIVERSE-A GIANT
DIGITAL COMPUTER AT WORK

DR K N PRASANNA KUMAR, PROF B S KIRANAGI AND *PROF C S BAGEWADI

ABSTRACT: Consciousness could be thought of as the problem to which propositions belong and
concomitantly correspond as they indicate particular responses ,signify instances of general solutions, with
its essential configurations, rational representations conferential extrinsicness, interfacial interference,
syncopated justices, heterogeneous variations testimonies,apodeictic knowledge of ideological
tergiversation,sauccesful reality,sleaty sciolisms,tiurated vaticinations,anchorite aperitif ~ anamensial
alienisms and manifest subjective acts of resolution . Consciousness in its organization of singular points,
series and displacements, is doubly generative; it not only engenders the logical propositions with its
determinate dimensions but also its correlates. The equivocality, ambiguity, in the synchronicity of the
problem and proposition both in the sets and subsets of the ontological premises and logical boundaries,
—aori n perceptionll ar i s e sFarifram indibagng theisubjéctive aodfprovisional
state of empirical knowledge consciousness refers to an ideational objectivity or to a structure constitutive of
space and time, the knowledge and the known, the proposition and its correlates. Thequ e st i on o0
in consciousness does not bear any resemblance to the proposition which subsumes it, but rather it
determines its own conditionalities and representationalitiesof and assigns them to its constituents in various
permutations and combinations, that are done with corporate signification, personalized manifestation,
individual denotation and organizational individuation. Consciousness is only the shadow of the problem
projected or rather constructed based on empirical propositions. Iti s t he same _i |l |l us
it to be reduced to any empirical thesis or antithesis for that matter. Retroactive movement of consciousness
based on morphemes, semitones and relational openness leads to disintegration of external relations and
dysfunctional fissures in the personality domains of resolvability are relativistic in the self determination of
the consciousness problem. Consciousness makes signification as the condition of truth and proposition as
the conditional truth; it is necessary that we should not vie the condition as the one who is conditioned, lest
the biases of internationality and subject object conflict arise. Witness consciousness is the best answer to the
problems that we face in science. Staticgenesi s set s r i dfAM Bréhman)-and Hramm
Brahman we camell problem. Consciousness thus is neutral but never the double of the propositions which
expregwntslithawvwe critical p o i nwater had. in klleits @igtine gldryi agdu
primordial mortification consciousnessisj u s t wledgkln,o expressed in bytes
expressed. We make an explicit assumption that the storage is measured based on the number of bytes and
that ASCII is used. Further assumption in gratification deprivation is that gratification increases in arithmetic
progression, and deprivation in geometric progression. More you think, more you get angry. The still more
you think you go mad. Repetitive actions and thoughts which are themselves actions are assumed to be
recorded. by a hypotherticall n e uDNAlinWe thus record everything in the general ledger of the universe.
And lo! The grand design simulated by someone, with people like us with Tamas, rajas (dynamism) and
sattva (the transcendental form of Tamas and rajas) react. The height' i snurderhneyhem calypso and
catacl ysm. t hreactiod ebpitlyllh.With this werstatenthat this universe is s grand design
simulated and we are really playing our roles to fit in a virtual drama.

INTRODUCTION:
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We take in to considerations following parameters:

(1) Consciousness(just the amount of bytes recorded and visual representations measured by
Information field capacity)

(2) Perception (What we see-It is said by many people like Kant and Indian Brihadyaranyaka Sutra that
what you see is not what you see; what you do not see is not what you do not see; what you see is
what you do not see and what you do not see is what you see —Here we assume that perception is
wh at we see. And note in the Model we Oore
—di ssipated realityl i f the observer has
happening. If two crime syndicates are fighting each other, you may only see a terrible traffic and
do not see anything else!)

(3) Gratification (we assume that it increases, the balance increases by arithmetic progression .The
more you think, the same sentences form
much needless to say leads to paranoid schizophrenia. All actions are performed by people to
achieve gratification or deprivation, that includes sadists and masochists)

(4) Deprivation(Balance here increases by GP ;again ASCII is used)

(5) Space

(6) Time

(7) Vacuum Energy

(8) Quantum Field

(9) Quantum Gravity

(10) Environmental Coherence

(11) Mass

(12) Energy

CONSCIOUSNESS AND PERCEPTION MODULE NUMBERED ONE

NOTATION :

Qs
Qq:
Qs :
Ys !
Yo

Yo

CATEGORY ONE OF PERCEPTION
CATEGORY TWO OF PERCEPTION
CATEGORY THREE OFPERCEPTION
CATEGORY ONE OF THE CONSCIOUSNESS
CATEGORY TWO OF THE CONSCIOUSNESS

:CATEGORY THREE OF THE CONSCIOUSNESS

SPACE AND TIME MODULE NUMBERED TWO:

Qs
Q
ey

: CATEGORY ONE OFTIME
: CATEGORY TWO OF TIME

: CATEGORY THREE OF TIME
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“Ye :CATEGORY ONE OFSPACE
“Ys : CATEGORY TWO OF SPACE

“Yg : CATEGORY THREE OF SPACE

GRATIFICATIONA AND DEPRIVATION(MOSTLY UNCONSERVATIVE HOLISTICALLY AND
INDIVIDUALLY! WORLD IS AN EXAMPLE) MODULE NUMBERED THREE:

"Qp : CATEGORY ONE OF DEPRIVATION
"Q, :CATEGORY TWO OF DEPRIVATION
‘Q, : CATEGORY THREE OF DEPRIVATION
“Yo : CATEGORY ONE OF GRATIFICATION
"Y, :CATEGORY TWO OF GRATIFICATION

"Y, : CATEGORY THREE OF GRATIFICATION

MASS AND ENERGY:MODULE NUMBERED FOUR:

‘Q, : CATEGORY ONE OF MATTER
"Qs : CATEGORY TWO OFMATTER
Qg : CATEGORY THREE OF MATTER
"Y, :CATEGORY ONE OF ENERGY
Y5 :CATEGORY TWO OF ENERGY

"Ys : CATEGORY THREE OF ENERGY

VACUUM ENERGY AND QUANTUM FIELD:MODULE NUMBERED FIVE:

"Qg : CATEGORY ONE OF QUANTUM FIELD
Qg : CATEGORY TWO OFQUANTUM FIELD
"Qp :CATEGORY THREE OF QUANTUM FIELD
“Ys :CATEGORY ONE OF VACUUM ENERGY
"Yg :CATEGORY TWO OF VACUUM ENERGY

Yo :CATEGORY THREE OF VACUUM ENERGY
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ENVIRONMENTAL COHERENCE AND QUANTUM GRAVITY:MODULE NUMBERED SIX:

"Q, : CATEGORY ONE OFENVIRONMENTAL COHERENCE
"Q; : CATEGORY TWO OF ENVIRONMENTAL COHERENCE
"Q, : CATEGORY THREE OF ENVIRONMENTAL COHERENCE
“Y, : CATEGORY ONE OF QUANTUM GRAVITY

“¥5 : CATEGORY TWO OF QUANTUM GRAVITY

", : CATEGORY THREE OF QUANTUM GRAVITY

@31,941,@51,5191,&151,&151QGZ,Q72,Q82@62,&172,(§82'
(’%4:'(‘%5::@621@44a(_{é541@6:a@851%95a%05!0&85’%95a0§051

0‘%2 !@3 1(1%4 10’%267('\)5361(%4
are Accentuation coefficients

o1 e o 1 TN TN N L ot o e TN TN FNi
T VP N R N PRI PRI PR | L B
,d&o3,®143,®23,d§d3,d§£43,d§43

Gy *, s L Ghe fL Gt s L Gt B 0L S, A ° dhs O dhe O, Gl
G ©, Ghy ©, a3 °, ) Ol O, ) °

are Dissipation coefficients
The differential system of this model is how (Module Numbered one)

CONSCIOUSNESS AND PERCEPTION MODULE NUMBERED ONE

%: s 1'Qy o o+ IVt Y0 Qs

a "\ = s Nj < NiNi o w
o g, 1Q A T+ @MYL G
S R T R VL A RS
Q 5 o N FNiNi S
%{3: Qs " Ya off ! Nt "Qo "Ys
Q 5 o N FNiNi S
%{4: Qs " Ys o) ¥ @Vt Qo Y,
QY _ = 1w 7 1 Tp@el rAL v

[y - (*3.5 Y4 0‘% (*fls OO Y5

+ 6= "Y,,0 = First augmentation factor

6%=! "Q0O = First detritions factor

The differential system of this model is now ( Module numbered two)
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SPACE AND TIME MODULE NUMBERED TWO

%: W6
%: W7
%: g
%: Qs
%: @7
%: (Iia

2"q,
?"Qe
2"q,
2,
2"Ye

2"y

G
G
a2+ Tl

&I’% 2
&ﬁ 2
(:f?; 2

(Ifgaez

dﬁeez
J_f%eez

Y 6 Qs
Y o Q
Y 6 "Qy
Q.0 Yo
Q .0 Y

Q.0 Y5

+ 08®2 "Y,,0 = First augmentation factor

(:f%aez ‘Q 0 =

First detritions factor

The differential system of this model is now (Module numbered three)

GRATIFICATIONA AND DEPRIVATION(MOSTLY UNCONSERVATIVE HOLISTICALLY AND

INDIVIDUALLY! WORLD IS AN EXAMPLE) MODULE NUMBERED THREE

dg—;’o 3

%: U0
%: (o
%: 02
%: @0
%: J%l
%: (22

+ G 0893 "\fll(‘)

WR=3 "Qs,0

e
3'Q,
el
Y,
Y,

%

rpae 3
0

¥1.0 Qo

6% 2+ & Y0 9

(%

MASS AND ENERGY:MODULE NUMBERED FOUR:

0’\% 3
d\ﬁ_ 3
0‘@% 3

S4BT Y0 g,

(I%QQS "QSI(‘) "\:fo

d’ﬁa?S "QSI(‘) "\fl

dgeza?B "931(‘) ")(2

First detritions factor

First augmentation factor

The differential system of this model is now (Module numbered Four)

Q4

o 04
o= s
%: G
%: (24
%= (s

*"Qs
*"Qq
" Qs
Y

4 v
¥

i

4
i 4

@4
@4

s 4
5

oo 4
6

aﬁee4

(;'%%4

f T Y0 Q,

¥5,0 Qs

¥5,0 Qs

Q7 .0 Y

“Q7 ' 0 "\fS
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Y% _ = w 7 7 “ P
Tf— s *Ys o 4 & e TN 7
+ =4 "Ys,0 = First augmentation factor
65B=* "Q; ,0 = First detritions factor

The differential system of this model is now (Module number five)

VACUUM ENERGY AND QUANTUM FIELD:MODULE NUMBERED FIVE

%: Gyg > Qg 0% ° + HB=E° Y0 Qg

29 = Gye ° Qg 6% >+ GBR®° "¥,0 Qg

®
TQo _  « 5 e 5 . @5 vy oo
5 - %o 7 Qo (é:0) a8y ¥%9,0 Qg
Q 5 o 5 7, o \ e
?\58: g °Y  G® % @RS Q.0 Y

DY _ - it 5 o e
e Be % B S BT Q%0 Y
D% _ 5"\£ dgg 5 dggegg, Q0 "X
o 3o 9 0 0 1, 0
+ Ypxp 5 - N . .
7 ¥y,0 = First augmentation factor
6522°% "Q; ,0 = First detritions factor

The differential system of this model is how (Module numbered Six)

ENVIRONMENTAL COHERENCE AND QUANTUM GRAVITY:MODULE NUMBERED SIX

2= @y °'Q; 6% © + BP0 Q,

== @y Q, 6B ° + B®° 3,0 Qs
Q& = 6 "Q dg% 6 4 d’geae 6 "X o "Q

> 17 3 4 4 3, )
Teo G, 0 @B S BT Qs 0 Y
D 7] %3 2 2 5 2
%3 _ = w 7 7. o e

== a3 Y o5 ° 6HZ° Qs .0 ¥
% _ = 6 v (Ige 6 (Igga? 6 “Q o "

> - W % 4 4 5.0 Y
+ 68*°® "¥;,0 = First augmentation factor

622® "Qs ,0 = First detritions factor

HOLISTIC CONCATENATE SYTEMAL EQUATIONS HENCEFORTH REFERRED TO AS
“GLOBAL EQUATIONSI
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CONSCIOUSNESS AND PERCEPTION MODULE NUMBERED ONE
SPACE AND TIME MODULE NUMBERED TWO

GRATIFICATIONA AND DEPRIVATION(MOSTLY UNCONSERVATIVE HOLISTICALLY AND
INDIVIDUALLY! WORLD IS AN EXAMPLE) MODULE NUMBERED THREE

VACUUM ENERGY AND QUANTUM FIELD:MODULE NUMBERED FIVE
MASS AND ENERGY:MODULE NUMBERED FOUR
ENVIRONMENTAL COHERENCE AND QUANTUM GRAVITY:MODULE NUMBERED SIX

A I e PN | R it ) | Rk it TN N

295 = dl?: ! Q4 3
o] v, 4444 - s v o s v o s
[+ CEZ A ¥, 0 ||+ GBT 555 Yo,0 ||+ BT O08S .0 |
ree 1 vl vy & vpe 22, vy o vee 33, "y o
0Q4 _ Ge 19 %2 |+ a2” " "Ys,0 H"‘ 7% Y7,0 H"' S ¥1,0 | .
o 4 3 z1
(04 e 4444, vy o 225555, "y 22 6666, "y o
[+ B 4444 .0 [+ GOS0 ||+ GBFOO0S "%,0 |
o 1 o 1 = ‘ . 2’2’ o ‘ . 3’3’ o )
9 g 1y, B [+ 6=t Y0 |+ B2 Yo+ 6873 %o
= 5 4 5
(04 vee 44ds, vy o e 5555 "y r2® 6666, "v
[+ B A44 ¥,0 ||+ GBS0 .0 ||+ GBS 0]

Where| é®! "Y,,0|,| 682 "Y.,0 || é®! "Y,,0 | are first augmentation coefficients for category
1,2and 3

|+ =22 "Y,,0 H+ =222 "Y,,0 ||+ WHE2% "Y,0 ‘are second augmentation coefficient for
category 1, 2 and 3

|+ B2 33 Y, 0 ||+ @EE33 "y,,0 H+ aBE33 "Y,,0 |are third augmentation coefficient for
category 1, 2 and 3

|+ CFE 4444 Y 0 | ,|+ G 444h Y G ||+ CRE 4444 Y o |are fourth augmentation coefficient
for category 1, 2 and 3

|+ GFZ 5555 7Yy, 0 H+ G2 5555 Yy, 0 H+ GBZ 5555 Y, 0 | are fifth augmentation coefficient
for category 1, 2 and 3

|+ CE® 0666 "y o | ‘+ (§B® 0666 "y, o H+ 6666 "y o ‘ are sixth augmentation coefficient
for category 1, 2 and 3

Jﬁ 1‘ d‘ﬁael "Qo H (If%aez,z, “Qg,b HZ d’%ae3,3, "lec‘) |

X = Qs *"Ya s
- - i ", 1 v o \ i ", 3

: [T s @ o] @ ]

OY4 _ 7 1w ("ﬁ ! ‘ dﬁael QO | | dﬁee2,2, “Qg,(‘) HZ dgela? > “93’(‘) ‘ v
o - W Y Ys

‘ (RE4444 ", 0 || (B=5555 "Q,,0 H 6666, "Q5:0|
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Y5 x 3 dfes 1‘ dfés‘aal "Q(‘) | | 6@5&32,2, "QQ,(‘) HZ. 625323,3, "QB!(‘) |

—_—= 1 "
o Ws ~ Ya l TR AAAE G ” (§2=5555. "Q,,0 “ CER 00668, "Q5,(‘)| %

Wherel =t "Qo H aB=! "Qo || =l "Qo |are first detrition coefficients for category 1, 2
and 3

| GRE® 2% "Qq,0 H GE® 22 "Qq,0 || 05222 "Qq,0 | are second detrition coefficients for
category 1, 2 and 3

| 62233 "Q;,0 || 65EE3% Q5,0 || 655233 "Q;,0 |are third detrition coefficients for category
1,2and 3

| 624444 "Q,,0 || CRZ 4444 "Q,,0 H 6= 4444 "Q,,0 ‘are fourth detrition coefficients for
category 1, 2 and 3

| 65225555 "Q;,0 H 6RE>555 Q.0 || B2 "Q;,0 |are fifth detrition coefficients for
category 1, 2 and 3

| Gg®0088 Q0 ],| §TOS "Qy0|,| TS "Qs,0 |are sixth detrition coefficients for
category 1, 2 and 3

Iy 2|+ (E*2 Y0 ||+ @=Ll Y, 0 H_,_ g 333 -'¥1,0|

L gy 2 Qs
o) . ~ - ~ - ~

|+ R AL H+ (@ 55555 "y ||+ (2= 66666 "y, o |
T g avg, O LR ol aEE Yeollr GBS o]
T 7 6 7
@ |+ GE= 44444 Ty H+ (EE55555 "y ”_,_ (= 66666 "\!3,5)’
OQg _ . 9. @ 2 |+ =2 "Yq,0 “"' ettt Y, 0 H"‘ 6= %3 "Y,0 ‘ N
o - Ws G Qg

|+ GEBe 44444 Ty H+ (@@ 55555 "y ||+ (§* 66666 "\fg,bl

Where‘+ =2 Y,,0 ||+ E=2 Y., 0 ||+ =2 Y0 ‘are first augmentation coefficients for
category 1, 2 and 3

|+ o=t Y, 0 H+ &t 7yY,,0 H+ =l 7y,,0 | are second augmentation coefficient for
category 1, 2 and 3

|+ GBE 333 "y ,0 H+ @BE2333 7y, 0 H+ 32333 "y, 0 |are third augmentation coefficient for
category 1, 2 and 3

|+ GFE 44444 Y 0 ||+ G 4A4sE Ty o ||+ CRE 44444 Y O | are fourth augmentation
coefficient for category 1, 2 and 3

|+ GR® 50555 "y 0 H+ CF® 55555 Y 0 |‘+ CB® 55955 "y 0 ‘ are fifth augmentation
coefficient for category 1, 2 and 3

|+ CBE 66666 "y o | ‘+ (BT 66666 "y o |‘+ CEFE 66666 "y o ‘ are sixth augmentation
coefficient for category 1, 2 and 3
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me_ g ey, B G0 @ ol 0]

o - We Y7 l GEE A g o H (3255555 Q0 || (52266666 "Qs,(‘)‘ Y6

o . . % 2| (=2 "Gy, 0 l I =1l Qo HZ (32333 "Q,,0 | ]

o= - @ Y ‘ GgEaaant g H GE=55555 Q.0 H (35266666 "Qs,(‘)‘ Y7

v _ B 27y 7 2| (F®2 "Qq,0 || =Ll Qo HZ (32333 "Q3.0| N

® 8 7 ‘ GE 44444 ", o H (§2®55555 "Q, 0 || G35 66666 "QS,(‘)‘ °
Wherel b®2 Gy, t | ‘ bEZ2 Gt | | bE®E2 Gyt | are first detrition coefficients for
category 1, 2 and 3

| (jf%eel,l, Q0 H Jﬁeelyly Qo || &fg*lvlv "Qo | are second detrition coefficients for category 1,2

and 3

| 653® 333 "Q,,0 || CHE=E333 "Q;,0 || 0522333 "Q;,0 | are third detrition coefficients for
category 1,2 and 3

| agEeatss 0| agEeettt Lol dgE4444t "Q,,0 | are fourth detrition coefficients
for category 1,2 and 3

| CRE 55555 "Q,,0 || CRE55555 "Q,,0 H CBRE55555 "Q,,0 |are fifth detrition coefficients
for category 1,2 and 3

| Gg®00666 "0 || g®66686 Q0| §2O999° "Qs,0 | are sixth detrition coefficients
for category 1,2 and 3

I i TN | Rl Gt - | e ALY

4 3 », n,
o - @o Q1 o 444444 N o - R - o Qo
@ ‘+ (g 44444 ¥Ye,0 ||+ (2 555555 "y o ”_,_ (22 666666 "y & |

B 3+ aE®3 w0 ||+ 62222 Y0 ||+ eERMY Y0 |

Q1 _ o, 3 -
= - W1 7 Q Q
® o 444448 T G 2w 555555 "y ¢ 2w 666666 "y ¢
"" g™ s ¥5,0 H"’ O ¥%9,0 ||+ A %0 ‘
e e - 1 . 222 [z 1 o, 111 2 1
P9« 4- ¢ 3|+ ap=3 o[+ 6@ o |lx @ e
o - 2 Q1 Q2

‘+ e AT H+ (B@ 555555 "y g ”+ (EBE 666666 "y o ’

|+ WBE3 Y,0 H+ B=° "Y,,0 ||+ B2° "Y;,0 ‘ are first augmentation coefficients for category
1,2and3

|+ CBE222 "Y,,0 H+ EE222 Y, .0 ||+ =222 "Y,,0 ‘are second augmentation coefficients for
category 1, 2 and 3
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|+ o=t 7y, 0 H+ @t y,,0 ||+ oz Ll "\{4,()‘ are third augmentation coefficients for
category 1, 2 and 3

|+ G 4AAAAA Ty G ||+ G 4A44A4 Ty H+ [ RS A ‘are fourth augmentation
coefficients for category 1, 2 and 3

|+ GF2 O00085 Yy 0 ||+ [ S o) ||+ B2 505985 "y lare fifth augmentation
coefficients for category 1, 2 and 3

|+ GF22 666666 "y, o ||+ G2 666666 "y 0 ||+ CER 000886 Yy 0 ‘are sixth augmentation
coefficients for category 1, 2 and 3

& 3| (523 "Qs,0 HZ (@222 "Qq,0 ”Z Gge 1L --00’

%: J% 3 \f .,){

@ 0 ! | G2 a44aas g H (352555555 Q.0 H (3526666656 "Q, b| 0
T g sy @& 2| oB®® Qu0]lz dB2? "Qu.0 ||z aB=t Qo | y

® A 0 | (E=444484 g o H (52555555 "Q, 0 H (52666666 "Q 0 | 1
Do @ vy 6% 2| B Qa0 |z dB=?*2 Q.0 [z &=ttt Qo | "y

@ 2 ! | (2444444 Q0 H (3= 555555 Q.0 H (352666666 Qg0 | 2

| a3®° Q50| &= "Qs0].| 8*° "Qs,0] arefirst detrition coefficients for category 1, 2
and 3

(2222 °Qq,0 [,|  B®222 "Qq,0 |,| af§®2%? "Qy,0 | are second detrition coefficients for
699222 o 7ee222 . 839222 5 d detrit if ts f

category 1,2 and 3

| ag=t o |, @t "o |,| R®MM: "Qo | are third detrition coefficients for category
1,2and 3

| Jg%ee4,4,4,4,4,4 "Q,,0 H (Igesee4,4,4,4,4,4 "Q,,0 |,| (Ig%ae4,4,4,4,4,4 "Q,,0 ‘ are fourth detrition
coefficients for category 1, 2 and 3

| (@ 555555 "Q, 0 H (R®555555 "Q, 0 || CE®555555 "Q, o ‘ are fifth detrition
coefficients for category 1, 2 and 3

| (X 666666 Qg 0 H CB=6066666 Qg0 || CRER666666 "Qq 0 ‘are sixth detrition coefficients

for category 1, 2 and 3

9 o ay B R Y0 [+ GRS Y0 ||+ 68206 0|
o 4 5 - ~ - ~ - ~ - 4
(0] ‘_,_ GRELLLL vy, o H_,_ (R®2222 7y, H+ GEB= 3333 "y o ‘
Qs - . o 0325 4 |+ (1325324 Y, 0 H+ (IgegeeS,s, Yo,0 H+ dg%aefs,e Yo, 0 | )
oy~ 95 4 ” — - — - — 5
(0] |_,_ GEElill vy, o ||_,_ (E®2222 "y, o ||+ GE®3333 Y 0 |
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0, o B % @ o)l @ Rl
® % 5 . ~ - < - — 6
(0] |+ GEE Ll vy o H+ CEE2222 7Y, o ||+ G2 3333 Y, o l

OMY F24 ¥6,0 || GBEY ¥, 0] BT ¥,0 | IO 0 H G aiveE GGG @i G

[+ G555 Yo,0 ||+ GHTS Y0,0 ||+ GBS "Yo,0 |GI QI TEEQ 6B G ATEE GG 6B

[+ G855 5,0 ||+ GBEOS 5,0 ||+ GBEOS "¥s,0 | @ QSN0 ¢BH G EHE G OG0 G

|+ [ el A ||+ a2ttt vy, 0 H+ ottt vy, 0 ‘ are fourth augmentation coefficients
for category 1, 2,and 3

|+ CR2 2222 7Y, .0 | |+ CB* 2222 7Y, 0 ||+ CFE 2222 "Y,.0 | are fifth augmentation coefficients for
category 1, 2,and 3

|+ 23333 vy 0 ||+ CE23333 Y0 | ‘+ C$2 3333 Y0 ‘are sixth augmentation coefficients
for category 1, 2,and 3

(S5 7N . #7 4| % 7 "Q%‘OH . 'QLOHZ & “QSaO’ .
| d’ﬁael,l,l,l Qo H &f%az,z,z,z "Qg, 0 HZ (jg%aea,a,a,a “Qsab’ 4

Vs o a8 LG 00| GBS Gyl @O0 Qu0]

(05) | d’ﬁeel,l,l,l "Qo || Jﬁeez,z,z,z "Qg, 0 HZ &g—iee?,,?»,?»,?, “Qg,(‘)| 5
%: Gs 4 Yo G5 4| agg= “Q%C‘)H (3555 !‘QlybHZ e “Qs,c‘)l y

7 o \ 5. , \ 5 ™, \ 6
l Qf%ael,l,l,l QOH Qf%aez,z,z,z Q9=0HZ Qgezeea,a,a,a Qsao‘

OMY 4 Q0] &4 Q0| &2 Q0 |G oo ae: ¢oEEd @i d

| =% Q0| &®%5 Qo || BT Q0 | @i CEEQOM Ger GO @i G

| a8®%% Q0| &% Q0| HE=S "Qs,0 |G QNN ‘B8 G OMHEH @i diIC

| aﬁeel,l,l,l "Q0 H Jﬁael,l,l,l Q0 H af%ael,l,l,l "O(‘)‘
Gl Q'@ 61 FQOM 69 8 QKT A "R @BOG1 01,2 Q3

| Jﬁez,z,z,z "Qy, 0 ,‘ (p®2222 "QNQ’(‘) H (If%aez,z,z,z “Qg,b‘
G QWD "G 8 QXIHRE A "Bi WG| 01,2 (E'Q3

|Z &%393,3,3,3 "stb_,‘z aﬁea,a,a,a "Qs,0 HZ (Ig%aes,s,s,s “Q3yc‘)|
A Qi "D "GO 68 VKRG "B WHOG| 01,2 (2'Q3
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3% 5|+ 6= ° "Y¥,0 H"‘ 5= Y¥,0 H"‘ g 008 "¥3,b|

Qs _ w5 .
o - @ 0 Qo Qs
|+ GEE Ll vy, o H+ (Ee22222 "y, o H+ (= 33333 \fl,o‘
B _ o s G8 S|+ CB®5 ¥o,0 ||+ CEEH %0 ||+ GBEOO0 "Y;,0 | -
® 8 |+ (e Ll "y, o ||+ (2E22222 7y, ||+ (E* 33333 "y o I o
o1 G °|+ GB*° Yo.0 ||+ BT T%,0 ||+ GFFO0° %0
Qo

— 6o ° Qo e 1111l v ¢ v 22222 "y ¢ 2233333 v ~| @0
5 O Y O ) O i)

OMA+ G5 Yo,0 ||+ GHT® Yo.0 ||+ GBT° "Yo,0 |G Q0N 0GB M G EHEE G OXKHB G "G

08+ G2 ¥o,0 ][+ @BE4 ¥6,0 ||+ (BT ¥%,0 | GQI QB0 G G aEeE GG

[+ GE5=000 ;.0 ||+ CETOOS 5,0 | [+ CHTOSS Y50 | QNN (B G EBEE G OOXGHE 0

[+ ag@ it vy, o |+ GEEII vy, 0 ||+ GRE LI (Y, 0 | are fourth augmentation
coefficients for category 1,2, and 3

|+ G2 22222 7Y, 0 ||+ CB® 22222 7Y, 0 ||+ 222222 Y, 0 ‘are fifth augmentation coefficients
for category 1,2,and 3

|+ G 33333 7y 0 ||+ CFE 33333 "y 0 ||+ CBE 33333 "y 0 | are sixth augmentation
coefficients for category 1,2, 3

DY . .. 0 5| s “QlaéH = as "97:(‘3”2 CB= 666 -QS’O’ )

T G2s Yo ‘ d’f%eel,l,l,l,l Qo H &f%wz,z,z,z,z "Qg, 0 HZ (j%ees,s,s,s,s “Qsab’ 8
Yo . . G% °| %®5 'Quo|| B Q.0 |z GB®% Q50|

™ G20 % l (e il "QbH (222222 "Qy o HZ (52=33333 “Qs,bl o
% . . 0% °| %™ 'Quo|| &=t g0z &S Q0|

o o Yo

5. ", \ v o 1 ", 3 0
‘ Qf%ael,l,l,l,l, QOH Qfgaez,z,z,z,z QQaOHZ &ggee3,3,3,3,3 93,0‘

0'MOZ GR=° Q0| | B=° Q.o @5 QLo @ ooonm e & d
@1 WO 01,2 (E'Q3

| @@t Q0] @@ gl =Yt Q0| didEi O Gt GO @ G

| =058 Q0| ®2%%° "Qs0 || CHTOC "Qs,0 | G0 ENO OB GO XGRS "B

| @it Qo || gttt qo|,| @@L Qo | are fourth detrition coefficients for
category 1,2, and 3

| C2® 22222 "Qq,0 || 02222222 "Qq,0 || 032 22222 "Qq,0 ‘are fifth detrition coefficients for
category 1,2, and 3
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|z 62233333 "Q;,0 Hz 055233333 "9, 0 ||z 055233333 g, 6 |are sixth detrition coefficients for
category 1,2, and 3

9% _ o6 CF O+ CBZC "¥%5,0|[+ RS0 "¥o,0 ||+ GFTHY ¥s.0 | q
o - 2 3 (2 (2 h 12 4 3 . 4 3 2
(@] |+ CRELILLLL vy, g “+ CRE? 222222 "y, ¢ ||+ (2= 333333 "y o |

,Q‘Q3 _ (Ié 6 “Q dﬁ 6 |+ 6%326 "\£3|c‘) H+ d%%@e 305 "¥91b H+ dg%& 44, "¥51b | "Q

=~ 3 2 - R - P - o 3
(0] ‘4_ GEELLLLLL vy, o H+ (RE222222 vy o ||+ (E® 333333 "y o ‘

0 . .. & [ @ %o |[F B o |[F B %o]

o - % & Qs

|+ dﬁ_’eel,l,l,l,l,l Y, 0 “+ dfesee2,2,2,2,2,2

VT 2@ 333333 vy ¢
Y7,0 ||+ u35* ¥1,0 ‘

[+ GB®° "Y5,0 [+ (B2° "¥5,0 ||+ CHTC ¥5,0| (IQCN0 ¢B'G G aTeE GEOMGE Y "B X

[+ GEZ555 "Y0,0 |||+ GO0 Yo,0 ||+ GBTO0° "Y,0 |61 QI AEEQ60 G G XSO (f QNG o

[+ G8= %% 5,0 ||+ GEEAMY Y0 | L[+ GBEEAAY Y, 0| GQSCHNGH G G B0 (f QONGHE o

|+ aE Lty o ||+ gttt oy, o ||+ ettt oy | - are fourth augmentation

coefficients

|+ di%eez,z,z,z,z,z Yy, 0 |,|+ dﬁeez,z,z,z,z,z "Y,,0 |’|+ dﬁaez,z,z,z,z,z "Y7,(‘3| - fifth augmentation

coefficients

|+ G 383333 vy o H+ CFE 383333 "y o H+ (32333333 7y 0 | sixth augmentation

coefficients

D% . . 0% | B "Qs,0|[x dB=5%° "0z dB=*Y Q0]

T @2 % | d’f%eel,l,l,l,l,l "Qo || (Ifeeeez,z,z,z,z,z "Qg, 0 HZ (Ig%ee3,3,3,3,3,3 "Qs,0 | 2
(o % o B 'Qs.0][z &B*°° "oz dEEt Qo] |
T s % | (Iﬁ:-:el,l,l,l,l,l "Qo || @92,2,2,2,2,2 "Qo, 0 HZ d’ﬁae3,3,3,3,3,3 "Qs,0 ‘ %
Y, v 6 &7 6| GH2° "Qs,0 |[7 a5 Q.0 ||Z 5 "971(‘3‘

™ 034 % "Qo, 0 HZ &ggee3,3,3,3,3,3 "Qs,0 ‘ 4

7 111111 sOe 7 222222
| dgmiat Qo || dpg®22222

| a2®° Q0] &= Q0] &*° Q0| oo o ae: dONiEd @l WHEdI

| @555 g0 @®®555 Qo || 6§®%%° Q0| G gEEQon a8 6 OEEd @i

| agEeet QL0 @@t gl dgEett g0 | doschoag ee: EaiEd @i

| cg=ttLLl Qo || ¢RI "Qo || @@L "Qo | are fourth detrition coefficients

for category 1, 2, and 3
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| Jﬁeez,z,z,z,z,z "Qo,0 |’| aﬁaez,z,z,z,z,z "Qg, 0 H (If%aez,z,z,z,z,z "Qy, 0 | are fifth detrition
coefficients for category 1, 2, and 3

|z Gg=333338 "q; 0 | [z Gg@3RR333 Q.0 ||z dB=3eR333 Q0 | are sixth detrition
coefficients for category 1, 2, and 3

Where we suppose
A) @t L ET, T, B, & >0,
‘O 13,1415
(B) The functions ¢!, GE® are positive continuous increasing and bounded.
Definition of (g *, (iQ*:
@™ (Y0 (Rt (053)P
@B (Q9) (9t (B! (813)P
©) (o] “¥O Ho (I%g"l Y4,0 = (N9 !
liMgop GEZ Q0 = (9!
Definition of ( 813 )™,(6,53)® :
Wherel( 013) D, (613)D, (A L, (it |are positive constants and

They satisfy Lipschitz condition:

G Y50 (G Yol (Q)VIY, "o
(GEF* "o (& Qo< ()P0 "OfjQ (P1)™

With the Lipschitz condition, we place a restriction on the behavior of functions
(G "¥8,0 and(G&P*! "Y,,0 . "¥,0 and "Y,,0 are points belonging to the interval
("Q3)®,(013)® . ltisto be noted that (GBF* "Y,,0 is uniformly continuous. In the eventuality of the

fact, that if (0 13 )™ = 1 then the function (G "Y4,0 , the first augmentation coefficient WOULD be
absolutely continuous.

Definition of (0 13 )™, ( Q)™ :

(D) (013)D,(7Q3 )@, are positive constants
(6 * (6

(013)D "(013)D
Definition of ( Oy5 )™, (015 )® :

(E) There exists two constants ( 0;3 )™ and ( 0,3 )™ which together
with (0 13)®,(Q3)®,(613)® and (6,3)® and the constants

(G ' (cF* (" . (cF (', (3", 'x 131415,

satisfy the inequalities
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Gowl @+ (@ + (813)D+ (O) Q)] < 1

(013)®
Tl @+ @+ (8) % (535)® () M) < 1
Where we suppose
(F) o2, (B2, B2, 2, @2, = >0, 'gor161718
(G) The functions (¥ , &> are positive continuous increasing and bounded.
Definition of (p;) 2, (r) 2:
6E=2 Y0 (M b
B ('Q,0 (ig? (F? (0656)?
(H) lim-yo, B "Y7,0 = (g 2
M-, B2 Qg ,0 = (ig?
Definition of ( 815 ), (615)® :
Where|( 016)@,(616)@, (MY 2, (i 2 lare positive constants and
They satisfy Lipschitz condition:
(G820 (62 Y01 (Q)PY, "ElQtw)®e
(GBF? "Qo 20 (G2 "Qo.01<(Q)P"Q Qo HQ(010)?8

With the Lipschitz condition, we place a restriction on the behavior of functions (G2 “Y&,0

and(¢&F? "Y,,0 . "¥2,0 and "Y,,0 are points belonging to the interval ("Qg )@, (0 46)@ . Itisto
be noted that (G "Y,,0 is uniformly continuous. In the eventuality of the fact, that if (0 14 )® = 1
then the function (G2 “Y,,0 , the SECOND augmentation coefficient would be absolutely continuous.

Definition of (0 16 )®,( Qs )@ :
) (016)@,(Qg )@, are positive constants

(dxy 2 (G2
(016)@ ’(016)®@

Definition of ( 0,3 )®,(0,3)® :

There exists two constants ( 03 )(? and ( 046 )@ which together
with (016 )@, ( Qe )@, (616) D 6E'Q( 616 )@ and the constants

((bﬂ 2 1(6‘% 2 !(@ 2 ,((Iﬁ 2 v(r‘]a 2 ’ (‘ld 2 1"§2: 16:17:181

satisfy the inequalities

el @) 2+ @32+ (Ag)@+ (Pe)® (kig)P] < 1

1
(016)@

[(@2+(aF2+ (636)P+ (036)? (Q)?]<1
Where we suppose

) 3, B3, BB, 3, 3, &= >0 gx 202122
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The functions ¢, ¢&>* are positive continuous increasing and bounded.
Definition of (g 2, (r;) 3:
(¥, (M3 (02)@
@™ ('Q3,0 (193 (WF3  (02)®
(o] “¥O Hb 0%383 ¥1,0 = (N4 3
liMgo, (B "Q3,0 = (ig 3
Definition of ( 8,9 )®,( 659 )@ :
Wherel( 020)@,(62)®, (3 2, (i3 |are positive constants and
They satisfy Lipschitz condition:
(= E0 (B ol (Q)Py "ElQ (P28
(G "Qs%0  (CB® Q3,01 < ('Q)@IIQs "QsTlQ (P=)Pe

With the Lipschitz condition, we place a restriction on the behavior of functions (¢&F° "¥%,0

and(¢&F® "Y,,0 . "¥5,0 And "Y;,0 are points belonging to the interval (Qo ), (0 5 )® . ltisto
be noted that (G "Y¥;,0 is uniformly continuous. In the eventuality of the fact, that if (0,0 )® = 1
then the function (¢&f® "Y,;,0 , the THIRD augmentation coefficient, would be absolutely continuous.

Definition of (0 5 )®,( Q)@ :

(K) (020)®,(7Qg )@, are positive constants
(6 (6 3

(020)3 "(020)®

There exists two constants There exists two constants ( 0o ) and ( 0,9 )® which together with
(020)3,(7Q0)®,(650)PEQ( 659 )@ and the constants
(6‘)& 3 1(6‘% 3 !(d‘& 3 !(d‘ﬁ 3 v(r‘]a 3 ’ (‘ld 3 7"§2: 207211221
satisfy the inequalities
1 o, o, o 5 L7
m[(wd (@3 (020)F+ (00)®(Q)¥]<1

m[ (@3 + (GF 3+ (60)3+ (0,0)® (Qe)¥<1

Where we suppose
g4, B4, B, ipt, B4, @& >0 242526
(M) The functions ¢E>*, @&>* are positive continuous increasing and bounded.
Definition of (19 #, (i
@™ (¥%,0 (M*  (0624)@
@ Q0 (gt (F*  (82)?
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(N) (o] “¥O o 0%694 ¥5,0 = (N9 4
limgo, GB** Q7 ,0 = (ig*

Definition of ( 8,4 )®*, (64 )@ :

Wherel( 004 )*, (60)* (M 4, (i9* |are positive constants and |Gz 24,25,26

They satisfy Lipschitz condition:

(G %0 (G %01 (Q)@IY%  "¥EIQ(P20)®
(GEP* "qr %0 (@& Q@ 01<(Q)WI'Q " fad?e

With the Lipschitz condition, we place a restriction on the behavior of functions (¢f* "¥,0

and(¢&P* "Ys,0 . "¥E,0 and "¥s,0 are points belonging to the interval ("Q4 )™, (0,4)® . Itisto
be noted that (G "¥s,0 is uniformly continuous. In the eventuality of the fact, that if (0 54 ) = 4
then the function (G “Y¥s,0 , the FOURTH augmentation coefficient WOULD be absolutely
continuous.

Definition of (0 4 )™, (Q4 )@ :
(0,,)*,(7Q, )™, are positive constants

(N (6 *
(024) (0 4)#

Definition of ( 0,4 )@, ( 0,4 ) :

Q) There exists two constants ( Uy ) and ( 0,4 ) which together with
(024)*,(7Q0 ) (624) D EQ( 6,4 )™ and the constants
(G, (6. (G *,(cF* (", (9”& 242526,

satisfy the inequalities

_r
(024)@

[(Cg* + (64 + (020) M+ (0p0)(Qy)P]<1
Tl (@4 + (8 + (60)@+ (020) (Qu)D]< 1

Where we suppose

i, @BS, B®, n®, @S, @& >0, "o 282930
(S) The functions ¢ , GE® are positive continuous increasing and bounded.
Definition of (g °, (i °:
B (Y,0 (M°  (025)®

@® Q.0 (lg° (@5 (85)®

(M) aa “¥O Ho G%GQS Y¥,0 = (N9 °
limgo 1 (I%% Q1,0 = (iq°

Definition of ( 8,5 )®,( 645 )® :
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Wherel( 0,8 )®),(6,8)5) (M3 %, (i9° |are positive constants and ['Gx 28,29,30

They satisfy Lipschitz condition:

(GBF® %0 (G %01 (Qe)OY "o 0=
GB® Q%o (G "Q.0l<(Q)®'Q Q HQd2)

With the Lipschitz condition, we place a restriction on the behavior of functions (& “¥g,0

and(6EF® "Y,,0 . "¥E,0 and "¥o,0 are points belonging to the interval ( Qg )®,(0,5)® .ltisto
be noted that (G5F*° “¥,,0 is uniformly continuous. In the eventuality of the fact, that if (0,5 )®® = 5
then the function (GEF®° “Y,0 , theFIFTH augmentation coefficient attributable would be absolutely
continuous.

Definition of (0 25 )®,( Qg )® :
(0,5)®,(Qg)®, are positive constants
(g ® (G ®
(028)5) "(02g)®

Definition of ( 0,5 )®, (04 )® :

There exists two constants ( U, )¢ and ( 0, )® which together with
(028)3),(Qg )™, (8,5)DEQ( 6,5 ) and the constants
(6 °,(6F 5, (6 °,(6F %, (N °, (9%, 282930, satisfy the inequalities

@ (% + (5 + (825)+ (5)® ()] < 1

Goel (% + (CH° + (855) @+ (026) ()< 1
Where we suppose

g ¢, B, BH, i ®, B, @E® >0 'dor323334

(W) The functions ¢E2® , ¢&>® are positive continuous increasing and bounded.
Definition of (f1d ¢, (i ©:
B (%0 (M° (6)®

W (.09  (19° (B® (65)®

(A °
(i °

X) 0Q -yo , CH*® "¥s,0
lim o J%zeee Qs ,0

Definition of ( 83, )(®,( 63, )® :

Where‘( 032)®,(65,)®, (136, (i9° ‘are positive constants and ['x 32,33,34

They satisfy Lipschitz condition:

(GBF® .0 (G %0l ()OI "glQ@=)®
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I(CB® Qs 20 (GBF® Qs ,01< (@) 'Q Qs FQ(0a)®0

With the Lipschitz condition, we place a restriction on the behavior of functions (¢ "¥§,0

and(¢&® "¥s,0 . 5,0 and "¥5,0 are points belonging to the interval (Q,)®,(04,)® . Itisto
be noted that (G "¥3,0 is uniformly continuous. In the eventuality of the fact, that if (0 3, )(® = 6
then the function (CGF® "¥s,0 , the SIXTH augmentation coefficient would be absolutely continuous.

Definition of (0 3, )®,("Q,)® :

(03,)®,(7Q,)®, are positive constants
(6 (S ©
(032)®) "(032)®

Definition of ( 0s, )(®,( 03, )(® :

There exists two constants ( 0z, )(® and ( 03, )(® which together with
(03,)0,(Q,)®,(63,)OxQ( 63, )® and the constants

(d‘)d 6 1((:"% 6 !(a‘ﬁ 6 !(&ﬁ 6 v(hd 6 ’ (‘ld 6 7"(2: 321331341

satisfy the inequalities

T (@ + (O + (83)@+ ()@ ()0 < 1

1
(032)®

[ (G + ((jﬁe + (032)O+ (03)® (Q)®]<1

Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying
the conditions

Definition of "@Q,0 ,"%0 :

™ \ 5 1.5 1
0 g QY

o[G0 =50

M (D)o

Definition of "0 ,"™%0
@0 (O)@00)P0 g0 =@ >0
MO (D)@ g0 =8> 0

@0 (f’zo)(s)'dbﬂ’)(s)fJ , Q0 ="@>0
O (Uy)@@020)%0 o = "> 0

Definition of "@,0 ,"%0 :
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4o | @0 = @> 0‘

5 4.
Uy4 QY24

(0, ) D024) W0

R

Definition of "@,0 ,"%0 :

Qo O Q02 70 [ Q0 =G> 0]
MO (D) @020 %0 ="%>0

Definition of "0 ,"%0 :

Qo G Q%% %0 [ @0 =G> 0

) (Dg) @b %0 ="§>0

Proof: Consider operator ' (O defined on the space of sextuples of continuous functions '@, %A .
which satisfy

Q0 =@, "0 ="8,"Q  (05)M " (013)W,

0 Qo G (B) Wi

0 "o Mg (D)Wl

By

Qs 0 =G5+ woé (6d3) ' Q4 1 13 (6F3) 1 + GBF" Ya i1z i 13

@0 =Gty () Qs i (G (BT Ve s s
By 0 =Gty (s) T Qe ias (B (GRFY Vel i
Yoo =%+ o (@) Vel (GB)' (GBF Oig i
Yoo =Nt S (@) i (@) (GBF O i
Tist =Th+.4 () Yl (@@ (GRF' Oiy i

Where { 13 isthe integrand that is integrated over an interval 0,0

Proof:

Consider operator
satisfy

Q0 =@, "0 =", '@ (06)? "G (016)?,

20

Oﬂ+

“QB i 13 [o} 13

Qi3 Qg3
Qs iz Qg3
Y3 i 13

"\2{4 i 13

Y5 i 13

' (@ defined on the space of sextuples of continuous functions "@, “¥%5 ., © s, which
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0 o G (By) @)%

0 %0 "B (U )@ 016)*0

By

Qs 0 = "G ,VOO (6d6) >"Q7 1 16 (GF2) 2 + GRT> "Yr i 16 i 16
B 0 = "G +

@, 0 =G, +,v00 (617) > "Qe 1 16 (682) 2 + (6BF? Y (16 017
Qg 0 = "G WOO (Q18) > Q7 1 16 (653) > + (6RF? "Yr {16 i 16
B 0 = "Gy +

Yo 0 =Yt o (Qe) 2 i 16 (6RR) 2 (cf5F? Of 16 i 16
Y, 0 ="Y +,V00 (A7) 2"Ys i 16 (6f5) 2 (GBEF? "Oi 15 i 16
Yo 0 =Yoo (Qe) Y i 16 (6RR) 2 (cf5F? "Of 16 i 16
Where i 15 isthe integrand that is integrated over an interval 0,0

Proof:

Consider operator

satisfy

‘R0 =&, 60 =8, G (0,0)@ 8 (020)9,

0 @0 & (Gp)@0bx)s

0 "0 B (D) @@om) e

By

B0 =G+ o (@0)° Qia (@R +EF? Yl oo
@0 =Gt ()3 Qi (G +(CHEF Vi 20
@0 =Gt ()3 Qi (6B H (BT Wi i
Yoo =%+ (@) Nin (@3 (GRF® Ol i

Yo =P+ (@) Yin (@3 (EF® Ol i

Tt =Th+. o (@)%Y in (@3 (GBF° Ol i

Where { 5o is the integrand that is integrated over an interval 0,0

Consider operator *
satisfy

Q0 =@, "0 =8, @ (0a)@ G (024)@,

Yo i
Y7 i

Ye i

Qi

Q i

(3 defined on the space of sextuples of continuous functions "@, "%, © s, which

“QO i 20 Q 20

Qrizn 9y
Qi Ay
Yo i 92
Y1 i Q20

Y i Qg

(4 defined on the space of sextuples of continuous functions '@, "%, © s, which
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@ (D) WSO 20

0 "o
0 %o B (Dp) o
By

Gy 0 =G+ Woé (G34) * Qs {24
Qs 0 =G5+, ob (Gys) * Q4 {24
B 0 = G +,v06 (Gy6) * Qs {24
Y 0 =% "'Wob (G2a) Y5 1 24
¥ 0 =% +,vob (G2s) * "¥a i 24

Tt = Ti +w00 (G) * Y5 1 24

(6F) * + G&EF* Ys (24 i 24
(682) * + (63T * "¥5 {24 i 24

(682) * + (GBF* Y5 {24 i 24

(6%) * (GHF* "Of 24 i 2
(d‘ﬁ')) 4 (&%fA “Oi 24 ri 24
(J‘gé) 4 (65%394 “Oi 24 !i 24

Where i ,, is the integrand that is integrated over an interval 0,0

Consider operator

satisfy

“Q)O - n@), u¥20 - "% , n@)

0 Q0 @ (Oy)®dd2)®0
0 "0 "B (0g)®c02)®0
By

"By 0 =T+ .0 (Cre) Qo i 29
By 0 = "Go+ .o (Ge) ® Qg i 26
@ 0 =G+ o (Cao) ®'Qo i 26
Yo 0 = Yt o (Ge)® Yo i 2
Yoo =B+ o (Gae)® Yo i 28

o , = o ,
Tot =TH+,., (@)° Yo iz

Where { ,g is the integrand that is integrated over an interval

Consider operator
satisfy

(058)® "

(028)®,

Yo 128 i 28

(G33) ° + GHF°
Yo 128 i 28

(6%5) ° + (65eF°

Yo i 28 i 28

(%) ° + (c&F°

(6R)°  (GRF® "Of 55 iz
(&%) ° (&%fS “Oi 28 vi 28
((I%) ° (&%325 “Oi 28 1i 28

0,0

22

“Q4 i 24 Q 24

Qs 124 A oy
Qs s Ay
7 IPYREN© IV
Y5 124 Qoo

"¥6 i 24 Q 24

(5) defined on the space of sextuples of continuous functions "@, "%, © s, which

“QB i 28 [o} 28

Qo i 25 A 23
Qo i2s U og
Yo 28 U 2
Yo i 28 A 2

UXO i 28 Qi 28

' () defined on the space of sextuples of continuous functions @, “%5, © A, which
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Q0 =@, ™0 =8, "G (05)@ " (03)©@,

0 @6 & (Byp)®gba)

0 "o Mg (Dg)@@be)®

By

o= Gt () Qi (@)@ Gin dn Qi O

@y 0 = Qs +wob (6d3) ®"Q 1 3 (68)° + (6BF°® Hia o Qizx Ui

@, 0 =G, +wob (634) ®"Qs 1 3 (68) % +(6BF°® ia i QUizp Dz
Y 0 =" +,vob (G) "% 1 3 (6)°  (aBF® Oigp iy MNizp Ui

"}?3 +,vob ((I%B) 6 "¥2 i 32 (Jﬁ) 6 (&%396 “Oi 32 1i 32 "¥3 i 32 Q 32

% 0

Tt = T3 "'WOO (G) ® Y% 1 22 (G8) ¢ (GHF® Ol iz Wigp

Where { 3, isthe integrand that is integrated over an interval 0,0

(@) The operator b maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

o~ s . o . . o~ 6 12 ) D :
Qs O C?s"'woo (Gaz) b @yt (Oyp )P e Gy =

o 1 a0 (én3) * (013)Y g NOR
1+ (Gy3) to"Q, + TSR J 013 1

From which it follows that

(513)D+d,

o o (D13) Do () ! > ‘9 0 q .
@3 Q(UlS) © (01:;)(1) (U13)(1)+ @4 Q 4 + (U13 )(1)

Q; 0

"@, is as defined in the statement of theorem 1

Analogous inequalities hold also for "Q, ,"Qs," Y3, Y4, Y5

(b) The operator '@ maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

o s o 0 , . ¥ o~ 0 (2); B

Qs 0 Ge+., (Qg) 2 Q) OG0T e G g =
N2 s (616) % (516)® 10 16)@0

1+ (G3e) 207Q; + (516)@ (ORED 1

From which it follows that

@@ GOC (G @s g T (f)®

Qs 0
Analogous inequalities hold also for "Q; ,"Qg, Y5, Y7, Ys
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(a) The operator ' (3 maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

Q0 G +,vob (6po) ® "Gr+( l7)20)(3)!1020)(3)i 20 Qg =

© N3 (620) ® (520)® 14 50 ) ¢
1+ (Gy) 320G, + 5200 0200 4

From which it follows that

(620)3+Py

o~ e o~ (Don) @ (Gpo) 3 > o 3 -
Q 0 G QP00 (522)(3) (050)® + G, Q 1 + (0p)@

Analogous inequalities hold also for "Q; ,"Q,," %, ¥1, ¥

(b) The operator P maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

o \ o 0 , v o ¥ o~ D [C©OX )
Q4 O C24*'woo (Gpa) * Qo+ (0 )W GP24) 2 oy =

o N4 e (@24) * (92)® (5 ,4) Do
1+ (Gx4) 0@5+WQ“ 1

From which it follows that

(024) D+ s

6N A v (Doa) @ (Gpa) 4 ~ o P 5
Qs 0 "G, Q(Pas)0 m (024)@ + G5 Q 5 + (04 )@

"@, is as defined in the statement of theorem 1

(c) The operator L) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

Qg 0 "Gp "',Vob (6ye) 5 "ot (0p5) B0V 28 5 =

v\ 5 oA n (¢8) ® (028)® y®)g
1+ (Cys) ° 0 Gy + (025)® (3028 1

From which it follows that

(528)®)+dg

o, \ . . " (5) 4 (dpg) 5 5 . . @ 5
Qs 0 G QP20 (UZBW (028)® + Gy Q o + (0 )

"@, is as defined in the statement of theorem 1

(d) The operator ' (®) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

o \ o 0O , v . 5 o~ D (6){ B
Qo G "')VOO (Gyp) © Qs+ (05) OG22 5, =
v 6 6 o \
1+ ((%2) 60 "@3 + (éB) © (032)®) ‘QU32)(6)O 1

(032)®

From which it follows that
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(032)®+dy

N . (D)8  (GB2) © > Ao F .
Q0 G QPe)Te (0322)(6) (05)® + '@ Q & + (0g)®

"@, is as defined in the statement of theorem 6

Analogous inequalities hold also for "Qs ,"Qg, ¥4, %5, ¥

(i ! (Gt

1)@ "(013)® - 1 and to choose

It is now sufficient to take

(P3)® and( Q3 )™ large to have

(515)0+°6,
(ot ¥ ¥ o v e 5
G (Bt (B)P g e (G13)®

(519)@+%,

Ty 1 ~ " ~ ~
@ (55)D+ "8 Q B4 (0)® (Dy)®

(b13) t

In order that the operator ' (4 transforms the space of sextuples of functions "@, “¥gsatisfying GLOBAL
EQUATIONS into itself

The operator ' (D s a contraction with respect to the metric
’Q uol 'qu , -‘02 '"Y2 -

fonfd gy o Q¢ 0 Q0WIoadm g o Y o Q@wYy
Q b“ﬂ+ GNH+

Indeed if we denote
Definition of "Q"Y:
“Q"Y — ! (1)(.‘0"\5
It results
o1 a2 0, « a1 a2 0 1 W O 1 ;
Q@ R 0(@3) 1y QP g g, +
)VOO{((I%) 1l @2 Q) Yigg (b)) tig 4
(GBF Y Q@ Q0w ughe ey
o2 v, e, v w2 1 . 0 1 o~ D 1 ,
Q5 I(GHBF Yo iz (GBF Y .0 | QOW TG0 T yg gy
Where i 15 represents integrand that is integrated over the interval 0,t

From the hypotheses it follows
ol 0?2 Q(bs)to

1 v o, o 5 , , o w o o
7 (Qa) '+ (6F3) "+ (013) T+ (013) T (Qy)t Q O Y07 ,Y?

(013) !
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And analogous inequalities for "L 'Q"Y, Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (¢§5¥* and (cf%¥® depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( 0y5) * ‘G013 ' 0 ¢2Q( 5,5) B0 10
respectively of a1, .

If instead of proving the existence of the solution on 4., we have to prove it only on a compact then it
suffices to consider that (¢ and (G&F* ,"Cx 13,14,15 depend only on T, and respectively on
"JGE'Qe£0£e 0 and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any & where '@, 0 = 0 GEQ"%0 = 0

From 19 to 24 it results

‘@0 A0 OB @ Yaigs i1z O s 0

%o "BQ @' >0 fort>0

Definitionof (045) * |, (D13) ' ,GEQ (Oy3) * -

Remark 3: if "Q; is bounded, the same property have also "Q, G£'Q"Qs . indeed if

Q< (Dq3) it foIIows% (013) * | (C33) * "Qq and by integrating

Qs (Dg3)t ="+ 2(Ga) T (Dga) t L /(CE) !

In the same way , one can obtain

Qs (D)t =T+ 2(As) P (Dga) b ()

If "Q, €1 "Qs is bounded, the same property follows for "Q; , "Qs and "Q; , "Q, respectively.

Remark 4: If "Q; "Qbounded, from below, the same property holds for "Q, GE'Q Qs . The proof is
analogous with the preceding one. An analogous property is true if "Q, is bounded from below.

Remark 5: If T3 is bounded from below and lim g o ((G&F* (700 ,0)) = (¢ff) * then”Y, © Hb.
Definitionof & ! and-;:

Indeed let 0, be so that for o > ¢

(@) ' (@ (00,9 <-,"%(9> & !

Then % ()t & 1 -;"Yswhich leads to

. 1 . 1 . . .
Y, @S 1 010 + P01 Ifwetaket suchthat Q 10 = % it results
-1

. 1 9+ 1
"Y4 (¢hg) 5 a
The same property holds for "Ys if lime (GEEFL 00,0 = () ¢

, 0= &0 By taking now -; sufficiently small one sees that T;, is unbounded.
-1

We now state a more precise theorem about the behaviors at infinity of the solutions

(v' 2 5 2
Ewd G S 1 and to choose

It is now sufficient to take 0160@ '(516)@
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(016)@ GEQ( 046)@ large to have

(016)@+d)
(G 2 ¥ ¥ o . ey ¥
© ;Z) > (016) 2 + (g )P+ Q 2 (046)@

(016)+"¥%,

w2 T o -
(% (016)@+78 Q @ +(036)®  (046)@

(0 16) 2

In order that the operator * (@ transforms the space of sextuples of functions "@, “¥satisfying

The operator* (@ is a contraction with respect to the metric
Q Q' Yo', Q2 Y2 =

ionfaci QG 0 P 0 QW ainE o Y o0 QWY
Ko} ovea 4+ May

Indeed if we denote

Definition of Qo, Yo :  "Qs,Yo =' @('Qu,"Yo)

It results

(o O S (<18 I e e N e AUEL RARLE o LEUARIELE e IO
ol6B) 7 G GE e Tl g i T

(GRF2 Y 16 Q% QG Q0w legle) iy

"RNGRF? Yy i1 (GRF? Wi | QW g0 e yg

Where { 15 represents integrand that is integrated over the interval 0,0

From the hypotheses it follows

-, ", 2
Q ! Qy 2 e (M)t

: (Gg) 2 + (CF3) 2 + (Ag) 2 +(Pe)?(Qe)2 d Qg ', Yo ' Qg 2, Yy ?

(M3g) 2

And analogous inequalities for Geand T+ Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (¢G%¥ 2 and (¢f%¥2 depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( Rg) 2 e(M16) 2t and ( Q) 2 e(M1e) ? t
respectively of 51, .

If instead of proving the existence of the solution on s ,, we have to prove it only on a compact then it
suffices to consider that (¢§5? and (&2 ,"Cx 16,17,18 depend only on T;; and respectively on
"Qy (andnot on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not existany t where Got = OandTgt =0

From 19 to 24 it results
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Got Gle 0 (@82 (FBF? Tizige i1s dige 0
Tot T2 @’t >0 fort>0
Definition of (Myg) > |, (Mgs) * ,and (M) 2

Remark 3: if Gjg is bounded, the same property have also G;; and Gig . indeed if

Gis < (Mygg) 2 it foIIowsd:% (M) 2 | (G§3) ? Gy and by integrating

Gy  (Mg)? 5= Gl + 2(&7) * (Myg) ? J/ (6%%) 2

In the same way , one can obtain

Gs  (My) ? 3= Glg + 2(Ghg) * (Mye) 2 ! (658)

If G; or Gg is bounded, the same property follows for G5 , Gig and G;g , G;7 respectively.

Remark 4: If Gyg isbounded, from below, the same property holds for G; and Gg .
analogous with the preceding one. An analogous property is true if G;7 is bounded from below.

The proof is

Remark 5: If T;4 is bounded from below and lim o 1, ((GEF? ( "Qg t ,1)) = (Gf2) 2 then T;7 O b,

Definitionof & 2 andR;:
Indeed let t, be so that fort > t,

(QA7) 2 (@2 ("Q t 1) <R,Tg(t)> & 2

dT17

Then — (47) %2 & 2 RyTy7 Which leads to

. 2 . 2
T (‘*’”)R—“ 1 e + T2e R |fwetaket suchthate R = % it results
2

()2 6 2
T17 %

same property holds for Tig if lime (CBF2  "Qy t,t = (C) 2

We now state a more precise theorem about the behaviors at infinity of the solutions

. 3 5 3
(g (&~ 1 and to choose

It is now sufficient to take(bzo)(s) 6200

( Py )® and ( Q, )@ large to have

(020)®+d)
vy 3 o o T
(©g (O) 3 + (0y0)3+"@ Q 2

0. )(3)
(0 20) 3 (0z0)

(520)®)+ ¥y

=\ 3 o T o -
B M (020)®+"8 Q 0 +(050)®  (02)®

(0 20) 3

In order that the operator ' 3 transforms the space of sextuples of functions "@, "% into itself

, 0= IogR3 By taking now R, sufficiently small one sees that T;; is unbounded. The
2
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The operator* (3 is a contraction with respect to the metric
Q QY ', QY2 =

ionfaci QG 0 P o Q0o ainE o Y o QP79
QoA+ oNay

Indeed if we denote
Definition of 'Q3,"¥3: Q3 , Y3 = 'e Q3 ., Ys
It results
Qé Q)Z . Oo(@o) 3 (21 Qi 0 (020) 31 5 '} Y 20) 31 5 A 0 +
NOO{(@%) 3 9(1) QS 0 (020 %120 (020 i 20 4
@B Wi Q) Q0w gt i
QS |((A2%393 ¥11 i 20 (03%393 )(12 oo | Q (020) * 1 20 ¢f020) T 20 30 PN
Where { 5o represents integrand that is integrated over the interval 0,t
From the hypotheses it follows

ol "2 Qb0 30
ﬁ (Gpo) 3 + (&) 2 +(020) 3 +(00)3( Q)2 Q Qs 1, 1; Qs 2, 2

And analogous inequalities for "L 'Q"Y, Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (¢55F ° and (635F 2 depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( Oy,) 3 1020 * 0 G Q( 0,,) 3 B020) 0
respectively of ...

If instead of proving the existence of the solution on 4., we have to prove it only on a compact then it
suffices to consider that (¢Ef® and (GEF® ,"Cx 20,21,22 depend only on T,; and respectively on
"Q; (6E'Qe€0£E 0) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any 0 where '@ 0 = 0GEQ"™% 0 = 0

From 19 to 24 it results

‘6 GO OB (BB Vi i G 0

%o  "BQ @0 >0 fort> 0

Definition of (050) ® |, (020) % ,Q (020)° -

Remark 3: if "Qy is bounded, the same property have also "Q; (¢ Q"Q, . indeed if
Qo < (D) 2 it follows% (020)°% | (68) *"Q and by integrating
Q (D20) % =G+ 2(@) % (D)% /(65)°

In the same way , one can obtain
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Qr (D20) 2 =G+ 2(dx) % (D20)® ,/(c3)°
If "Q; €1 "Q, is bounded, the same property follows for "Q, , "Q, and "Q, , "Q; respectively.

Remark 4: If "Qy "Q2bounded, from below, the same property holds for "Q, ¢£'Q"Q, . The proof is
analogous with the preceding one. An analogous property is true if "Q, is bounded from below.

Remark 5: If T, is bounded from below and limg  ((GBF°  "Q; 6,0 = (G55) 3 then™; © Hb.
Definitionof & 2 and-3:

Indeed let 0; be so that for 6 > &;

(1) % (B® QG 0,0 <-3,%(Q> a 3

Then % (1) 2 a@ 2 -3"¥; which leads to

v (1) 3 & 3
¥l 1-—

3

1 Q3% +"Y'Q 3% Ifwetaket suchthat'Q 30 = % it results

v 3 . 3
Y, (“’“)f“ , 0= ch% By taking now - sufficiently small one sees that T,; is unbounded.

The same property holds for "¥, if limg (65%F° Q3 0,0 = (653) 3

We now state a more precise theorem about the behaviors at infinity of the solutions

w4 T\ 4
It is now sufficient to take,(.wL &< 1 and to choose
(024)® " (024)®

(Py )® and ( Qyy )™ large to have

(024) D+,
- >
2 (0p4)@

5o 4 5 5 o .
©d (D) 4 + (0p4)@+ @ Q

(0 24) 4

(524) P+,

'«‘4 ~ s ~ ~
@ (D)@ + g Q B (0)® (D)@

(0 24) 4

In order that the operator ' (4 transforms the space of sextuples of functions "@, “¥satisfying IN to itself

The operator ' (4 js a contraction with respect to the metric

Q Qg t, Y, Qg 2, 2 =

fonfdcgr o " o Q@20 admyg o Y o 0wty
0 oNA 4+ oNA 4+

Indeed if we denote

Definition of "Q; , "Y; : Q.Y = ! @(Q , Y )

It results

Q@ @)t GE QR @ g a4
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WO“’{(@) 4 Qi Qi Q(024) * 120 (D24) 124 4
(GEF* "% iae Qi G QO ada ia
o . - , e - , B " 4 ’ B " 4 ’ B
QL IGET* Yo io0  (GEF® Yo io0 | QO Tedd020 T2ayq
Where i ,, represents integrand that is integrated over the interval O,t

From the hypotheses it follows

@t g 2wt
1

(020) 2 (Cpa) * + (68) 4 + (02)* + (02)*(Q)* Q "Q 1, "% 15 @ 2,7 2

And analogous inequalities for "QE Q™Y Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (¢£F 4 and (635F* depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( O,4) #8028 “ 0 (E'Q( D) 4 ‘Gl 24) 0
respectively of ;..

If instead of proving the existence of the solution on 4., we have to prove it only on a compact then it
suffices to consider that (6B and (&P ,"Cx 24,2526 depend only on T,; and respectively on
"Q; (6'Qe€0ée 0) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any & where '@, 0 = 0 GEQ"% 0 = 0

From 19 to 24 it results

Q0 @ OB (B Y5 ios doa G 0

%o 8Q @G0 >0 fort> 0

Definition of (04) * |, (D24) * ,CEQ (024) * 5

Remark 3: if "Q, is bounded, the same property have also "Qg (€' Q Qg . indeed if

Qs < (0,4) # itfollows % (024)* | (688) * "Qs and by integrating

Qs (D20)* ="+ 2(Cs) * (D2a)* /(C5) 7

In the same way , one can obtain

Qs (D24)* ;= "o+ 2(ce) * (D20) * /() *

If 'Qs €1 "Qg is bounded, the same property follows for "Q, , "Qg and "Q, , "Qs respectively.

Remark 4: If "Q, "QRbounded, from below, the same property holds for "Qs GEQ'Qg . The proof is
analogous with the preceding one. An analogous property is true if "Qs is bounded from below.

Remark 5: If T, is bounded from below and lim s ((6&SF* ("Q; 0,0) = (G3%) * then “%s O Hb.

Definitionof & * and-,:
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Indeed let ¢, be so that for 6 > ¢,
(@s)* (B ("Q 0,9 <-4,%(> a *

Then =2 (6ys) * & *  -4"¥swhich leads to

pe) 4 G 4 . . .
g, 1 Q4% + "Y'Q 40 |fwetake t suchthat Q 4°= % it results
4
o (Gps) 4 & 4 a2 . . .
Ys —— ., 0= & Q= By taking now -, sufficiently small one sees that T,5 is unbounded.
-4

The same property holds for "¥g if limg (652 F* "Q; 0,0 = (G57) *

We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS
inequalities hold also for "Qq,"Qg, " ¥s, ¥, %o

o 5 7 5
(g (@0°__ 1 and to choose

It is now sufficient to take (52000 "(0,0)0

(Pg)® and ( Qg )® large to have
(52)0)

(G 5 5 5 o . e 5
G (Bg) 5+ (0g)P g B R

(3290,

7\ 5 . - - o
@37 (D)5 + "8 Q B4 (0,6)®  (05)®

(028) 5

In order that the operator ' (5 transforms the space of sextuples of functions "@, ", into itself

The operator * (® is a contraction with respect to the metric

Q @ttt Qe P =

iér‘]{@((ﬁb"@; 0 le 0 ‘Q(Dza)sfl,ddlb"%l o "'\62 00 (023)50}
0 oA 4 oA 4

Indeed if we denote

Definitionof "Q; , "% : Q@ , "% ='©® Q , %

It results

o1 a2 0, « a1 a2 0 5 o~ D 5 ;

o 0 wo((*%) 5 Qs Q5 Q (U28) > i 28 JU28) 1 28 (Y g +
)VO"’{(@%) 5 Qé 9523 ' (028) ° i 287 (028) ° i 28 4

(CHF® Yo .izs Q5 Q5 QIO It iz
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o2 o, N o, o2 1 . 0 5 v 5 -
Qs 1(GBT > Yo i 28 (CBF° Yo .l 5 | Q0271 2e (JU28) " 128} g
Where i ,g represents integrand that is integrated over the interval 0,t

From the hypotheses it follows

Q t g 2wt
5 (o) ® + (CB) % + (028) ° + (D) ®(Qe)® @ '@ 1,7 15 Gy 2L Y 2

(028) 5

And analogous inequalities for "Q & 'Q"Y, Taking into account the hypothesis (35,35,36) the result follows

Remark 1: The fact that we supposed (¢5F ° and (635F° depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( Oug) 5 C1028) ° 0 GE'Q( 0 ,5) 5 S028) ° 0
respectively of a1, .

If instead of proving the existence of the solution on s ,, we have to prove it only on a compact then it
suffices to consider that (¢ and (GBF® ,"Cx 28,29,30 depend only on T,y and respectively on
"Q; (6E'Qe€0€€ 0) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any 0 where '@, 0 = 0CEQ" %0 =0

From GLOBAL EQUATIONS it results

‘26 @O OB (B Yoios ios Qoo 0

%o 8Q @G3°0 >0 fort> 0

Definition of (048) ° |, (D28) ° ,GEQ (D) ° -

Remark 3: if "Qg is bounded, the same property have also "Qq GE'Q"Q, . indeed if

"Qg < (D ,g) % it follows% (028) ° | (688) °"Q and by integrating

Qo (U28)° ,= "o+ 2(ch) ® (D) /(650)°

In the same way , one can obtain

Qo (D28)° ;= "Go+ 2(cho) ° (D28) ° /(CF)°

If 'Qq €I "Q, is bounded, the same property follows for "Qg , "Q, and "Qg , "Qq respectively.

Remark 4: If "Qg "Qbounded, from below, the same property holds for "Qq (2 Q"'Qy. The proof is
analogous with the preceding one. An analogous property is true if "Qg is bounded from below.
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Remark 5: If T,g is bounded from below and lim g w((GEF® ( "Q; 0,0) = (¢53) ° then ¥y © Ho
Definitionof & ° and-s:

Indeed let &; be so that for 6 > &

(Ghe)® (GB®("Q 0,0 <-5"% (9> & 3
Then % (Gyg) ® & °  -5"¥yWhich leads to
5

v (dpo) ® @
Yo 9—

1 Q5% + "YQ 5% If wetake t such that Q “5° = % it results
5

v (Gpg) ® & 3
\fg op9) %

2
The same property holds for "¥, if limg W (GRF°> "Q; 0,0 = (63) °
We now state a more precise theorem about the behaviors at infinity of the solutions

Analogous inequalities hold also for "Qsz ,"Q4, %, %3, ¥4

(g ® (N
(032)6) "(032)6)

It is now sufficient to take < 1 and to choose

(P, )® and ( Qs, )(® large to have

(832)®)+d),
(6o © > > Q) Ee!
W(Usz)a"' (032)® + ¢ Q 2

(052)(®
(532)(0)+ ¥

T\ 6 . - - o
@3 (55,) @+ Q B4 (05)®  (03)©®

(032) ©

In order that the operator ' (8) transforms the space of sextuples of functions "@, ", into itself

The operator * (® is a contraction with respect to the metric

Q QY Y, QP 2 =

onaa el o G 6o ntW a6 f 0 00wy
Indeed if we denote

Definitionof "Qs , "% : "Qs, % =' ©® "Q , ¥

It results

(g; Qf wob(d%z) 6 Q% Q§ Q (032) 6i g ' U32) 6i g O o5 +

WWwWWw.ijsrp.org
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WO“’{(@) 6 Q% Q§ Q (032) 5i g 'Q (032) Sigp 4

BT %im QG G ROD e ey

o2 e, Ny o, w2 7 B 0 6 ¢ e 6 ¢ .

Q5 1(GHF°® ¥ i 3 (CBFS Y igp | QU T dbe) ieyg ,,
Where i 3, represents integrand that is integrated over the interval 0,t

From the hypotheses it follows

Qs 1 Qs 2 0wt
- (Cy) & + (68) & + (032) 0 +(03) (R Q Q@ ', "% *; Q@ 2, 2

(032) 8

And analogous inequalities for "QE Q™Y Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (¢ ® and (¢55F ¢ depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( Os,) & 1032 ® 0 G2 Q( 04,) & B032) ° 0
respectively of ;..

If instead of proving the existence of the solution on 4., we have to prove it only on a compact then it
suffices to consider that (6B and (&P ,"Cx 32,33,34 depend only on Ts; and respectively on
Qs (6E'Qe€0€E 0) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any & where '@, 0 = 0 GEQ"% 0 = 0

From 69 to 32 it results

‘@0 A0 OB (B Wsim im G 0

%o "BQ @i°0 >0 fort> 0

Definitionof (03,) ® |, (U32)® ,Q (03)° 5

Remark 3: if "Q, is bounded, the same property have also "Q; (¢ Q"Q, . indeed if

Q< (0g) 8 it follows% (032)® | (G8) ° Qs and by integrating

Qs (Dap)® ,="a+2(dxs) ® (Da2) ® /(CR)°

In the same way , one can obtain

Qs (Da2)® = "Gh+2(cu) ° (D32) ® /() °

If 'Q; €1 "Q, is bounded, the same property follows for "Q, , "Q, and "Q, , "Q3 respectively.

Remark 4: If "Q, "Rbounded, from below, the same property holds for "Q; CGEQ'Q,. The proof is
analogous with the preceding one. An analogous property is true if "Qs is bounded from below.

Remark 5: If Ty, is bounded from below and lim g i ((G&BF° ("Qs 0,0) = (633) © then"Y; © Ho.

Definitionof & © and-g:
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Indeed let & be so that for 0 > &

(Ga3) & (GB® Qs 0,0 <-6,"% (9> a ©

Then S22 (633) ® & ©  -6"¥; which leads to

v, 6 < 6 . . .
X3 ) " @ " 7 60 4 Q6% If we take t such that Q “6° = % it results
-6

v (dp3) ® & ©
\£3 %

The same property holds for "¥, if limegp (GEF® Qs 0,00,0 = (&) ©

, 0= &0 By taking now - sufficiently small one sees that Ts5 is unbounded.
“6

We now state a more precise theorem about the behaviors at infinity of the solutions

Behavior of the solutions
If we denote and define
Definitionof (,1) * ,(.2) * .(T) ' .(T2) ! :
@ w1) ' G2) P (T) T ()t four constants satisfying
(b2) * (&%) 1 + (&) ' (CBF' a0 +(CEF' a0 ()7
(f2) * (6) ' +(cf) ' (cBF* Qo (¢fFt Qo (t)*'
Definitionof ("1) 1,("2) 2,(01) 1,(6) %, 1,01 :

(b) By ")* >0,(,)* < 0and respectively (6;) * > 0,(6,) * < 0the roots of the equations
(@a)® "t PG (Ga) ! =0and (@)t 61 T+ (f)L6Y (At =0

Definitionof ("D ,,C 1,01 1,(0,) ! :

By(CD?®!>0,CF ' < 0and respectively (6;) * > 0,(6,) ! < Othe roots of the equations
o, , 2 , v ¥ , 2 , A
()t "t TG ()t =0and (@)t 61 TH(H) et (a3t =0

Definition of (61) X ,(62) 1 ,("1)Y,("2) t,(o) ! -
(c) Ifwedefine (ay)* ,(62) " (") '.("2) Y by
() =Co) ()t =), W)t < ()
()t =(C) P (6Dt =D @) <o)t <(D?,

and (")t :%

()t =C)t ()t =Ct, @D <(o)t
and analogously
(‘21 =(0) . (F) "t =(6) T, O T < (61)

(D =(0) ()t =(6) WG T < (6g) F < (0,) !,

WWW.ijsrp.org
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and|(6y) * = %

("2) 1 =(01) " (1)t = (60) FW61) P < (O) * where (6;) *,(61)
are defined respectively

Then the solution satisfies the inequalities

pe NolS URNGI ST e W e No R U

where (11 * is defined

1 o ~(Y) L (p 1 4 o . 1 o ~"Y) 16
@, )~ () * 0 "Q,(¢) Q,a) "o

(@)1 (@21

) @ ot Gt e e ts

(oo oot - @Y o Qh7e 4+ ga ¥ o "gs(9)
G
Gt ot @ @Y 0 QT g () 7Y

@ '~ 1e v S @ '~ (" 1.0 1 .
[BaD T @ gt

T T N i W, TP
o BAW e Y9 rrhat i e

(Gxs) * - N P - T N LT T I S
¢ 1)1 ('Yi)l \f():j:%) 1 QYl) o Q(U)_I_S) o 4 YSQ(Q)_Ls) 0 YS(O)

(rs) * Fs QM it e () te 4o () to
(21 () 1+313) L+(n) 1 Qln 13 Q (2 + Y5Q )

Definition of ("Y) 1 ,("Y) 1 ,(Y) 1,(Va) ! -
Where ("Y) * = (@) Y (62) b (6F3)*
(")t =(s) b (Ms)
(M)t =(qs) ()t ()t
(L)' =(a®)t  (is)?
Behavior of the solutions
If we denote and define
Definition of (K1) 2 ,(A2) 2 ,(z4) 2 .(Z2) 2
(d) A1) ? ,(K2) ? ,(z) ? ,(z2) ® four constants satisfying
(K2) 2 (GF8) 2 + (62) ?  (GIT® Ti7,0 + (GBF? Ty7,0 (A1) 2
(Z2) 2 (6f3) 2 + (6B) ?  (WfBF? Q.0 (WfEF? Qo .0 (z2) ?
Definition of ('1) 2 ,(t) 2,(01) 2,(6,) 2 :
By ('1)2 > 0,(s) 2 < 0and respectively (0;) 2 > 0,(6,) 2 < O the roots

(e) of the equations (Gy;) 2 ' 2 24 (£1)?" 2 ()2 =0

WWwWWw.ijsrp.org



International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012
ISSN 2250-3153

and (Q) 2 6% "+ (2)%062 (d) 2 = Oand
Definitionof (") 2,,(§) 2,(01) 2,(0,) 2 :
By('D2 > 0,(#) 2 < 0and respectively (6;) 2 > 0,(9,) 2 < Othe
roots of the equations (63,) 2 ' 2 “+ (K) 2’ 2 (Gye) 2 = 0
and (Q) 2 62 "+ (2)2062 (Qg)2 =0
Definition of (&1) 2 ,(&5) 2 (‘1) 2,("5) 2 :-
(f) 1fwe define (61) 2 (a2) 2 ,('1)2.('2) 2 by
(62)2=Co) 2, (a2 =002, WCo)? <()?
(@22 =C%.60)2=(D2.MD?><C)?<(D?,

0
Gie

and [("o) 2 =&

(62)2=(1)2(a)?2=(0)? MD?<(0)?
and analogously
("2) % =(60) 2.("1) ? = (061) 2, I(Oo) 2 < (6y) 72

(‘2) %2 =(61)2,("1) 2 = (0p) 2 1.(01) 2 < (6g) 2 < (06) 2,

sy 2 _ Ti
and|(0g) < = o

("2)2=(01)2,('1) 2 = (60) 2, W(01) 2 < (o) 2
Then the solution satisfies the inequalities
Qe ? (102 t Qe o DeelS) ¢

(N9 2 is defined

1 2 5 2 o N 2
o Ge T 07t g o G
((‘).I.S) 2 Gge S 2 - 2 t 2 t 2 t
(EnT e ooz mz e M e 70 + Gge
. 0 ; )
() * Gl [eBD?t g ()21 4+ Pge (@) 21y

(G2)2 (S1) 2 (6f9) 2

ToeR) 20 "y (g ToeR)?+(i1e)? o

1 2 4 . \ 1 2 . P
7 T Y9 i Tiee (T 0
= 120 ) i ‘ ] ‘
o) - Tio eRZ0 o (@) %0 4 T0e (@) 20 "y (¢

(1?2 (R)2 (cX3) 2

(éng) 2 T (Ry) 2 +(i16) 2 © (Rp) 2 6 0. (R 20
(22 02w 2 ® 2 S e (RD 70 + Tpe (2

Definition of (S}) 2 ,(S,) 2 ,(Ry) 2 ,(Ry) ? :-

Gis(0)
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Where (S)) 2 = () * (42) 2 (6F6) 2
($)? = () > (ng) 2
(M) 2 =(Qe) 2 ()" (&R)?
(Rp) 2 = () > (ig)

Behavior of the solutions

If we denote and define
Definition of (1) 3 ,(.2) 3 (1) 2 (1) 3 :
@ w1) 2 (w2) ® (1) ® (1) ® four constants satisfying
(v2)® (6%) ° + (a31) °  (GHF° "Y,0 +(EF° "%,0 (1) ®
(t2)° (6) 3+ (a) 3 (BF° Q0  (c5F® Q.0 (t) 3
Definition of ('1) *,(’2) 3,(61) ®,(0,) 3 :

(b) By (1) 2% >0,(,) 2 < 0and respectively (0;) 2 > 0,(0,) 2 < 0 the roots of the equations
. a2 , .
(Q&l) 3 3 + (nl) 3 3 (Q&O) 3 = 0

and (Gyr) 3 63 2+ (1) 363 (Gy)? = Oand
By('[)3 >0, 3 < 0and respectively (0,)3 > 0,(6,) 3 < 0the
roots of the equations (¢y;) 3 ' 3 “+ (L) 3" 3 (Gy)? =0
and (G) ® 03 "+ (1) %03 () ® =0
Definition of (&1) 3 ,(a5) 3 (‘1) 3.("2) 2 -
(c) Ifwedefine (61) % (62)° .('1)%.('2)% by
(@)% =Co)3. (@)% =C0)° Mo ®<(1?®
(622 =303 =(D2 MD3<()?<(D3,

and () ° = 2

(G2)% =(q)3.(ay) 3 =(’o)3,§I(’D3 <(o)?

and analogously

((2)3 =(00)%.,("1) % =(6y) 2, I(Oo) < (o)

((2)3=(01)3,("1) 2% =(6y)° ,l(ol) 3 < (6g) 2 <(01)3, and|(6g) 3 = %

(‘202 =(01)3.("1) 3 = (6g) 2, 555.((')1) 3 < (0p) 3

Then the solution satisfies the inequalities
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@O0 (0 0 gy g0 o

(N 2 is defined

1 o, . - 3 5 3 4 o . 1 o, o~ 3 4
e L R N R Ne R

((02 ) 3 QJ . - 3 | 3 . . - 3. - . B 35 -, ‘
(G705 oy tp @Y 70 078 +7g,alH "¢ "gy(g

@ )3(%\2 ZC%Z)EQ) gV Q@R+ g, H)°0)
2 2

W io vy (g QM) i) 0

SREW IO () 0 i ? o

()3 (23

(Gpp) ¥~ VY B e (FBY3 g o (GBY3 G e, s
(D3 ('Yj)3f()%€%)3 g te QUEERITe + QR Te Y, (g

((122)3"\?0 . ('Y)3+('| )3 o ('Y)S(‘) ) ('Y)30
27 M mims 2 Q270 + P (Ve

Definition of ("Y) 2,("%) 3,(Y) ®,(¥p) 3 -
Where ("Y) ® = (6%) ® (42) °  (¢%) °
(") % = (6x) ® (M) °
(V)2 = ()3 (2)° (&)
(V2) 2 = () (i) ?®

Behavior of the solutions
If we denote and define

Definition of (,1) 4 ,(,2) * (1) % ,(f2) * :
@ (1) *G2)* (T)* () *  four constants satisfying
(2)* (68)* + (@) (EEF* ¥.0 + (B&EF* %0 ()
() * (@) +(@®)* (&F* Q.0 (&F* @ 0  (f)*
Definition of (" 1) *,("2) %,(01) % ,(62) 4, 4,04 :

() By ("1)* >0,(,)* < 0and respectively (6;) * > 0,(6,) 4 < 0the roots of the equations

Gs) % "4 2+ ()4 Y (G)t =0
and (Gys) 4 64 4 (t) 4064 ((a)?* = Oand

Definitionof ('D *,,C D 4.,(61) *,(0,) 4 :

By(D* >0,Cp* <0and respectively (6,) 4 > 0,(6;) * < Othe
roots of the equations (¢ys) 4 * # g (b2) 47 % ()% =0
and (Gs) * 6% 4 (1) 04 (@)t =0

WWwWWw.ijsrp.org
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Definition of (&1) 4 ,(a2) * (") *.("2) 4. () * -
(f) Ifwedefine (61) 4 (a2 * (") *. ()% by
(@)% =Co)* (a)* =00 WCo)*<(1*
624 =C0*@)*=CD* Mo <C*<(D*,

and |('o) ¢ = 3¢

(62)* =CD*@)*=Co)*, BCH* <(o)*
and analogously
(‘2)* =(60) *.("1)* = (61) %, I(Oo) 4 < (o) !

(2% =0)%, ()% =(6)* M6 * < (60)* < (61) %,
and|(6g) 4 = %

(‘2)* =(00)*,("1)* = (60) *, J(61) * < (60) * where (61) *,(64) *
are defined by 59 and 64 respectively

Then the solution satisfies the inequalities
“@4-9("\1)4 (h2a)* 6 @, ¢ -‘@4@"\1)40

where (11 # is defined

1 o, . o 4 b 4 - o, \ 1 o, o~ 4 -
_ g0 (et o g o Qg0 * o

(61)4 (G2)4
(Cpg) 4 Sy ~(Y) A (e A 5 m (g 4 ¢ N (8 40 e s
QM4 () * 6 (V4o 4 @Y *o &
@G04 (N4 ()4 ()4 D Qs
(6%6) * 'y g4 Q@R 4o 4 @ @) 4o
G204 (N4 ()4 e

gam ety o gt o

1 e ~V)40 o s L oo a4
¢ A AC) W&Q(Yﬂ +(i2a) 4 0

(Gpe) * AY) 4o o (GR)4¢ G o~ (CBYA Y e \
g 1)4 (,Yi)4 \%1:%)4 le) (o] Q((*g%) o 4 \fﬁQ((@e) [o] ¥6(0)

(e) * fy QMM 4z 6 ()4 4 g (V) do
DT M im s 2 Q270 4 g (V2

Definition of ("Y) *,("%) 4 ,(Y) * ,('Y) * :-
Where ("Y) ¢ = () * (42) *  (653) *
(%) *
(V) * = (@) * ()" (a5)*
(Y2) * = (&) " (iz) *

(%) *  (M2e) *
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Behavior of the solutions
If we denote and define

Definition of (1) ° ,(.2) ° (1) ° .(12) ® :

@ (1) ° ,(2) ° (T1) ® (1) > four constants satisfying

(w2) ® (6%) ° + (&%) °  (GHT° "¥o.0 + (GKF° "Yo.0 (w1) ®
(T2) ° (GR) ° + (c$3) °  (GHBF® Q.0 (&F° "Q .0 (1) °

Definition of ("1) °,(" ) °,(01) °,(6,) %, °,06° :

(h) By (1) % >0,(,) % < 0and respectively (6;) ° > 0,(6,) ® < 0the roots of the equations

. L5 2 , .
(('\kg) ° ° + (é!l) ° ° (%8) ° = O
and (Gyg) ° 6° "+ (1) %6° (Gyg)® = Oand
Definitionof ("D °,,(C§) °.,(61) °,(0,) ° :
By('D?® >0,Cp°% < 0and respectively (6,)° > 0,(0,)° < 0the
roots of the equations (Cg) °> ' ° " (b2) 2" % (Gyg)® =0

and (Gpo) 5 65 “+ (1) 505 () ® =0
Definition of (1) ° ,(a,)° (‘1) °%,(2)°%,C0)° -

(i) Ifwedefine (&1)° ,(62)° (‘1) °.("2) > by
(G2)° =(0)°.(67)° = ('1)5,555.('0)5 <(1)°®
(@)% =C)%.6)°=CD° . WC)®°<Co)®<(D°®,

and (') % = 2

(a)° =C)°%.(6)°=Co)® WCD® <(0)°®
and analogously
("2)° =(00) °.("1)® = (01) °, J(60) ° < (6,)°

((2)° =(61)°,("1)° = (6y)® .(01) > < (0g) ® < (0)°,

and|(6g) ° = ﬁ

("2)° =(061)°,("1)° = (6) ® ,I(Ol) > < (6¢) ° where (6) °,(6,) °
are defined respectively

Then the solution satisfies the inequalities
FY) > (n28)° 0 Qe(0) GV 54
where (g ° is defined

L @00 ° (8 ° 0 ngy(g) L@, °e

(65)5 (62)5

((03 ) 5 Q) . “ 5 | 5 . . “ 5 . - . B 5 ¢ w, \
T s s @Y T gt 1 gioMTe gy o
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(¢0) ® "y dY) 50 056 4 90 @) 5o
@25 (N5 (B)° a QIO+ "G (50

- o~ 5 ¢ - N - . . 5 i 5 -
|)QSQY1) ° "Y(0) QM) *(ze)” 0

1 w®o~NYa) 58 wn, s L ooy 5
(N AW (9 (‘2% Y Q(M) ” +(i2s) ° 0

((:B)S e 5 . . T\ 5 ) - = 5 . “ .
Bk e @) s g @® e (g

(d)SO)SU\EB . ('Y)5+('| )5 o ('Y)Sc‘) ) ('Y)S(‘)
(25 o mims 2 Q270 4+ g (V2

Definition of ("Y) 5,("%) ®,(Yy) (V) ® -
Where (") ° = (Cg) ° (62) °  (d5) °
(") ° = (cx) °  (M3o) °
(V) = (&) °("2)° (c83)°
(V2) ® = (68)°  (is0) °

Behavior of the solutions
If we denote and define

Definition of (,,1) & ,(,2) ® (1) ® (1) © :
() (1) ®.(2)°® (1) ® (1) © four constants satisfying
(v2) ® (6%) ° + (CB)°  (CBF°® "¥%a,0 + (CFF° "¥%5,0 (1) ®
() ® (&) ° +(B)°® (FBF® Q.0 (BF® Q.0 (t)°
Definition of (*1) ©,("5) ©,(01) ®,(6,) ¢, 6,66 :

(k) By ("1)® >0,(,) % < 0and respectively (6;) ® > 0,(6,) ® < 0the roots of the equations
. , 2 , .
(Gy3) ® 7 © "'(51)6 6 (&) ® =0
and (Q3)® 66 "+ (1) ®06° (Q)° =0and

Definitionof ("D ®,,C§) ,(6,) ©,(0,) ¢ :
By("D® >0,CEF % < 0and respectively (6,) ® > 0,(6,)® < Othe
roots of the equations (¢y3) & * © 2+ (b2) 8 % ()% =0
and (G) © 6° "+ (1) °06° (@) =0
Definition of (61) ® ,(62) ° ,("1) ®,("2) ®,(0o) ® :-
() Ifwedefine (&1) ® ,(62)° (1) ®.("2)® by
(G2)% =(Co)®.(a)® =(p°, .(o) 6 <(y)®

(@2)°=C)®6)°=CP° MD®<C)® <D,

and () ® = 2

(a) ¢ =C)%. ()¢ =Co)® MCD®<(o"
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and analogously
(‘2) % = (60) ®.("1) ® = (61) %, W(%0) ® < (0)°

((2)° =(0)°,("1)® =(6y)° ,l(ol) < (60) ° < (01)°,
and|(6,) © = %

("2)® =(61)%.,("1) % =(0)° ,I(Ol) ® < (00) ® where(6,) ®,(0,) ®
are defined respectively

Then the solution satisfies the inequalities
o (" 6 > 6 4 o, \ o o~ 6 -
@ZQ(\D (h32) ° o Q,(0) @ZQ Y)° o

where (fyd © is defined
ﬁ"@z’()("!) 6 (N32) 6 o] "Qa((‘)) 1 "(QZEQ"\.() 6 )

(62) 6
(634) & 'Sy BN 15) € 6 (¥ %0 49 Eo A g
Q) ° (e2)” o () o 4 Q (M) o o)
G108 (N6 ()& ()6 e Qs
(¢a) © "Gy g Q@) o 4 Q@ o

(62)8 ()& (iFy°

O ~" 6 o \ o\ ' (* 6 3 6 &
|§Q2QY1) ° (9 "HQMM) T rla2) o

Tk A AR AC R A DR

(168 (‘2

(Cpa) © " Y1) 60 ()60 L D (GB) 66 v e
R ('Yi)ﬁg()zééi)e dwte Q@0 + Q@0 "y, (g

(Gna) © ¥y 0 8 +(i32) ¢ 0 ()80 4 P (¥) 8o
("2) © (Y1) © +(iz2) O +(2) © o % Qe + Qe

Definition of ("Y) ©,("%) & (V) ©,(Yp) © -
Where (Y) © = (6) ® (a5) ©  (6g) °
(") ® = () ®  (Ma) ®
(M) =(@)°(2)° (c)°
(V2) © = (&) ®  (is) ®

Proof : From GLOBAL EQUATIONS we obtain

2o (@)t (6B @B+ GEPT Vo GEFT W0l b (gt
Definition of * * :- R <
Qq
It follows
@)1 Tt (@t I (@)t et (Gt
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From which one obtains

Definitionof " D) ,(¢) * :-

@ Foro<|Co)t =El< ()t <(D*

. 1 1 1 4
D1y Wlr@lcale ™ (- Co™® )t =Wt (ol
1+(8) 1 ©14 el ol oo ' (o)t (¢!
itfollows ("o) > "1 (0 (1)*?
In the same manner , we get
o 1 1 ) 1 4
D1y (wlrEflepte ™ (W= 27 ¢ @) = (ol
1+@Flo @4 Pt 2t e ' (o) (2?1

Fromwhichwe deduce o)t ' *(® (D?
b) FOo< ()t <(? = %< ('D ! we find like in the previous case,
4

1y 1p,lg 14 Lept el oo

: 1)
()* :

e85 1o @4t (0l 2t oo

Cplt+olle,tag 4 Lent el oo

(Dt

1+ 6flg @a bl cal oo

© Ifo<(Cy)Y (DY |Cot =% , We obtain

s L el ool o6
(pt+sfleyylag “4 (1) (2~ o

Co)?

()t rto

1w eflg @4l el o
And so with the notation of the first part of condition (c) , we have

Definitionof * 1 & :-

, , . , ; "Gz o0
(Gp)* Yo (ag)t, 1o=2—

In a completely analogous way, we obtain

Definitionof 61 o :-

. c1 a g 1 . _ Y30
(‘21 6t o0 (‘pt, ot o=~

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If (GRFL = (GBFL.6% (L)t = (,2) ! andinthiscase ("4)* = ([ ! ifinaddition (") ! =
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()Y then’ t 6 =()?! andasaconsequence 'Qs3(0) = (" o) * "Q,(0) this also defines (' o) * for the
special case

Analogously if (GEF* = (CBFL 6% (1) * = (1) * and then

(61) * = (6) tifinaddition (6g) * = (01) 1 then "Y5(0) = (0g) * “Y4(0) This is an important
consequence of the relation between (' ;) * and (" [) 1, and definition of (6¢) * .

we obtain

er

——=(Qe)? (&) ()2 + (MhF> Tt (CEF? Tt’ 2 () % 2

Definition of* 2 :- v 2 = S8
C17
It follows
wy2 12 2 21 2 o N2 d 2 N2 12 2 21 2 ey 2
(Q7) + (K2) (%6) - (Q7) + (K1) (%36)
From which one obtains
Definitionof " [) 2 ,(" o) 2 -
, < , ,
(d) For0< (") ? :G—§3<(1)2 <(D?
&y 2 o 2 s 2
c2gy (WIr@fepio W (0= (oo Q2 =0 (0?
14029 @7 2 (D% (0?0 ’ ()2 (272
itfollows (o) 2 " 2(8) (1) 2

In the same manner , we get

o 2 2 , 2
Loy (WPHOCa’0 o7 T (07 (27 0 Q2= (0?
142 @7 2 (D2 (220 ' (0?2 (2?2
Fromwhichwe deduce ("¢) 2 * 2(9 (D?
0
(€ f0<(1)?<(? = g—éi% (' D 2 we find like in the previous case,

,. 2 2 B 2
(1)2+C2(,20 @7 (1)< (2)° o b2

(1)?

+c2g @72 (D2 (2% 0

" 2 2 B 2 .
(p2+Cc 20,20 @7 (1)< (2)° o

(D?

1+ c2g @72 (02 (22 0

M Ifo<()? (D?2 (’o)zzg—gj,weobtain

()2 2 (wircia’o by * (0? (2?0
1 (0]

(o) ?

wc2g @72 (D2 (220
And so with the notation of the first part of condition (c) , we have

Definitionof * 2 0 :-
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: 2 2 A . 2 y 2 » _ Qe 0
a (0] a , 0 = N
(62) (61) ol

In a completely analogous way, we obtain

Definitionof 62 o :-

. , . . , . _ Ye 0
(‘2)? 620 (‘1?2 020——";‘
70

Particular case :

If (G52F2 = (GBF 2,60 (K1) 2 = (K,) ? andinthiscase ('1) 2 = (" [) ? ifinaddition (o) 2 =
(1) 2 then ' 2 & = (') ? and as a consequence 'Qs(0) = (" o) 2 'Q;(0)

Analogously if (GEEF2 = (G2F2 6% (z1) 2 = (2») 2 and then

(61) 2 = (6,) ? ifinaddition (6g) 2 = (01) 2 then "Y5(0) = (0g) ? "Y-(0) This is an important
consequence of the relation between (" ;) 2 and (" [) 2

From GLOBAL EQUATIONS we obtain

.Q3

= = (@)% (68)° (68) %+ (6RF° 0 (GHF® 0T d (@) ®

Definition of ' 3 :- 3 =
Q1
It follows
. , 2 , v Q 3 . , 2 , .
(6)° "% "+ (2% % (Gw)® = (@) ° "% "+ ()% % (&)?

From which one obtains

@ Foro< (o)® =< ()3 <(D?

- 3 3 , 3 .
, 3(0) (1)3+)3( 30 “21 (1) o ° ('0)3 :(’1)3 (o)®
1453 921 2 (D% oo ’ (03 (2°
it follows (') 3 ' 3(9 (p)3

In the same manner , we get

o 3 ¢ 3 ¢ 3 ¢
(p3+@EF3 (30 1 " (W7 (270 @y = (0°
' ()% (23

29

1+y3q @1 2 (03 (23 0

Definitionof (" [) 3 :-
From whichwe deduce (") 2 ' 3(® (D3

(b) F0< ()3 <(Co?® = %< ('D 3 we find like in the previous case,
1
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o1 3 (3 (o) 3 g
30,30 w21 (1) (2 0

(,)3 (‘1)3+6
! 145 30 913 (D% (23 0

o 3 3 B 3 .
(1)3+06F3 (30 %t (1) C2)° o

(D3

146030 @1 3 (03 23 0

© Ifo<Cy?® (D* (o)’ :%-Weobtain
(% %0 ()3+6F3(,3q %1 % (2% 0
1

(o) ?®

1+ 6M30 “1 3 (3 23 0
And so with the notation of the first part of condition (c) , we have

Definitionof * 3 0 :-

, 3 y 3 . 3 y 3 A Qg 0
a [0} (of ) 0 = —
(@) (@) o &

In a completely analogous way, we obtain

Definitionof 63 o :-

. AP 3 . _ %o
((2)® 030 (3 |0% 0=+

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If(GBF 3 = (GBF2 .60 (,1) 2 = (,2) 2 andinthiscase (1) 3 = ("D 2 ifinaddition (") ® =
('1) 3 then’ 3 & = (') 2 andasaconsequence "Qq(0) = (' o) 2 "Q1(0)

Analogously if (GF°% = (G5F3 6% () 2 = (f,) 3 and then

(61) 3 = (6,) ®ifinaddition (6g) 3 = (01) 3 then "Yy(0) = (0p) 3 "Y1 (0) This is an important
consequence of the relation between (" ;)  and (' [) 8

: From GLOBAL EQUATIONS we obtain

q 4

== (@) * (6B)* (aB)* + (T "¥,0  (ABFY %00t () ?

Definition of * 4 :- .
Qs
It follows
v , 2 , . Q 4 v , 2 , .
@) * "% T+ (@)t T (@)t THGY Y (@)t

From which one obtains

Definitionof " [) % ,("¢) * :-

@ Foro<|Co)* =< (n* < (D"
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L4 . (D%+6 t(ptn @t (0T (0t 4 _ (D4 (0
© 4r g 4g @5 4 (DY 0t o 1Y T w0t
itfollows (o) 4 ' *(® (1)*
In the same manner , we get
VN4, sCA v W5 4 (DY (2% 0 T N4 4
v 4y (1) +0r(2)"Q41 S , (6{4:(’1)4(’0)4
4+ §F40q @25 * (D% (2% 0 (o) * (2)
From which we deduce ("¢) *  * 4(0 (D*

(€ FOo< ()4 <(g?= %< (’'D # we find like in the previous case,

G5

SN SN IR B
40,40 25 (1) (2) 0

(1 )4 ('1)4+6
! 15 40 @5 4 (DY (2% o

PN SN BN A
CpA+ofdcy)da 925 (1) (2) 0

cD*

1+ 6F4q 25 4 (D% (2% 0

® Ho<()* (D% |[(Co? :% , We obtain

. 4 4 4 5
(p4+ef4en4a a5 (1) (2) 0

(o)*

(0t rto

1+ 6040 25 % (D% 2% 0

And so with the notation of the first part of condition (c) , we have
Definitionof * 4 0 :-

L 4 v 4 . 4 v 4 & _ Q40
a [0} (o , 0O =—
(62) (61) o

In a completely analogous way, we obtain
Definitionof 64 o :-

, c 4 s ‘ 4 . _ Yo
(‘2% 6% 0o (1, 040—';—-
5 0

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If (GEF 4 = (GBF 4,60 (,1)* = (,2) % andinthiscase (";) 4 = ("D # ifinaddition (" ) 4 =
(1) *then’ 4 0 = (o) * andas aconsequence "Q,(0) = (" o) * "Qs(0) this also defines (' o) 4 for
the special case .

Analogously if (G55F* = (65F* ,6%% (1) * = (1,) * and then
(6,) * = (0,) #ifinaddition (0g) 4 = (0,) * then "¥,(0) = (0p) * "¥5(0) This is an important
consequence of the relation between (* ;) # and (' [) # , and definition of (6,) .

From GLOBAL EQUATIONS we obtain

DD () GBS (GBS (BT Y0 (BT %0 S (@) °

WWwWWw.ijsrp.org

49



International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012
ISSN 2250-3153

Definition of * 5 :- 5 = 98
Qg
It follows
- , 2 , . Q 5 . , 2 , .
(Gpe) ° " % "+ (,2) % % (&) ® 4 (Gpe) ° "% "+ (1) °7 % (Ghe) ®

From which one obtains

Definitionof (' [) °,('o) °® :-

@ Foro<|(o)® =2l<()®<(D?

. 5 5 o 5 4
’5(b) (1)5+@B)5(,50q @ ° (0> (o> o (5)5:(’1)5 (o) 3
5+(6) 5 Q ipg > (1% (0% o ' Co)® (28
it follows (") ® ' °(0 (1)°

In the same manner , we get

o 5 5 , 5 4
sy (WorBICan % (W= 27 ¢ 6F5 = (> (o>
54855 0 g 5 (1)5 (25 o ! (o)® (2)°
From which we deduce ("¢) > * 5(® (E)°

(hy F0< ()% <(Co® = %< (’'D 5 we find like in the previous case,
9

9 5 ((1)5 (9) 5 ¢
(1)%+8 50,50 99 (1) (20> o

(1)°

148 5 @ 5 (0% (25 0

. 5 5 B 5
(1) %+ 675 (50 ®29 (t1)° (20> o

(D°

14 6050 @9 % (1% (25 o

() 1F0< ()% (D® |Co)® = weobtain

9 5 ((1)5 (19) 5 ¢
() 5+ 8F5(¢,50q “9 (1) (20> o ¢ )5
1+ 8050 9 ° (D5 (25 o 0

() oo

And so with the notation of the first part of condition (c) , we have
Definitionof * % 0 :-

. 5 1 5 A . 5 v 5 » _ Qg0
a (0] a ) 0O =——
(62) (61) 2

In a completely analogous way, we obtain
Definitionof 6° 0 :-

. , \ . , . _ ¥g 0
(‘2)° 6° 0 (‘p°, 050—.;—.
9 O

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :
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If (CRTF° = (6RF°,60% (,1)° = (,,) ° andinthiscase (1) ° = ("D ® ifinaddition () ® =
('s)® then’ 5 0 = ('y) ® andas aconsequence "Qg(0) = (' o) ° "Qg(0) this also defines (' ) ° for

the special case .

Analogously if (¢GF° = (C5F° , 6% (1;) ° = (1,) ® and then

(61) ° = (6,) ® ifinaddition (6g) ® = (01) ° then "Y5(0) = (0p) ° “Yo(0) This is an important
consequence of the relation between (" ;) ® and (" [) ° , and definition of (0g) ° .

we obtain
@ (Gxp) © (&%) °  (6B)° + (CBF° %0 (CHBF° "Y3,0' °  (0y3)®' ®
Definition of* & :- 16 = R
Q3
It follows
v N6 1 6 2 61 6 “ N6 o v N6 16 2 61 6 o\ 6
(%3) + (112) (('Q’)Z) T ((*%3) + (nl) (%2)
From which one obtains
Definitionof "' [) ©,(’¢) © :-
() Foro<|(o)® :% <()®<(D°®
. 6 6 s 6
Loy (W@ fcpto %0 (0= (o™ o (8)6 = (0° (0)°
1+3) 61 @8 ° (D° (0 0o ’ ()8 (2)°
it follows (o) © ' 6() (4)°
In the same manner , we get
o 6 6 ) 6
ey (WOrETora o (> 27 ° (B8)6 = (W° (ot
1+@F60 @3 % (n° (28 0 ' ()& (2)°
From which we deduce (') ¢ * ®(09 (D®

K) If0< ()8 <(o) b = %< ('D © we find like in the previous case,
3

a3 6 ()6 (12)6 6
60,6 8 ° (D> (27 0

(1)6 ('1)6"'6
! 16 60 @36 (DS (26 o

“ 6 6 B 6
(1) 8+ 8F6(,60n 83 (1) (C2)° o

(D°

1+ 6T60 93 8 (D6 26 o

M Ho<()® (D¢ (ot =% , We obtain

() 6+6r6(,06n 98 ° (0° (280
1+ 6T60 938 (0 26 o

(o) ®

(e oo

And so with the notation of the first part of condition (c) , we have
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Definitionof ' ¢ o :-

I 6 ,6 B ’ 6 ,6 1 _K‘O\,Zc‘)
a 0] a ) 0O =——
(62) (62) o

In a completely analogous way, we obtain
Definitionof 66 o :-

‘ 6 L6 N . 6 L6 _ ™20
(0] (¢} , | O 0 =_-=
(2) () i

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If (CBF6 = (GBF° .60 (,1)® = (,2) ¢ andinthiscase (1) & = (') ® ifinaddition (") & =
(1) € then’ © o = (') ® andasaconsequence "Q,(0) = (' o) ® "Q3(0) this also defines (' o) & for
the special case .

Analogously if (G5F°® = (GBF° 6% () ® = (f,) ® and then

(61) & = (6,) © ifinaddition (6g) © = (01) & then "Y,(0) = (0p) © "¥5(0) This is an important
consequence of the relation between (" ;) & and (' [) ¢ , and definition of (0,) © .

We can prove the following

Theorem 3: If (G 2'Q(cEF are independent on o, and the conditions

(6fB) " (cFa) * Qs P, T <O

(683) * () * Gz s T @ P P () N P Mg P e >0
(6B) ' ()t Qs " @t >0,

(cfB) * (a) * @ st (6Bt (6Bl T+l Py <0

0@Q M3 1, iy, ! asdefined, then the system

If (G2 (E'Q(CEP? are independent on t , and the conditions

(653) % (5B) 2 e > @7 2 <0

(653) % (&%) 2 Qe > Q7 2+ Qe > Mg 2+ ()2 My 2+ Mg * My 2 >0
(f3) 2 (af) 2 @ % Q7 2 >0,

(f3) 2 (6f3) 2 @ % Q7 2 (a])? iz 2 (6B)? iz 2+ iy 207 2 <0

2

0'dQ e 2, iy7 2 asdefined are satisfied , then the system

If (G2 CE'Q(EF® are independent on 0, and the conditions

(6%p) ° (657) ° Gpo %y * <0

(68) 3 (631) % ho 2 Gy *+ Gpo P Mo P H(GH) M P H Mo P M 2 >0
(6$3) % (a%) 3 Go * ay ®>0,

(a33) 3 (a5) ® @o * Gy ® (GR) % i P (6F]) P iy P+ ip iy *<0
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0@Q M,y 2, i, ° asdefined are satisfied , then the system

If (GEF** (E'Q(GE are independent on 6, and the conditions

(6%) * (68%) * Gy 4 Gys * <0

(6%) 4 (a%3) * G * Cps 4+ Gpg P Mg P H(CBE)Y Mg P Mg P s 4 >0

(G52) * (688) * g * s * >0,

(655) * (Gs2) 4 Gg 4 G (G s b (@)Y i iy 4

0@Q M,y 4, 1,5 4 asdefined are satisfied , then the system

If (GBF® CE'Q(AE® are independent on 0, and the conditions

(%) ° (6%) ° Gy ° dye ° <0

S
lps © <0

(6$) ° (¢) ° Gpg ° Gpg ° + Cpg > Mpg ° + (GB)° Mg > + Mg > Mg ° >0

(653) ° (%) ° Gg ° G ° >0,

(C58) ° (GR) °  CGyg ° G ° (GR])° Gp9 °  (GR)° Tp9 °

0'GQ Mg °, i,y ° asdefined satisfied , then the system

If (GEF® ¢E'Q(CEF® are independent on 6, and the conditions

(%) ° () ° Gy © Gy3 © <0

(6%) ° (a%) ° Gy © Gy3 O+ Gy O Mz © H(CF)C Mg O+ My O

(c53) © (x3) © @, % @y ° >0,

(C)°(aB)®  ap ® g © (aB)® s ©  (CH)° lgg °

0'EQ ng, ©, iz & asdefined are satisfied , then the system

Qs 1Q (AR +(HBF Y R=0
G 10y (G (GEF Y Qi O
s 1°Q  (AR) '+ (EF' Y Q=0

@s 'Ya [(cB) ' (GBF' O]Y%=0
@ 'Y [(6f) T (GEFT OIYa= 0
@ 'Ya [(c#) ' (GEF' O]Ys=0

has a unique positive solution , which is an equilibrium solution for the system

0

Ne 2'Q7 ()2 + (GFF? 'Yy Qe
W7 2'Qs (&) 2 + (&FBF? Yy Q@
g 2°Q; (&) 2 + (HBF? Yy Q=0

0

5, %<0

M3 © >0

6 i ¢ <0
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@ %Y, [(6®) % (afF? Qo IYe= 0
@ %Y [(6B) % (cBF? "Q 1Yy = 0
@ %Y, [(6®) % (WfF? Qo IYe= 0
has a unique positive solution , which is an equilibrium solution for
Go 2@ (&B)° + (KT Y Q=0
G *Q (@) +(EF® ™ @u=0
e °Qr  (6B)° +(GBF® ™ Q=0
@ > @) (FBF° Qs 1Y%
@ *Y% ()3 (@EF° Q% 1%
@ Y @) (FEF° Qs Y%= 0

has a unique positive solution , which is an equilibrium solution

0

0

g Qs (6F) Y+ (EF* Y Q=0

Gys *Qq  (65%) Y + (BRF? Y5 Q=0
Gy * Qs (6F) P+ (BF? Y Q=0

G ¥ [(GR) Y (T Q 1Y%= 0
@s *Ye [(G®)* (EF' Q 1Y%= 0
@ ‘¥ [(6R) 4 (GRF' Q 1¥%=0

has a unique positive solution , which is an equilibrium solution for the system

Gyg °"Qy  (GB)° + (CHF° Yo Q=0
Gy °"Qg  (GB)° + (CKF° Yo Q=0
@ °"Qy  (CF)° + (CKTF° Yo Q=0
W °"Yo [(G5)° (WRF® @ 1% =0
@ °¥ [(68))° (WRF° @ 1% =0

@o %Y [(GR)° (WRF® QA 1Y%= 0

has a unique positive solution , which is an equilibrium solution for the system

Gp Qs (6R)° + (GHF® ¥ Q=0
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|
o

Gy °'Qy  (68B)° + (CBF° " Q=
G ©'Qs  (GF)° +(EF® Y Q=0

|
o

@ °¥% [(@))°  (BF® Q1% =

@ °7 [(6B)° (WP Qs 1Y%= 0

|
o

@y ®7¥ [(6%)° (WP Qs 1Y =

has a unique positive solution , which is an equilibrium solution for the system

(a) Indeed the first two equations have a nontrivial solution "Q;,"Q, if

07V = (@)t ()t s P Qe T (CR) T (ERTT Ya + (@) T (CBTF Y+
(GBF* "Ya (BF* Ya =0

(a) Indeed the first two equations have a nontrivial solution "Qg, '@, if

FY = (6f)2(6%)2 e 2 Q7 2+ (6F3) 2 (CFBF?2 Y, + (682) 2 (6RF2 Yy +
(GFRF > Yy (62F% Y, =0

(@) Indeed the first two equations have a nontrivial solution "Qq,"Q; if

07 = (%) 2 (1) % o oy P+ (A%) P (GHEFS Y+ () C (BT h o+
(6%F° Y% (EF° ™% =0

(@) Indeed the first two equations have a nontrivial solution "Q,, Qs if

07, = (68) 4 (68) 1 dna t dys t o+ (65) 1 (CERFY Y + (GB) Y (CETF Y +
(G5F* Y% (7" "% =0

(a) Indeed the first two equations have a nontrivial solution "Qg,"Qq if

0% = (68) ° (%) °  dyg ° Gy ° + (GHR) °(GHTFS Yo + (%) ° (CRF° Yo +
(G5F° Yo (GFRF° Yo =0

(@) Indeed the first two equations have a nontrivial solution "Q,,"Q; if

0% = (68) ° (6F) °  dy © d ° + (GR) °(CEBTFC Y + (GR) °(CEBTFC % +
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(CEF° Y (GBF°® ™ =0
Definition and uniqueness of T;, :-

After hypothesis "Q0 < 0,"QHb > 0 and the functions (GGt Y, being increasing, it follows that there
exists a unique "Y, for which "Q"Y, = 0. With this value , we obtain from the three first equations

"Qq = iz Q4 "Qs = dis Qs
3T @R THeRF . T () LHERF Vs

Definition and uniqueness of T;; :-

After hypothesis "Q0 < 0,"QHb > 0 and the functions (3% “Y, being increasing, it follows that there
exists a unique T;7 for which "QT;; = 0. With this value , we obtain from the three first equations

Qg = e 2 Gz Qg = g 2 Gz
67 (@) 2+([F2 Ty, ’ 87 (@RB) 2 ([T T

Definition and uniqueness of T;; :-

After hypothesis "Q0 < 0,"QHb > 0 and the functions (¢&** ¥, being increasing, it follows that there
exists a unique “¥; for which "Q"Y; = 0. With this value , we obtain from the three first equations

"Qp = ipo Q1 "Q, = dpp 2'Qq
07 (B3RP h 27 (@) (BT

Definition and uniqueness of T5 :-

After hypothesis "Q0 < 0,"QHb > 0 and the functions (¢ “Ys being increasing, it follows that there
exists a unique “¥Ys for which "Q"Ys = 0. With this value , we obtain from the three first equations

_ ips 4 Qs

"Q, = ips %G5 "Qg =
TR Y 67 () (EBF Y

Definition and uniqueness of Tog :-

After hypothesis "Q0 < 0,"QHb > 0 and the functions (G Y, being increasing, it follows that there
exists a unique “¥y for which "Q"Yy = 0. With this value , we obtain from the three first equations

"Qg = ipg 5 Qg "Qq = i3 ° Qg
87 (B S+(HRTF® Yo 07 (&) 5 +(BF° Yo

Definition and uniqueness of T35 :-

After hypothesis "Q0 < 0,"QHb > 0 and the functions (G&*® ¥, being increasing, it follows that there
exists a unique “Y; for which "Q"Y; = 0. With this value , we obtain from the three first equations

"Q, = iz © Qs "Q, = s 5 Qs
27 (BRSBTS 4T (@B C (BT ¥

(e) By the same argument, the equations 92,93 admit solutions "Qs,"Q, if
'"O:(&f%)l(gﬁ)l 61315141
(af2) ' (GF5F* O+ (aF) ! (afBF' O +(afEF' "O(cHEFt 0=0

Where in "0°Q3,"Q4, Qs ,"Q3, Qs must be replaced by their values from 96. It is easy to see that 3 isa
decreasing function in "Q, taking into account the hypothesis « 0 > 0, H < 0 it follows that there
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exists a unique "G, such that "G = 0

(f) By the same argument, the equations 92,93 admit solutions "Qs,"Q; if
3°Q =(6R)2(6HB)?> @ > @y °

(Gf2) 2 (GBF? "Qo + (GF) % (&f5F? Qo +(GHF? "Qy (6F5F? "Q =0

Where in "Qq "Qg,"Q7,"Qg ,"Qg, Qg must be replaced by their values from 96. It is easy to see that 3 is a
decreasing function in "Q; taking into account the hypothesis 3 0 > 0, H < 0 it follows that there
exists a unique G, suchthatz "Qy * = 0

(g) By the same argument, the concatenated equations admit solutions "Qg,"Q; if
Qs :((If%)s(dﬁ)s (I%o 3 (Iél 3
(52) ® (T3 Qs + () ® (G5BF° Qs +(HF® Qs (FF® Q@ =0

Where in "Q3 "Qy,"Q1,"Q5 ,"Qp, '@, must be replaced by their values from 96. It is easy to see that 3 is a
decreasing function in "Q, taking into account the hypothesis ¢+ 0 > 0, H < 0 it follows that there
exists a unique "G, suchthate "Q; ° =0

(h) By the same argument, the equations of modules admit solutions "Q,, Qs if
* 'Q :(@)4(@%)4 &%4 4 &%5 4
(53) * (G8F* Q7 + (&) * (65T Q7 +(c5F* Q7 (FEF* Q@ =0

Where in "Q; "Q4,'Qs,"Qg ,"Q4, Qg must be replaced by their values from 96. It is easy to see that 3 isa
decreasing function in "Qg taking into account the hypothesis « 0 > 0, H < Ot follows that there
exists a unique "Gg such thate “Q; * =0

(i) By the same argument, the equations (modules) admit solutions "Qg, Qg if

* Q :(JS%)S(JS%)S (I%s ° 6%9 >
(3) ° (GBF° "Q + (68B) ° (GHBF° "Q +(@BF° "Qu (@BF° Q =0

Where in "Q; "Qg,'Qq, Qg ,"Qg, Qy must be replaced by their values from 96. It is easy to see that 3 is a
decreasing function in "Qq taking into account the hypothesis « 0 > 0, H < 0 it follows that there
exists a unique "Gg suchthate "Q; ° =0

(j) By the same argument, the equations (modules) admit solutions "Q,, Qg if

* Qs :(6592)6(@%)6 (Iéz 6 a&s 6
(63) © (GBF° "Qs + (&) ® (6HF° Qs +(WBEF® Qs (6HF°® Q =0

Wherein "Qs "Q,,"Qsz,"Q, ,"Q,,"Q, must be replaced by their values It is easy to see that 3 is a
decreasing function in "Qz taking into account the hypothesis « 0 > 0, H < Ot follows that there
exists a unique "G5 such thate "G = 0

Finally we obtain the unique solution of 89 to 94
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"Q, givenbye "0 = 0,"Y, givenby"™Q"Y, = Oand

q - iz 14y Q - s 1 dy
BT @R IHERTI Y, BT (@) IHRF Y

Y, = dis 1 Ya Y = dis 1 Ya
3T @gFL o 0 BT @t @yt o

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

G; givenby3 "Qy ° = 0, T;; givenby "QT;; = 0and

G, = aie * Giy G, = aig % Giy
O7 @R 2H@RFZ Ty, 1 T (@f) 2+(aRF2 Ty

z _ bis 2 Tiz
T =

-I—lz — big 2 Tiz
(b%) 2 (bEF2 Qo ° ro18

(bf3) 2 (bFF2 Qg °

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

"G, givenbye "Q; * = 0,"¥; givenby™Q"¥; = Oand

q - d)zo 3"(51 Q - 6’22 3"621
07 (@R 3+HFS % 2T ()BT

.,Y - 6)20 3”?1 "Y - 622 3“;1
07 (GB)% (GR¥® Qs TOR2T 683 (BT o5

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

"Qs givenby s "Q; = 0,"¥s; givenby"Q"¥s = 0and

.‘q — 6)24 4 “(és "Q - (I)ZG 4 "QS
T HEF Y T (@B (B Y
Y, = ipa 4 Y5 Y = s *"¥s

AT @)Y BP9 T T @Y (BT o

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

"Qq givenbye "Q; ° = 0,"Y, givenby"Q"Y, = Oand

"Gy = ps ° 'Go "Gy = @30 ° "Go
BT (B S HBFE Yo T 0T (B S (P Yo
Y, = dps ° Yo Y, = o ° Yo
8T @5 (HBF° a0 0T (@RS @BFS o

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution
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"G; givenbye Qs © = 0,"¥; givenby"Q"¥; = 0and

"G, = dm2 G "Gy = na ®Gs
27 (@B ST Y T (B S HETFC %
\g - @ 53 \g - 6ns © Y3
27 (@) ¢ (GBFE Qs T @) 6 (BT Qs

Obviously, these values represent an equilibrium solution

ASYMPTOTIC STABILITY ANALYSIS

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions (¢ & Q(dEF™

Belong to 6 ! ( s1,) then the above equilibrium point is asymptotically stable.

Proof: Denote
Definition of M g1 -o:-
@ Gt Vg % Tt 1q

1 (GRFL

1 1 (GE G =i
T Ya

TGy - lw

Yo = s o,

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

.Qia = (@) + Mzt Vgt Qs VMg Mz TGsl44
T;Ll = (@) Ma P Vgt Qg VMg Mg TG0

.Q;S: ()1 + s * Mg+ Qs *Vyy s 1Gs11g

[oy] 5 N g ’ o
Tf: (af3) ! i3 1 13+ Qs Y1+ BBz 113 9 VeV
[oy] 5 N g ’ o
T;‘l: () ! g P 1t Q@ Y13+ BBz i 9 F AR
™ 5. N 5 , e
T;S: (af2) * 15 1 115+ Qs Y114+ BB s 9 Y5\

If the conditions of the previous theorem are satisfied and if the functions (a&f? and (bE? Belong to

C? (a,) then the above equilibrium point is asymptotically stable
Denote

Definition of M g1 -o:-

Go= G+ Mg, Tog= To+ 119

HEEF2 , 5 HERF2 2 ,
— T = —_ = [
T, 17 M7 ' " Fog Qo ()

taking into account equations (global)and neglecting the terms of power 2, we obtain

dy . X . .
== (@R)2+ e ® M+ G “M1z The * Gl

dv " . " ,
—L= (6F) 2+ My 2 Mg+ Q7 Mg My 2Grly
dt
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d\;% = (6fg) 2+ Mg 2 Mg+ Qg 2Vyy Ms 2 Ggli17

d:j%: (6f8) 2 ie % 1ie+ Qe 2117+ B8 i 16 oTieV0
d:,% = (&) ? 17 2 117+ Q7 216+ B8 1 17 (oTi7V70
djj% = (@)% g 2 Mgt Qg 2117+ B [ 15 (9TisV0

If the conditions of the previous theorem are satisfied and if the functions (¢&f® E'Q(c&f® Belong to

6 3 (a,) then the above equilibrium point is asymptotically stabl
Denote
Definition of M q1 -

QF Gt Vo % bt g

3 ! ((I%):‘E3

TEEFS vy _ s
— Y, = Na C oy

L3 z = i.
1™ @ @

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

.Qio = (68) %+ Mo * Moo+ o VMo Mo *Qola
‘oM e N e ’ o

'gél = (6B + N P M+ Gy My M Qg
(o} o . o ’ o
sz = (@B)%+ M P M+ G M M P Qply
™ 5. N 5 ’ o
== (6B)° i P T+ G 212+ BEy 20 0 YoV
™ 5. N 5 ’ o
?ﬁl = (63 G P lat @ 31+ B&y 2 g hVn
(94 7. \ e , o
sz = (6B 3 G Pt Gp 1+ B&y i 2 hVy

If the conditions of the previous theorem are satisfied and if the functions (¢&** ¢ Q(&E* Belong to

6 4 (a,) then the above equilibrium point is asymptotically stabl
Denote
Definition of M g1 -o:-

Q= G Vg %= Nt g

T (T4
1 Y¥s

. o 1 (6T .. :
Yo = M * ,# Q; =lwm

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

2= (G Mg P Mot Gy YVMas Mas Gl

D
o] " . . , .
Tfsz (GB2) * + Mas * Mg+ Gys *VMpy  Mps *Gslos
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.S;e: (GF)* + Mys 4 Mps+ Cys *VMos  Mpe * " Qelos

™m 5 N 5 ’ -
T&Z‘l: (653) * g 4 Mgt Gy * 15+ B8, 121 9 YaVn
%: (c83) 4 s 4 Tos+ Qs * 14+ B%.4 | 25 0" ¥V
™M 5 N 5 ’ -
T?e: (6$3) * izs 4 Tos+ G 15+ B%,y i 2 9 YeV0

If the conditions of the previous theorem are satisfied and if the functions (¢ ¢E'Q(EF® Belong to

6 ° (a,) then the above equilibrium point is asymptotically stable
Denote
Definition of M q1 -

QF @t Vo % T+ 1g

T(BRFS .
T %9 \Z

5 ! ((I%)aa5

= Mo RN Q, = lm

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

o . ; . , .
ng: (GF3)° + Mg > Mpg+ CGpg °Mpg g ° "Gglag
‘oM o N er , o,

o= (G8R)° + My ° Mg+ Gg °Vazg Mg °"Qolog
o . ; . , .
Tfoz (GF)° + Ngo > Mao+ Gy °Mpe  MNao ° "Golag
oi| 5. N 7, ’ o
?ﬁs= (6$3) ° isg ° Tog+ Gg ° 19+ BRog i 28 0 ¥V
™ 5. N Jod ’ o
?ﬁg= (6$3) ° g 2 Tog+ (g > 128+ BRog i 29 0 YoV
oi| 5. N 5 ’ o
%= (6g3) ° i30 ° Ta0+ G ° 129+ BRog i 30 (9 YoV

If the conditions of the previous theorem are satisfied and if the functions (¢ ¢E'Q(¢®f® Belong to

6 8 (a,) then the above equilibrium point is asymptotically stable
Denote
Definition of M g1 -o:-

@F G Vg e "B+ 1q

1 (657
1

1 (0BF°

o _ r 6 e, z o
= , = [
"% Y3 Ns3 Qs ()

Then taking into account equations(global) and neglecting the terms of power 2, we obtain

szz (GF)° + Nap © Mg+ Gy %Mz Mg ' Q@ulas
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o . N 4 A “
2= (GF)° + Naz © Mgzt Gy3 ®Vz g © Gl

e

W3 _ v \ o . o

- - (68) ®+ Nag ® Vas+ Gy ®Vag  Mas ®©Qulas

o _ 5 . 5 34 . o

T?‘z = (a)° g © T+ @y %133+ BHa i 3 0oV
o _ 5 . 5 34 . o

T?‘B = () ° la3 © Taa+ @3 %13+ BHa i 33 0 ¥sV0
o _ 5 . 5 34 . o

T;M = (o) °® lgg © Tas+ Gy ®133+BHa g 9 LAY

The characteristic equation of this system is

_ ()t iis P { (G + s
ARt s Y M TQa+ G tofs TTGs
R N (%) I PERE N VR VIR A ¢ VR IPPRPT RS 7

S (A7) I 1 VR | S S PR | PR e

_PH(EB)t i i et Qs tis s Ys

=12+ (6B) L+ (6P + Mg P M bt

=12+ (681 + (@)t g Tt

L2y (GB) P+ (@) + s P+ M bt s TGs

+ P (B st Qs e TQat Qs P Qs s TG

(@B Gy i s Yat Qg Yin s Ys}=0

+
PR g 2 { ()% s
_ 2 H(0R) %+ e ® My *Gir+ Q7 2 e G
(AR g 2 i 7 Tt Gy 2 17 Ty
+ P H(ER)7+ My P e PGet Qe 2 My 2 Gy
_2H(aR)? e iy s Tt Q7 %ii6 16 Tie

2 " " \ .
_ 2T (OR)ZAH(6FH) A e P+ Ty 2 2

2 2

+ (6R) 2 + () 2 g 2+ 17 2 _ 2
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2
+ _ 2

+ (CR2) 2+ (6§2) 2+ Mye 2+ 7 2 _ % g 2Gyg
+ 2+ (a2 e 2 Qg 2 M7 2G7+ Q7 2 Qg 2 e G

= 2+ (uf})? 1162i17,18T:f7+di72i16,18Tfe}:0

+
I (¥ ) I PR S (% -) I PP
(@R Mo P M PG+ 6y P o 2TG
I (% ) I PR IPYIPYINS 7 # SR PP T 7
+ 3+ (6B M P Mo PG+ Gy P oM '
3R o P it @ %in,20Y
ST @) R S O
ST @@ G B im 83
+ 0 4 (682 +(6B) %+ Mo °+ M ® _° M2 °°Q

+ _ P (@) + Ny B G 2 Mo 3G+ @y 3 Gy 2 3G

=3+((I5%)3 1203izl,zzu\fl"'&%lSizo,zzu\fo}:o

+
R N () I PYRR R SN (%) I P
Z V(OB Mt s PG5+ st oM *TG
R N (% 7) I PYRR N IPY RIS AL 4 SRR PYRPR =
+ (OB s Y M TGt Gy s Cs
Z ()Y Mo s Yt Gs YoV
=42+ (683) * + (6B8)* + Mg * + M5 * _ ¢
=42+ (685) * + (a8 *  Gpg T+ it _*
+ =42+ (683) * +(688) " + Maa * + M5 * _ % e *7Qs

+ (@) N Gy 4 fos *Gs+ s * Gy * M *7°Gy
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RN A 1244izs,ze"\fs*'aés4i24,2e"¥4}:0

+
_ ()5 Mz S { S H(GH)C+ Ny ®
_ P H(G%) %+ Mg ° Moo ° Qo+ b 0 Mg ° G
_ S+ (G8)° Mg io9,20 Yot Qo %0220 Ve
+ % (6B + My ° Mg °Gg+ Gyg ° Mo ° G
~ P+ (8)° M i, Vot o %i2s.28Ye
_° 4 (683) ° + (683) °> + Mag ° + Mo ° _°
=52+ (GF)° + () ° g °+ i ° _°
+ _° 4 (GB8) ° + (6B ° + Mg ° + e > _ ° Mo >'Q

+ S+ (GB)°+ Mg ° Gy ° Moy > Qg+ Gyg ° Gy ° Mg °Gg

_ S+ () "285i29,30"\f9+d%95i28,3o"\f8}=0

+
_ o (ag)° fgg © { P+ (B)C+ Mgy
P (O) O+ N ® oMas OQet s oM °TG
(a8 lxp it G Cla s Y
+ 0+ (OR)C+ Mg oM CG+ Gy ® oM °Gs
(OB i st G Pin Y
=62+ (GB)° + (6B ° + May ®+ Mg ®° _ °
=62+ (6$)° +(aB)®  ixp O+ g & _°
+ =62+ (CB)° +(6B) %+ Mg ®+ Mg ® _° Na °'Qu

+ _ (@) + Ny ° Gg © Nag ©Ga+ Cy3 © Gy ® M °G;
_ () ® "326i33,34"¥3+a%36i32,34"¥2}:0

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this
proves the theorem.
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