
International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 1
ISSN 2250-3153

www.ijsrp.org

Design and Implementation of an Eight Bit Multiplier

Using Twin Precision Technique and Baugh-Wooley

Algorithm

Ramesh Kumar Mallavarapu*, Tota Srinivasa Rao**

*ECE Department,

 Sri Vasavi Engineering College.

**ECE Department,

Sri Vasavi Engineering College.

Abstract—A novel technique for integer multiplication is

implemented in this project. It is twin precision technique which

is noteworthy for its low power dissipation. Multiplier is adapted

to bitwidth of the operands to be computed to obtain the reduced

power dissipation. The technique also results in an increased

computational throughput, by allowing several narrow-width

operations to be computed in parallel. Using Twin-precision

technique with Baugh-Wooley algorithm, we achieve significant

delay penalty and good power reduction.

Index Terms-twin precision, throughput, narrow-width

operations.

I. INTRODUCTION

ultiplication is a complex arithmetic operation, which is

reflected in its relatively high signal propagation delay,

high power dissipation, and large area requirement. When

choosing a multiplier for a digital system, the bit width of the

multiplier is required to be at least as wide as the largest operand

of the applications that are to be executed on that digital system.

The bit width of the multiplier is, therefore, often much larger

than the data represented inside the operands, which leads to

unnecessarily high power dissipation and unnecessary long

delay.

 This resource waste could partially be remedied by having

several multipliers, each with a specific bit width, and use the

particular multiplier with the smallest bit width that is large

enough to accommodate the current multiplication. Such a

scheme would assure that a multiplication would be computed

on a multiplier that has been optimized in terms of power and

delay for that specific bit width. However, using several

multipliers with different bit widths would not be an efficient

solution, mainly because of the huge area overhead. It has been

shown in many studies that more than 50% of the instructions

are instructions where both operands are less than or equal to 16

bits. Such operations are called narrow-width operations.

 This property has been explored to save power, through

operand guarding. In operand guarding the most significant bits

of the operands are not switched, thus power is saved in the

arithmetic unit when multiple narrow-width operations are

computed consecutively. It is shown that the power reduction of

an operand-guarded integer unit was 54% to 58%, which

accounts for a total power reduction of 5–6% for an entire data

path. Narrow-width operands have also been used to increase

instruction throughput, by computing several narrow-width

operations in parallel on a full-width data path. It is showed a

7% speedup for a simple 4-bit ALU, which excluded the

multiplier, in parallel with four simple 16-bit ALUs that share a

64-bit routing.

There have been several studies on operand guarding for

multipliers. Two-dimensional operand guarding was introduced

for array multipliers, resulting in a power dissipation that was

only 33% of a conventional array multiplier. A similar

investigation on a 32-bitWallace multiplier results in reduction

of the switching activity by 72% with the use of 16-bit operand

guarding. While there has been a lot of work on simple schemes

for operand guarding, work that simultaneously considers

multiplication throughput is scarcer.

Figure 1: Illustration of an unsigned 8-bit multiplication

Achieving double throughput for a multiplier is not as

straightforward as, for example, in an adder, where the carry

chain can be cut at the appropriate place to achieve narrow-width

additions. It is of course possible to use several multipliers,

where at least two have narrow bit width, and let them share the

same routing, but such a scheme has several drawbacks: The

total area of the multipliers would increase, since several

multiplier units are used. The use of several multipliers increases

the fan out of the signals that drive the inputs of the multipliers.

M

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 2

ISSN 2250-3153

www.ijsrp.org

Higher fan out means longer delays and/or higher power

dissipation.

There would be a need for multiplexers that connect the active

multiplier(s) to the result route. These multiplexers would be in

the critical path, increasing total delay as well as power

dissipation. Work has been done to use 4:2-reduction stages to

combine small tree multipliers into larger multipliers. This can

be done in several stages, creating a larger multiplier out of

smaller for each extra 4:2 reduction stage. The desired bit width

of the multiplication is then obtained by using multiplexers,

which has a negative effect on the delay.

 We present the twin-precision technique that offers the

same power reduction as operand guarding and the possibility of

performing double-throughput multiplications. The twin-

precision technique is an efficient way of achieving double

throughput in a multiplier with low area overhead and with only

a small delay penalty. We show how to apply the twin-precision

technique on a un signed multipliers based on the regular High

Performance Multiplier reduction tree. Baugh–Wooley

algorithm is used for the multiplication.

II. PROPOSED TECHNIQUE

A. Twin-Precision Using the Baugh–Wooley Algorithm

TWIN-PRECISION FUNDAMENTALS:

 We present the twin-precision technique using

an illustration of unsigned binary multiplication. In an unsigned

binary multiplication each bit of one of the operands, called the

multiplier, is multiplied with the second operand, called

multiplicand.

That way one row of partial products is generated. Each row of

partial products is shifted according to the position of the bit of

the multiplier, forming what is commonly called the partial-

product array. Finally, partial products that are in the same

column are summed together, forming the final result. An

illustration of an 8-bit multiplication is shown in Fig. 1. Let us

look at what happens when the precision of the operands is

smaller than the multiplier we intend to use. In this case, the

most significant bits of the operands will only contain zeros, thus

large parts of the partial-product array will consist of zeros.

Further, the summation of the most significant part of the partial-

product array and the most significant bits of the final result will

only consist of zeros. An illustration of an 8-bit multiplication,

where the precision of the operands is four bits, is shown in

Figure 2.

 Figure 2: Illustration of an unsigned 8-bit multiplication where

the precision of the operands is smaller than the precision of the

multiplication. Unused bits of operands and product, as well as

unused partial products, are shown in gray.

 Figure 2 shows that large parts of the partial products

are only containing zeros and are, thus, not contributing with any

useful information for the final result. What if these partial

products could be utilized for a second, concurrent

multiplication? Since partial products of the same column are

summed together, it would not be wise to use any of the partial

products that are in the same column as the multiplication that is

already computed. Looking closer at the 4-bit multiplication

marked in white in Fig. 2, one can also observe that the column

at position S7 should not be used either. This is because that

column might have a carry from the active part of the partial-

product array that will constitute the final S7. Altogether this

makes only the partial products in the most significant part of the

partial-product array available for a second multiplication.

 In order to be able to use the partial products in the most

significant part, there has to be a way of setting their values. For

this we can use the most significant bits of the operands, since

these are not carrying any useful information. By setting the

other partial products to zero, it is then possible to perform two

multiplications within the same partial-product array, without

changing the way the summation of the partial-product array is

done. How the partial products, shown in gray, can be set to zero

will be investigated in the implementation section later on.

 Assume, for now, that there is a way of setting unwanted partial

products to zero, then it suddenly becomes possible to partition

the multiplier into two smaller multipliers that can compute

multiplications in parallel. In the above illustrations the two

smaller multiplications have been chosen such that they are of

equal size.

 This is not necessary for the technique to work.

Any size of the two smaller multiplications can be chosen, as

long as the precision of the two smaller multiplications together

are equal or smaller than the full precision (NFULL) of the

multiplication, To be able to distinguish between the two smaller

multiplications, they are referred to as the multiplication in the

least Significant Part (LSP) of the partial-product array with size

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 3

ISSN 2250-3153

www.ijsrp.org

NLSP , shown in white, and the multiplication in the Most

Significant part (MSP) with size MSP , shown in black.

 NFULL = NLSP + NMSP

It is functionally possible to partition the multiplier into even

more multiplications. For example, it would be possible to

partition a 64-bit multiplier into four 16-bit multiplications.

Given a number K of low precision multiplications their total

size need to be smaller or equal to the full

precisionmultiplication.

For the rest of this investigation, the precision of the two smaller

multiplications will be equal and half the precision (N=2) of the

full precision (N) of the multiplier.

BAUGH WOOLEY ALGORITHMS:

Fig. 3 illustrates the flow chart for the algorithm of an 8-bit case,

where the partial-product array has been reorganized according

to the scheme of Hatamian. The creation of the reorganized

partial-product array comprises three steps:

 The most significant partial product of the first N
th

 rows

and the last row of partial products except the most

significant have to be negated,

 A constant one is added to the n
th

 column,

 The most significant bit (MSB) of the final result is

negated.

Figure 3: Flowchart for Baugh-Wooley algorithm

TWIN PRECISION USING THE BAUGH WOOLEY

ALGORITHM:

 Else

 Add=1 Mul=1

 Sub=1

Figure 4: Flowchart for Twin precision Baugh-Wooley

algorithm.

III. IMPLEMENTATION

It is not as easy to deploy the twin-precision technique onto a

Baugh Wooley multiplication as it is for the unsigned

Start

Load multiplicand X

and Multiplier Y

If top=1

Output= X*Y

Stop

Ctrl

 O/P (0 -> 3) = x (0 -> 3) +y (0 ->

3)

 O/P (4 ->7) = x (4 -> 7)*y (4 -

>7)

 O/P (0 -> 3) = x (0 -> 3)*y (0 -> 3)

 O/P (4 ->7) = x (4 -> 7)*y (4 ->7)

O/P (0 -> 3) = x (0 -> 3)-y (0 -> 3)

 O/P (4 ->7) = x (4 -> 7)*y (4 ->7)

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 4

ISSN 2250-3153

www.ijsrp.org

multiplication, where only parts of the partial products need to

be set to zero. To be able to compute two signed N/2

multiplications, it is necessary to make a more sophisticated

modification of the partial-product array. Figure 5 illustrates an

8 bitBaugh-Wooley multiplication, in which two 4-bit

multiplications have been depicted in white and black.

When comparing the illustration of Figure 5 with that of Figure

7, one can see that the only modification needed to compute the

4-bit multiplication in the MSP of the array is an extra sign bit

„1‟ in column S12 . For the 4-bit multiplication in the LSP of

the array, there is a need for some more modifications. In the

active partial-product array of the 4-bit LSP

multiplication(Shown in white), the most significant partial

product of all rows, except the last, needs to be negated.

 For the last row it is the opposite, here all partial products,

except the most significant, are negated. Also for this

multiplication a sign bit „1‟ is needed, but this time in column

S4. Finally the MSB of the results needs to be negated to get the

correct result of the two 4-bit multiplications. To allow for the

full-precision multiplication of size to N coexist with two

multiplications of N/2 size in the same multiplier, it is necessary

to modify the partial-product generation and the reduction tree.

 For the N/2 -bit multiplication in the MSP of the array all that

is needed is to add a control signal that can be set to high, when

the N/2-bit multiplication is to be computed and to low, when

the full precision N multiplication is to be computed. To

compute the N/2-bit multiplication in the LSP of the array,

certain partial products need to be negated. This can easily be

accomplished by changing the two-input AND gate that

generates the partial product to a two-input NAND gate followed

by an XOR gate.

Figure 5: Illustration of a signed 8-bit multiplication, using the

Baugh–Wooley algorithm, where one 4-bit multiplication,

shown in white, is computed in parallel with a second 4-bit

multiplication, shown in black.

Figure 6: Block diagram of an unsigned 8-bit twin precision

multiplier.

 When computing the N/2 -bit LSP multiplication, the control

input to the XOR gate is set to low making it work as a buffer.

When computing a full-precision N multiplication the same

signal is set to high making the XOR work as an inverter.

 Finally the MSB of the result needs to be negated and

this can again be achieved by using an XOR gate together with

an inverted version of the control signal for the XOR gates used

in the partial-product generation. Setting unwanted partial

products to zero can be done by three-input AND gates as for the

unsigned case.

Figure 6 shows an implementation of a twin-precision 8-bit

Baugh-Wooley multiplier and it consist of three things:

 The half adders in column 4 and 8 have been changed

to full adders in order to fit the extra sign bits that are

needed

 For the sign bit of the 4-bit MSP multiplication there is

no half adder that can be changed in column 12, so

here an extra half adder has been added, which makes it

necessary to also add half adders for the following

columns of higher precision.

 And finally XOR gates have been added at the output of

column 7 and 15 so that they can be inverted. The

simplicity of the twin-precision BW implementation

makes it easy to also compute unsigned multiplications.

All that is needed is to set the control signals

accordingly, such that none of the partial products are

negated, the XOR gates are set to not negate the final

result and all the sign bits are set to zero.

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 5

ISSN 2250-3153

www.ijsrp.org

Figure 7: Block diagram of a signed 8-bit multiplication, using

the Baugh–Wooley algorithm, where one 4-bit multiplication,

shown in white, is computed in parallel with a second 4-bit

multiplication, shown in black.

IV. SIMULATION RESULTS

TWIN BAUGH WOOLEY RESULT:

Figure 8: Simulation results for Twin precision Baugh Wooley

algorithm.

SYNTHESIS RESULTS:

Following results are achieved in the synthesis of our process

and showed the significant reduction in the power dissipation in

the proposed multiplier.

Techniques Execution Time Power

Consumption

Existing 7.675ns 16mW

Proposed 6.788ns 11mW

V. CONCLUSION

 The twin precision multiplier presented in this paper

offers a good tradeoff between precision flexibility, area, delay

and power dissipation by using same multiplier for doing N, N/2

or two N/2-b multiplications. In comparison to a conventional

16-b twin precision multiplier has 8% higher transistor count and

9% longer delay. The relative transistor count overhead

decreases for larger multipliers, since the number of AND gates

needed to set the partial products to zero does not grow as fast as

the number of adders in the tree.

 We have shown that power cut-off techniques

can be deployed in different regions of a twin precision

functional unit, so that static leakage reduction can be effected

not only when the entire unit is idle, but also when only parts of

the unitary active, i.e. when the unit operates in half precision

mode

REFERENCES

1. Abddollahi, M. Pedrem, F. Fallah and I. Ghosh pre-

computation-based guarding for dynamic and leakage

power reduction. In proceedings of the 21st

international conferences on computer design, pages

901, 2003.

2. J. Hughes, K. Jeppson, P. Larsson-Edefors, M. Sheeran,

Stenstr¨om, and L. J. Svensson. FlexSoC: Combining

Flexibility and Efficiency in SoC Designs. In

Proceedings of the IEEE NorChip Conference, 2003

3.] S. Mathew, M. Anders, B. Bloechel, T. Nguyen, R.

Krishna- murthy, and S. Borkar. A 4GHz 300mW 64b

Integer Execution ALU with Dual Supply Voltages in

90nm CMOS. In Pro- ceedings of the International

Solid State Circuits Conference, pages 162s, 2004.

4. Z. Huang and M. D. Ercegovac. Two-Dimensional

Signal Gating for Low-Power Array Multiplier Design.

In Proceedings of the IEEE International Symposium

on Circuits and Systems pages II–IJ vol.1, 2002.

5. K. Callaway and E. E. Swartzlander, Jr. Optimizing

Multi- pliers for WSI. In Proceedings of the Fifth

Annual IEEE International Conference on Wafer Scale

Integration, pages 85Ì1993.

6.] P. Mokrian, M. Ahmadi, G. Jullien, and W. Miller. A

Recon- figurable Digital Multiplier Architecture. In

Proceedings of the IEEE Canadian Conference on

Electrical and Computer Engineering, pages 125X,

2003.

7.] H. Eriksson. Efficient Implementation and Analysis of

CMOS Arithmetic Circuits. PhD thesis, Chalmers

University of Technology, 2003.

8.] C. R. Baugh and B. A. Wooley. A Two‟s Complement

Par allel Array Multiplication Algorithm. IEEE

Transactions on Computers, 22:1045‟, December

1973.–701, Jul. 2000.

9. V. G. Oklobdzija, D. Villeger, and S. S. Liu A Method

for Speed Optimized Partial Product Reduction and

Generation of Fast Parallel Multipliers Using an

Algorithmic approach IEEE Transactions on

Computers, 45C):294˜6 march 1996.

10. G. Lakshmi Narayanan and B.

Venkataramani“Optimization Techniques for FPGA-

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 6

ISSN 2250-3153

www.ijsrp.org

Based Wave Pipelined DSP Blocks” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol.13. No 7. pp 783-

792, July 2005.

11. L.Benini, G.D.Micheli, A.Macii, E.Macii, M. Poncino,

and R.Scarsi, “Glitching power minimization by

selective gate freezes,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 8, no. 3, pp.287²97, June

2000.

12. C. S. Wallace, “A suggestion for a fast multiplier,”

IEEE Trans. Electron.Comput., vol. 13, pp. 14–17, Feb.

1964

AUTHORS

 First Author: - MTech II Year, Sri

 Vasavi Engineering, Pedatadepalli,

 Tadepalligudem, Andhrapradesh, India.

Second Author: - Tota Srinivasa Rao,Sr.

Assistant Professor,Sri Vasavi Engineering

College, Pedatadepalli, Tadepalligudem,

Andhrapradesh, India.

