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Abstract- The distribution of Ulex europaeus plants in South 
Australia has been modeled using presence-only location data as a 
function of six climate parameters. The predicted range of U. 
europaeus was mainly along the Mount Lofty Ranges in the 
Adelaide hills and on Kangaroo Island. Annual precipitation 
appeared to be the highest contributing variables to the final model 
formulation. The Jackknife procedure was employed to identify 
the contribution of different variables to U. europaeus model 
outputs and response curves were used to predict changes with 
changing environmental variables. Based on this analysis, we 
revealed that the combined effect of one or more variables could 
make a completely different impact to the original variables on 
their own to the model prediction. We found that Maxent acts as a 
robust model when projecting the fitted species distribution model 
to another area with changing climatic conditions, whereas we 
found GLM, Bioclim and Domain models to be less robust in this 
regard. These findings are important not only for predicting and 
managing invasive alien U. europaeus in South Australia and Sri 
Lanka but also in other countries of the invasive range. 
 
Index Terms- invasive species, Maxent, species distribution 
modeling, Ulex europaeus   
 

I. INTRODUCTION 
n understanding of current and potential distribution patterns 
is fundamental for managing invasive alien species (Gormley 

et al 2011; Ward 2007). Preventing alien species invasion is 
hampered due to difficulties in predicting possible areas of 
invasion in space and time (Gertzen & Leung 2011). In this 
context, identification and recognition of effective methods and 
techniques to assess species distribution patterns are important in 
conservation planning (Baldwin 2009). Species distribution 
modeling (SDM), the prediction of species’ geographic 
distributions based on environmental variables and available 
records of species occurrence, is an increasingly used technique 
that provide information about species ranges for conservation 
planning and related applications (Glor & Warren 2011; Graham 
& Hijmans 2006).  
            Hutchinson defined the species niche as n-dimensional 
hyper-volume within which a species can survive and reproduce; 

in the absence of biotic interactions this volume is equal to the 
species’ fundamental niche (Franklin 2010). However, under a 
given circumstance, a species will usually only occupy a certain 
part of the fundamental niche, which is called the realized niche 
(Jiménez-Valverde et al 2011). Therefore, theoretically, SDM 
estimates a species’ potential distribution rather than the actual 
distribution. When the species niche is projected to a geographical 
space, it yields a predictive map of species’ presence (Phillips et 
al 2006; Tsoar et al 2007). 
             The Maximum - entropy algorithm or Maxent software 
(Phillips et al 2006) is one of the more accurate, increasingly 
popular and globally accepted machine-learning techniques 
currently in use for species distribution modeling (Graham & 
Hijmans 2006; Ramírez-Villegas & Bueno Cabrera 2009). It 
estimates the probability distribution of maximum entropy of each 
environmental variable across the entire study area (Graham & 
Hijmans 2006). Maxent performs extremely well in predicting 
distributions of species across landscapes compared to other 
popular approaches for presence-only data (Elith et al 2006). 
            Ulex europaeus L. (gorse) is a native of Europe (Atlan et 
al 2010; Ireson et al 2008; Ireson & Davies 2012; Markin & 
Yoshioka 1996) and the British Isles (Hill et al 2001). It is a 
nuisance weed in more than 15 countries in the world (Markin & 
Yoshioka 1996) including Australia and Sri Lanka. We modeled 
the distribution of U. europaeus in two climatically distinct 
countries in its invasive range, South Australia and Sri Lanka. We 
selected this species for modeling due to its long history of 
establishment in its invasive range and also its ecological and 
economic significance. Therefore, the aims of this study were to 
(i) predict the potential range of U. europaeus in South Australia 
using data on the current distributions, (ii) compare potential range 
of U. europaeus in South Australia using multiple SDM model 
comparison and (iii) forecast the possible range expansion of U. 
europaeus in Sri Lanka using the Maxent fitted model to South 
Australia. Information generated by distribution models is crucial 
to ensure successful control and management of U. europaeus in 
its invasive range. 
 

II. METHODOLOGY 
 

A 
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2.1 Species distribution data 
            Our data represented 154 presence-only records from a 75-
year period (from 1936 to 2011) of specimens held in State 
Herbarium of South Australia, Adelaide. Duplicate records were 
removed using ‘exact match’ option of the ENM tools (Warren 
Dan L. et al 2010). To reduce the effect of spatial sampling bias 
species occurrences were filtered using one of the environmental 
variables, enabling each grid cell to have only one occurrence 
record. Data cleaning reduced the number of available records 
resulting to a final set of 111 geo-referenced records. All available 
U. europaeus locational records in Sri Lanka were taken through 
field study as geo-referenced records for Sri Lankan U. europaeus 
was not located. In the models we used that considered presence-
absence data, ‘pseudo-absences’ were used as absence data. 
Pseudo absences were selected randomly from all points within 
the studied area. 
 
2.2 Environmental data 
            High resolution, 30 arc-seconds (~1 km2) environmental 
rasters were downloaded from the Worldclim database (Hijmans 
et al 2005), version 1.4 (http://www.worldclim.org/) which were 
based on current time period. Environmental data were re-sampled 
for the South Australian geographic area of prediction 
representing the Mount Lofty Ranges, Kangaroo Island and York 
and Eyre Peninsula (134.29ºE, 140.5ºE, -36.11ºS, -32.2ºS) and for 
the Sri Lankan extent (79.66ºE, 81.89ºE, 5.92ºN, 9.84ºN). After 
exploratory modeling, we selected a subset of six highly 
contributing variables (Table 1) which included annual mean 
temperature (bio1), isothermality (bio3), maximum temperature of 
warmest month (bio5), mean temperature of warmest quarter 
(bio10), annual precipitation (bio12) and precipitation seasonality 
(bio15). Pearson correlations among variables were tested using 
ENM tools (Warren D. L. et al 2010).  
 
2.3 Settings for running the model in Maxent 
            The Maxent, Maximum Entropy Modeling software 
package version 3.3.3k was employed for the study (Phillips et al 
2009). We selected the “Do Jackknife to measure variable 
importance”, “create response curves” and “make pictures of 
predictions” options. The cumulative output format instead of the 
default logistic output was chosen. We used 10-fold cross 
validation allowing Maxent to use all occurrences in the model 
since we had limited number of occurrence records. Other relevant 
default settings of the Maxent software were applied, including the 
maximum number of background points (10,000), replicated run 
type (crossvalidate), maximum iterations (500), convergence 
threshold (0.00001), and default prevalence (0.5). Auto features 
were activated as it is recommended for training samples greater 
than 80 records. 
 
2.4 Development of potential suitable area maps 
            The Maxent generated average model output was imported 
into in ArcMap for suitability analysis. We used a non-fixed 
threshold approach, the widely used 10 percentile training 
presence logistic threshold of the Maxent as recommended by (Liu 
et al 2005). This logistic threshold provided ecologically 
meaningful better output for the selected species. Therefore, areas 
above this threshold were considered as ‘suitable’ and below ‘not 
suitable’. All suitable areas were further categorized into three 

classes using ArcMap manual classification, ’highly suitable’,’ 
moderately suitable’ and ‘less suitable’.  
 
2.5 Maxent projection to Sri Lanka using Maxent software 
            The aim of this task was to project the Maxent model for 
U. europaeus that we fit to data from South Australia to a 
climatically distinct geographic area, Sri Lanka. The same six 
environmental variables were used as projection layers. A binary 
presence-absence map was made at a 10 percentile training 
presence. The available few locality data of U. europaeus in Sri 
Lanka were overlaid on the image to test the prediction. 
 
2.6 Multiple SDM model comparisons for Ulex europaeus in 
South Australia 
            Four different species distribution modeling methods, 
namely GLM, Bioclim, Domain, and Maxent, were run in the R 
statistical programming environment (R Development Core Team 
2012) using packages ‘dismo’ (Hijmans et al 2013), ‘raster’ 
(Hijmans & van Etten 2013), ‘rJava’ (Urbanek 2013) and several 
model functions in R to compare the potential predicted 
distribution among modeling algorithms. The aim of this exercise 
was to investigate the relative ability of different algorithms to 
make predictions under current climate and to compare the 
robustness of predictions between these modeling techniques. The 
same environmental data layers (previously used in Maxent) were 
used in raster format and the same U. europaeus occurrence data 
were used. Models fit under each of the above modeling 
techniques were evaluated and predicted for South Australia. 
Maps of predicted presences and absences were generated under 
each model at 10 percentile training presence threshold. 
 

III. RESULTS 
3.1 Species distribution modeling with Maxent software for U. 
europaeus in South Australia 
            Figure 1 shows the potential range of U. europaeus in 
South Australia. All areas greater than the threshold value at 10 
percentile training presence were predicted as areas where U. 
europaeus is predicted to occur under current climate conditions. 
The Mount Lofty Ranges in the Adelaide hills is predicted as high 
probability area for U. europaeus distribution in South Australia. 
In addition Kangaroo Island and scattered areas above York 
Peninsula were predicted as potential ranges. The potential area of 
suitability of U. europaeus under this threshold did not include the 
Eyre Peninsula but did include slight patches in the York 
Peninsula. However, a greater predicted area, comprising all of the 
York Peninsula and a considerable part of the Eyre Peninsula 
could be observed using the threshold derived from the minimum 
training presence. In general, AUC value >0.9 is considered as 
very good performance (Araújo et al 2005; Fielding & Bell 1997). 
Accordingly, the U. europaeus model was found to have a high 
predictive power or good discrimination ability, with very good 
mean AUC value of 0.971. 
            The contribution of different predictor variables to the 
overall model prediction was analyzed. Annual precipitation 
(bio12) appeared to be the highest contributing variable for the 
model formulation under the “percent contribution” criterion 
(Supplementary material S1). Annual mean temperature (bio1) 
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appeared to be the least contributing variable to determine climatic 
suitability of U. europaeus. Annual precipitation showed highest 
fit in jackknife test too (Supplementary material S2); however, 
annual mean temperature showed relatively high importance. 
Therefore, it is hard to say that annual mean temperature is not 
important to the model, even though Maxent has used this variable 
least out of all the six predictor variables. We found that 
isothermality (bio3) achieves little fit in all three jackknife plots; 
however, it was a relatively important variable in the final model. 

None of the six predictor variables contained useful information 
that is not contained in other five variables. Looking at the 
response curves of important predictor variables, we noticed that 
the U. europaeus model responded highly to the annual 
precipitation (bio12) variable and predicted probability of suitable 
conditions increases continuously with increasing long range of 
values. The second response curve considering only the 
corresponding variable behaved similarly to the first.   

 
S1 Contribution of environmental variables for Ulex europaeus model 

 
Variable Percent Contribution 
Annual precipitation 85.9 
precipitation seasonality 4.7 
Isothermality 4.3 
Mean temperature of warmest quarter 2.6 
Maximum temperature of warmest month 1.8 
Annual mean temperature 0.8 
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S2 Results of Jackknife test of variable importance in the regularized training gain (a), test gain (b) and AUC (c) for Ulex 
europaeus model 
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3.2 Maxent projection to Sri Lanka using Maxent software 
         Maxent model projected to Sri Lanka identified the central 
mountain areas of Sri Lanka as areas with a high predicted 
occurrence of gorse and the rest of the country with low 
probabilities of predicted occurrences. Figure 2 shows the Maxent 
model predicted areas of U. europaeus in Sri Lanka at 10 
percentile training presence threshold level. The central mountain 
area of Sri Lanka is predicted occurrence of U. europaeus. The U. 
europaeus location data collected from Sri Lanka during our field 
work were overlaid on this predicted area and all points fell within 
the predicted area.  
 
3.3 Multiple SDM model comparison with R for South 
Australia 

         Figure 3 shows predictions of the distribution of U. 
europaeus in southern South Australia under four modeling 
algorithms; GLM, Bioclim, Domain and Maxent, individually run 
in the ‘dismo’ package in R. The four models performed slightly 
differently, with the highest model AUC of 0.9632 achieved with 
the Maxent model, suggesting that this model best fit the data. 
Maxent showed relatively higher model robustness and its 
prediction was comparatively more conservative in comparison 
with the other three models suggesting that the latter three models 
might have overestimated the suitable climate space. Three 
models, Bioclim, Domain and Maxent predicted the presence of 
U. europaeus on the Yorke and Eyre peninsulas at varying levels 
of magnitude. The GLM model did not predict the presence of U. 
europaeus in these regions.  
 

 
 

 
 

Fig. 1 Potential range of Ulex europaeus in South Australia under current climate. 
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Fig. 2 Predicted areas of Ulex europaeus in Sri Lanka at 10 percentile training presence. Black dots indicate occurrence records of U. 

europaeus in Sri Lanka. 
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Fig. 3 Model projections for the potential distribution of Ulex europaeus using four modeling techniques in the ‘dismo’ package in R 
for South Australia. Small crosses indicate occurrence records of U. europaeus in South Australia. 

 

IV. DISCUSSION 
          Ulex europaeus is an alien invasive species in many 
countries in the world. Thus, prediction of the potential 
distribution patterns of U. europaeus using bioclimatic modeling 
is an important aspect of understanding the likely impact of this 
noxious species in countries of its invasive range such as South 
Australia and Sri Lanka.  
 
4.1 Species distribution modeling with Maxent software for 
Ulex europaeus in South Australia 
          Our U. europaeus model performed well with selected 
subset of environmental variables. Maps from SDM represent the 
potential distribution of the species based on the postulated links 
between species data and environmental variables, and since 
invasive species tend to expand their habitat to acquire all 
climatically suitable habitats, such models are likely to be useful 
predictors of the ultimate range of invasive species (Wilson et al 
2011). U. europaeus was established both in South Australia and 
Sri Lanka more than 100 years ago. Based on our predicted 
presence-absence map at our selected threshold, U. europaeus is 
predicted to be widely distributed in the Mount Lofty Ranges and 

Kangaroo Island areas in South Australia. We found that our 
herbarium occurrence points were distributed in most of the 
suitable areas of the presence-absence map, showing that this 
species has already occupied most of its favorable climatic 
gradient in South Australia. Having confidence that SDM models 
capture key determinants of the fundamental niche is important to 
properly apply them to understand species invasions (Webber et 
al 2011). The majority of our species environmental data obtained 
from the Worldclim database are averaged over a long time period 
(1960-1990), therefore we believe that data are likely to represent 
the relevant environmental variability experienced by U. 
europaeus and so provide a realistic prediction.  
          SDM predictions can over-estimate ranges if they omit 
factors that limit the spread of species such as natural barriers, soil 
type, predators and competition by closely related species 
(Scheldeman & Zonneveld 2010). However, U. europaeus can 
grow on a wide range of soil types including sands, clays and clay 
loams other than soils rich in calcium (Gorse Control Strategy 
1999). Honey bees (Apis mellifera L.), the primary pollinators of 
U. europaeus (Bowman et al 2008) are widespread in every 
continent except Antarctica (Goulson 2003). Therefore, neither of 
these factors would likely contribute to overestimating the range 
of this species. The threshold value which was set for model 
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prediction is an arbitrary value (Liu et al 2005) hence the 
prediction of potential area could vary with the selected threshold. 
For example our U. europaeus model prediction very much 
increased when we used the “minimum training presence” 
criterion in Maxent. 
          Analysis of our jackknife tests revealed that annual rainfall 
was a critical factor in affecting the distribution of U. europaeus 
in South Australia. The contribution of all other variables was not 
significant to the model. Isothermality, which is a measure derived 
from temperature values (mean diurnal range /temperature annual 
range * 100), weakly influences the distribution of U. europaeus 
in this climate regime.   
 
4.2 Maxent projection to Sri Lanka using Maxent software 
          At present, U. europaeus distribution in Sri Lanka is 
restricted to a small patch in the central mountains. The occurrence 
points we collected during our field works in Sri Lanka were quite 
close to each other and therefore, these species data are not quite 
enough on their own to directly derive a Maxent model for Sri 
Lanka. Nevertheless, we were able to project a Maxent model 
derived from South Australian records to predict the potential 
range expansion for U. europaeus in Sri Lanka, even though the 
areas for U. europaeus in South Australia and Sri Lanka are 
climatically distinct. The prediction we received for Sri Lanka was 
realistic because our few occurrence points were overlaid on the 
prediction area (Fig. 2). This also implies that the Maxent fitted 
model for U. europaeus in South Australia has captured the 
considerable environmental gradient of the species to make a 
prediction in a climatically distinct area. In Sri Lanka, U. 
europaeus is restricted to a few very small patches in central 
highland area. However, the prediction we received was larger 
than the actual distribution we observed. Therefore, we believe 
that U. europaeus has the potential to spread further in Sri Lanka 
and hence that management should consider relevant 
precautionary actions to control the spread of this species in 
central highlands in Sri Lanka. During our field visits we observed 
isolated U. europaeus plants which were flowering and fruiting in 
several places in the central highlands, indicating the climatic 
suitability for the U. europaeus distribution in these areas.  
          Selection of suitable environmental parameters is an 
important and challenging step of the modeling process. Our first 
attempt to transfer the U. europaeus model fit with Worldclim 
monthly data was not successful. In this analysis, the prediction 
we received for South Australia was similar as with the Bioclim 
variables we used later, but the algorithm reversed the prediction 
areas when we projected the model to Sri Lanka. In comparison to 
the monthly climatic parameters in the Worldclim database 
(monthly maximum and minimum temperature and precipitation), 
the derived Bioclim variables, such as “annual precipitation” or 
“mean temperature of warmest quarter” do not specify a particular 
time of the year or month. This is extremely important when 
projecting a model to a different hemisphere where the climatic 
conditions in a particular period may be completely reversed.   
          Webber et al (2011) point out that projection of correlative 
models especially to novel climates should be done carefully 
because they can make biologically unrealistic projections when 
the response functions of certain parameters exceed model 
behavior. We investigated the values of each variable applicable 
to these two countries which indicated the ranges of values were 

quite different. Therefore, same variables may perform in a 
different manner in climatically distinct areas.   
4.3 Multiple SDM model comparison with R 
          Our study found quite similar and realistic projected range 
limits for U. europaeus in South Australia using four different 
modeling techniques, GLM, Bioclim, Domain and Maxent. AUC 
is considered as an important metric to quantify model 
performance (Syphard & Franklin 2009). The overall mean of 
AUC values across all models we received was 0.95 and all 
models individually exceeded a model AUC of 0.93, indicating 
that all models provided a good fit to the data. In multiple model 
comparisons using the ‘dismo’ package in R, the GLM, Bioclim 
and Domain models predicted comparatively greater predicted 
areas as suitable for U. europaeus distribution than did the Maxent 
model. However, model evaluation shows Maxent as the most 
robust model with relatively better discrimination ability. In our 
exercise we received the highest AUC value with Maxent where 
the predicted area map is smaller compared with other three 
models. The lowest model performance out of the above four 
models was observed in Bioclim where the prediction map extent 
is highest. The other two models GLM and Domain have moderate 
levels of AUCs. The AUC represents a probability for 
observations where prediction for presence observations is higher 
than the prediction for absence observation (Syphard & Franklin 
2009). However, we get higher AUC in Maxent where we have 
relatively less prediction. This may be due to some other factors, 
such as model prevalence or map correlation, that vary with the 
modeling method used. 
 

V. CONCLUSION 
          Based on the Maxent model predicted potential distribution 
map, U. europaeus is predicted to be widely distributed in the 
Mount Lofty Ranges and Kangaroo Island areas in South 
Australia. Our work demonstrated the need for a careful approach 
when selecting environmental variables for projecting correlative 
models to climatically distinct area and the utility of relativized, 
rather than absolute, measures of climatic conditions. Our 
projection of a Maxent model trained with environmental 
variables of South Australia to relevant layers of Sri Lanka brings 
valuable insight for applications in changing climate conditions. 
The prediction we received for Sri Lanka encompassed our known 
occurrence localities which were restricted to a few patches but 
was larger than the actual area of U. europaeus distribution, 
suggesting a capacity for U. europaeus to expand its range. These 
findings are important not only to predict and manage invasive 
alien U. europaeus in South Australia and Sri Lanka but also in 
other countries of the invasive range. 
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