
International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013      1 
ISSN 2250-3153  

 

www.ijsrp.org 
 

Design and Implementation of an Eight Bit Multiplier 

Using Twin Precision Technique and Baugh-Wooley 

Algorithm 

Ramesh Kumar Mallavarapu*, Tota Srinivasa Rao** 

 
*ECE Department, 

 Sri Vasavi Engineering College. 

 

**ECE Department, 

Sri Vasavi Engineering College.

 

Abstract—A novel technique for integer multiplication is 

implemented in this project. It is twin precision technique which 

is noteworthy for its low power dissipation. Multiplier is adapted 

to bitwidth of the operands to be computed to obtain the reduced 

power dissipation. The technique also results in an increased 

computational throughput, by allowing several narrow-width 

operations to be computed in parallel. Using Twin-precision 

technique with Baugh-Wooley algorithm, we achieve significant 

delay penalty and good power reduction. 

 

Index Terms-twin precision, throughput, narrow-width 

operations. 

 

I. INTRODUCTION 

ultiplication is a complex arithmetic operation, which is 

reflected in its relatively high signal propagation delay, 

high power dissipation, and large area requirement. When 

choosing a multiplier for a digital system, the bit width of the 

multiplier is required to be at least as wide as the largest operand 

of the applications that are to be executed on that digital system. 

The bit width of the multiplier is, therefore, often much larger 

than the data represented inside the operands, which leads to 

unnecessarily high power dissipation and unnecessary long 

delay.  

   This resource waste could partially be remedied by having 

several multipliers, each with a specific bit width, and use the 

particular multiplier with the smallest bit width that is large 

enough to accommodate the current multiplication. Such a 

scheme would assure that a multiplication would be computed 

on a multiplier that has been optimized in terms of power and 

delay for that specific bit width. However, using several 

multipliers with different bit widths would not be an efficient 

solution, mainly because of the huge area overhead. It has been 

shown in many studies that more than 50% of the instructions 

are instructions where both operands are less than or equal to 16 

bits. Such operations are called narrow-width operations.  

 

               This property has been explored to save power, through 

operand guarding. In operand guarding the most significant bits 

of the operands are not switched, thus power is saved in the 

arithmetic unit when multiple narrow-width operations are 

computed consecutively. It is shown that the power reduction of 

an operand-guarded integer unit was 54% to 58%, which 

accounts for a total power reduction of 5–6% for an entire data 

path. Narrow-width operands have also been used to increase 

instruction throughput, by computing several narrow-width 

operations in parallel on a full-width data path. It is showed a 

7% speedup for a simple 4-bit ALU, which excluded the 

multiplier, in parallel with four simple 16-bit ALUs that share a 

64-bit routing. 

 

There have been several studies on operand guarding for 

multipliers. Two-dimensional operand guarding was introduced 

for array multipliers, resulting in a power dissipation that was 

only 33% of a conventional array multiplier. A similar 

investigation on a 32-bitWallace multiplier results in reduction 

of the switching activity by 72% with the use of 16-bit operand 

guarding. While there has been a lot of work on simple schemes 

for operand guarding, work that simultaneously considers 

multiplication throughput is scarcer. 

 
Figure 1: Illustration of an unsigned 8-bit multiplication 

 

Achieving double throughput for a multiplier is not as 

straightforward as, for example, in an adder, where the carry 

chain can be cut at the appropriate place to achieve narrow-width 

additions. It is of course possible to use several multipliers, 

where at least two have narrow bit width, and let them share the 

same routing,  but such a scheme has several drawbacks: The 

total area of the multipliers would increase, since several 

multiplier units are used. The use of several multipliers increases 

the fan out of the signals that drive the inputs of the multipliers. 

M 
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Higher fan out means longer delays and/or higher power 

dissipation.  

 

There would be a need for multiplexers that connect the active 

multiplier(s) to the result route. These multiplexers would be in 

the critical path, increasing total delay as well as power 

dissipation. Work has been done to use 4:2-reduction stages to 

combine small tree multipliers into larger multipliers. This can 

be done in several stages, creating a larger multiplier out of 

smaller for each extra 4:2 reduction stage.  The desired bit width 

of the multiplication is then obtained by using multiplexers, 

which has a negative effect on the delay. 

 

              We present the twin-precision technique that offers the 

same power reduction as operand guarding and the possibility of 

performing double-throughput multiplications. The twin-

precision technique is an efficient way of achieving double 

throughput in a multiplier with low area overhead and with only 

a small delay penalty. We show how to apply the twin-precision 

technique on a un signed multipliers based on the regular High 

Performance Multiplier reduction tree.  Baugh–Wooley 

algorithm is used for the multiplication.  

 

II. PROPOSED TECHNIQUE 

 

A. Twin-Precision Using the Baugh–Wooley Algorithm 

 

TWIN-PRECISION FUNDAMENTALS: 

 

                          We present the twin-precision technique using 

an illustration of unsigned binary multiplication. In an unsigned 

binary multiplication each bit of one of the operands, called the 

multiplier, is multiplied with the second operand, called 

multiplicand. 

 
That way one row of partial products is generated. Each row of 

partial products is shifted according to the position of the bit of 

the multiplier, forming what is commonly called the partial- 

product array. Finally, partial products that are in the same 

column are summed together, forming the final result. An 

illustration of an 8-bit multiplication is shown in Fig. 1. Let us 

look at what happens when the precision of the operands is 

smaller than the multiplier we intend to use. In this case, the 

most significant bits of the operands will only contain zeros, thus 

large parts of the partial-product array will consist of zeros. 

Further, the summation of the most significant part of the partial-

product array and the most significant bits of the final result will 

only consist of zeros. An illustration of an 8-bit multiplication, 

where the precision of the operands is four bits, is shown in 

Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 2: Illustration of an unsigned 8-bit multiplication where 

the precision of the operands is smaller than the precision of the 

multiplication. Unused bits of operands and product, as well as 

unused partial products, are shown in gray. 

 

                 Figure 2 shows that large parts of the partial products 

are only containing zeros and are, thus, not contributing with any 

useful information for the final result. What if these partial 

products could be utilized for a second, concurrent 

multiplication? Since partial products of the same column are 

summed together, it would not be wise to use any of the partial 

products that are in the same column as the multiplication that is 

already computed. Looking closer at the 4-bit multiplication 

marked in white in Fig. 2, one can also observe that the column 

at position S7 should not be used either. This is because that 

column might have a carry from the active part of the partial-

product array that will constitute the final S7. Altogether this 

makes only the partial products in the most significant part of the 

partial-product array available for a second multiplication. 

 

 In order to be able to use the partial products in the most 

significant part, there has to be a way of setting their values. For 

this we can use the most significant bits of the operands, since 

these are not carrying any useful information.  By setting the 

other partial products to zero, it is then possible to perform two 

multiplications within the same partial-product array, without 

changing the way the summation of the partial-product array is 

done. How the partial products, shown in gray, can be set to zero 

will be investigated in the implementation section later on. 

 

 Assume, for now, that there is a way of setting unwanted partial 

products to zero, then it suddenly becomes possible to partition 

the multiplier into two smaller multipliers that can compute 

multiplications in parallel. In the above illustrations the two 

smaller multiplications have been chosen such that they are of 

equal size. 

                     This is not necessary for the technique to work. 

Any size of the two smaller multiplications can be chosen, as 

long as the precision of the two smaller multiplications together 

are equal or smaller than the full precision (NFULL) of the 

multiplication, To be able to distinguish between the two smaller 

multiplications, they are referred to as the multiplication in the 

least Significant Part (LSP) of the partial-product array with size 
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NLSP , shown in white, and the multiplication in the Most 

Significant part (MSP) with size MSP , shown in black. 

 

               NFULL = NLSP + NMSP  

 

It is functionally possible to partition the multiplier into even 

more multiplications. For example, it would be possible to 

partition a 64-bit multiplier into four 16-bit multiplications. 

Given a number K of low precision multiplications their total 

size need to be smaller or equal to the full 

precisionmultiplication. 

 
 

For the rest of this investigation, the precision of the two smaller 

multiplications will be equal and half the precision (N=2) of the 

full precision (N) of the multiplier. 

 

BAUGH WOOLEY ALGORITHMS: 

 

Fig. 3 illustrates the flow chart for the algorithm of an 8-bit case, 

where the partial-product array has been reorganized according 

to the scheme of Hatamian. The creation of the reorganized 

partial-product array comprises three steps: 

 

 The most significant partial product of the first N
th

 rows 

and the last row of partial products except the most 

significant have to be negated, 

 A  constant one is added to the n
th

 column, 

 The most significant bit (MSB) of the final result is 

negated. 

 
Figure 3:  Flowchart for Baugh-Wooley algorithm 

 

 

 

 

TWIN PRECISION USING THE BAUGH WOOLEY 

ALGORITHM: 
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Figure 4:  Flowchart for Twin precision Baugh-Wooley 

algorithm. 

 

III. IMPLEMENTATION 

 

It is not as easy to deploy the twin-precision technique onto a 

Baugh Wooley multiplication as it is for the unsigned 

Start 

Load multiplicand X 

and Multiplier Y 

If top=1 

Output= X*Y 

Stop 

Ctrl 

    O/P (0 -> 3) = x (0 -> 3) +y (0 -> 

3) 

    O/P (4 ->7) = x (4 -> 7)*y (4 -

>7) 

 

    O/P (0 -> 3) = x (0 -> 3)*y (0 -> 3) 

    O/P (4 ->7) = x (4 -> 7)*y (4 ->7) 

 

O/P (0 -> 3) = x (0 -> 3)-y (0 -> 3) 

    O/P (4 ->7) = x (4 -> 7)*y (4 ->7) 

 



International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013      4 

ISSN 2250-3153  
 

www.ijsrp.org 
 

multiplication, where only parts of the partial products need to 

be set to zero. To be able to compute two signed N/2 

multiplications, it is necessary to make a more sophisticated 

modification of the partial-product array. Figure 5 illustrates an 

8 bitBaugh-Wooley multiplication, in which two 4-bit 

multiplications have been depicted in white and black.    

 

When comparing the illustration of Figure 5  with that of Figure 

7, one can see that the only modification needed to compute the 

4-bit multiplication in the MSP of the array is an extra sign bit 

„1‟ in column S12 .   For the 4-bit multiplication in the LSP of 

the array, there is a need for some more modifications. In the 

active partial-product array of the 4-bit LSP 

multiplication(Shown in white), the most significant partial 

product of all rows, except the last, needs to be negated. 

 

 

 For the last row it is the opposite, here all partial products, 

except the most significant, are negated. Also for this 

multiplication a sign bit „1‟ is needed, but this time in column 

S4. Finally the MSB of the results needs to be negated to get the 

correct result of the two 4-bit multiplications. To allow for the 

full-precision multiplication of size to N coexist with two 

multiplications of N/2 size in the same multiplier, it is necessary 

to modify the partial-product generation and the reduction tree.  

 

  For the N/2 -bit multiplication in the MSP of the array all that 

is needed is to add a control signal that can be set to high, when 

the N/2-bit multiplication is to be computed and to low, when 

the full precision N multiplication is to be computed. To 

compute the N/2-bit multiplication in the LSP of the array, 

certain partial products need to be negated. This can easily be 

accomplished by changing the two-input AND gate that 

generates the partial product to a two-input NAND gate followed 

by an XOR gate.  

 

 

 

 

 
 

Figure 5:  Illustration of a signed 8-bit multiplication, using the 

Baugh–Wooley algorithm, where one 4-bit multiplication, 

shown in white, is computed in parallel with a second 4-bit 

multiplication, shown in black. 

 

 

 
Figure 6: Block diagram of an unsigned 8-bit twin precision 

multiplier.   

 

 When computing the N/2 -bit LSP multiplication, the control 

input to the XOR gate is set to low making it work as a buffer. 

When computing a full-precision N  multiplication the same 

signal is set to high making the XOR work as an inverter. 

            Finally the MSB of the result needs to be negated and 

this can again be achieved by using an XOR gate together with 

an inverted version of the control signal for the XOR gates used 

in the partial-product generation. Setting unwanted partial 

products to zero can be done by three-input AND gates as for the 

unsigned case. 

Figure 6 shows an implementation of a twin-precision 8-bit 

Baugh-Wooley multiplier and it consist of three things:  

 

 The half adders in column 4 and 8 have been changed 

to full adders in order to fit the extra sign bits that are 

needed 

 

 For the sign bit of the 4-bit MSP multiplication there is 

no half adder that can be changed  in column 12, so 

here an extra half adder has been added, which makes it 

necessary to   also add half adders for the following 

columns of higher precision. 

 

 And finally XOR gates have been added at the output of 

column 7 and 15 so that they can be   inverted. The 

simplicity of the twin-precision BW implementation 

makes it easy to also compute unsigned multiplications. 

All that is needed is to set the control signals 

accordingly, such that none of the partial products are 

negated, the XOR gates are set to not negate the final 

result and all the sign bits are set to zero. 
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Figure 7:  Block diagram of a signed 8-bit multiplication, using 

the Baugh–Wooley algorithm, where one 4-bit multiplication, 

shown in white, is computed in parallel with a second 4-bit 

multiplication, shown in black. 

 

IV. SIMULATION RESULTS 

 

TWIN BAUGH WOOLEY RESULT: 

 

 
 

Figure 8:  Simulation results for Twin precision Baugh Wooley 

algorithm. 

 

SYNTHESIS RESULTS: 

 

Following results are achieved in the synthesis of our process 

and showed the significant reduction in the power dissipation in 

the proposed multiplier.  

 

Techniques Execution Time Power 

Consumption 

Existing 7.675ns 16mW 

Proposed 6.788ns 11mW 

 

V. CONCLUSION 

 

               The twin precision multiplier presented in this paper 

offers a good tradeoff between precision flexibility, area, delay 

and power dissipation by using same multiplier for doing N, N/2 

or two N/2-b multiplications. In comparison to a conventional 

16-b twin precision multiplier has 8% higher transistor count and 

9% longer delay. The relative transistor count overhead 

decreases for larger multipliers, since the number of AND gates 

needed to set the partial products to zero does not grow as fast as 

the number of adders in the tree. 

                            We have shown that power cut-off techniques 

can  be deployed in different regions of a twin precision 

functional unit, so that static leakage reduction can be effected 

not only when the entire unit is idle, but also when only parts of 

the unitary active, i.e. when the unit operates in half precision 

mode 
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