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Abstract 

 The most important measure of success of Emergency Medical Services (EMS) is rapid response time. Traffic jams are 

taking the form of an unpredictable variable as the urban setting is increasingly becoming dense and has a significant influence on 

the survival rate of patients. The dynamic, non-linear characteristics of real-time traffic conditions do not rely on traditional routing 

systems based on the use of either static distance measurements or past averages. The presented paper offers the combined 

framework, which combines a new Hybrid Deep Learning system, inclusive of Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) nets, with a dynamic and traffic-sensitive Astarte algorithm of path-finding. Our Hybrid LSTM+GRU model 

with training of 15,000 urban traffic samples using a synthetic but realistic dataset is around two times more effective than traditional 

ARIMA (RMSE 9.72) and Random Forest (RMSE 2.09) baselines with a Root Mean Square Error (RMSE) of 2.06. Moreover, this 

predictive enabling feature when incorporated in the routing engine minimizes the overall ambulance response time when averaged 

at about 28.6% a figure reduced as compared to distance-based routing. These conclusions indicate that AI-based traffic prediction 

is a possible and required module of the next-generation Smart City structure. 

 

Keywords - Smart City, road traffic, Green transportation, Events management system, Traffic Forecasting, Hybrid algorithm, 

Long Short Term Memory, Gated Recurrent unit, Dynamic Pathfinding, Intelligent Transportation Systems. 

 

I. INTRODUCTION 

 The Golden Hour of emergency medicine assumes that emergency trauma patients have much better chances to survive 

when the emergency care begins with the definitive treatment within sixty minutes after the incident. The major constraint to meeting 

this standard in metropolitan areas is not the supply of medical staff, but the physical time the ambulance takes to traverse road 

systems suffering the most. World Health Organization (WHO) estimates that road traffic congestion is the leading contributor to 

the delay in emergency response to more than 20 percent cases of emergency that are critical in developing urban centers. 

 The contemporary EMS dispatch systems mostly rely on the fixed navigation graphs with the edge weights denoting the 

physical distance or optimal speed constraints. Although powerful, these systems do not look into time-varying dynamics of the 

traffic patterns, i.e., rush hour backups, weather-related slowdowns, or occasional accidents. As a result, an ambulance can be 

diverted to a geographically short route that is functionally congested by traffic when a longer and free-flowing route can be used. 

 The introduction of Smart Cities and Internet of Things (IoT) infrastructure opens the abundance of real-time data that can 

be used to address this issue. Traffic flow however is not predictable because it is non-linear and stochastic in nature. Conventional 

parametric forecasting methods, such as Auto-Regressive Integrated Moving Average (ARIMA) are based on the belief in linear 

http://ijsrp.org/
https://dx.doi.org/10.29322/IJSRP.16.02.2026.p17044


International Journal of Scientific and Research Publications, Volume 16, Issue 2, February 2026             306 

ISSN 2250-3153   

 

  This publication is licensed under Creative Commons Attribution CC BY. 

10.29322/IJSRP.16.02.2026.p17044    www.ijsrp.org 

relationships between variables, and can be hard to find sharp changes or multidimensional spatio-temporal interactions. Recurrent 

Neural Networks (RNNs) and Deep Learning in general have demonstrated capabilities in dealing with time-series but the training 

of deep networks is costly in terms of computations and is likely to have a variety of problems related to training such as vanishing 

gradients. 

 The solution to this research involves a Hybrid LSTM+GRU architecture. With the long-term memory properties of the 

LSTMs and the efficient performance of the GRUs, we have a model that performs very well and is computationally efficient that 

enables us to deploy it straight into practice. We combine this predictive model with a modified A* Pathfinding Algorithm using 

the heuristic cost pricing as a variable dynamically adjusted according to the predicted and not the observed speed of the traffic. 

This is a holistic Predict-then-Route to make sure that ambulances are driven not only by the distance, but also time. 

II. LITERATURE REVIEW 

A. Statistical you can use statistical methods to predict traffic. 

 Initial studies on traffic forecasting were statistical based. Williams and Hoel (2003) have applied the ARIMA models 

extensively to determine the freeway traffic flow. Although useful in regular, stable trends, the ARIMA models cannot keep up with 

the fact that urban surface streets are highly volatile whereby each traffic light, pedestrian crossing, and turning movement creates 

a significant noise. The nature of ARIMA of being linear limits its power in capturing the complex interrelation between weather, 

time of the day, and the road conditions. 

B. Machine Learning && Deep Learning 

   This transition of non-parametric Machine Learning models became a serious plus. Leshem and Ritov (2007)     investigated 

the use of random forest regressors, which provided some ability to control non linear data but did not detect order of sequence of 

time. It was broken through with Deep Learning. Ma et al. (2015) have successfully used Long Short-Term Memory (LSTM) 

networks to predict the speed of the traffic and showed that they can learn long term relationships when used with time-series data. 

The LSTMs composed a memory cell and gating tunings which are combinations of storing vital data through sequences, provide 

challenges to RNNs that have a transient gradient problem.  

   In even more recent times, Gated Recurrent Units (GRUs) (proposed by Cho et al., 2014) have been popularized, since 

they represent an even more efficient version of LSTM. GRUs implement the forget and input gates as one update gate which is 

reduced to one parameter and takes less time to train but does not drastically reduce accuracy. We follow up on this with a base that 

a hybrid architecture can exploit both the representational quality of RNN layers that are LSTM and the speed of processing provided 

by the GRU layers. 

C. Dynamic Routing Algorithms 

 The algorithm by Dijkstra is still the benchmark in the pathfinding field. Nevertheless, in time-sensitive cases such as EMS, 

the A algorithm is utilized because a heuristic is used in directing the search thus the computation time has been reduced by a great 

degree. In the recent literature, much attention is paid to the case of Dynamic A, in which the edge weights explicit time 

dependencies. Nevertheless, majority of the available dynamic routing algorithms are based on the existing real-time information, 

which is reactive. We are proactive: we route involving the state of traffic that is expected to occur at the time of arrival of an 

ambulance to a particular road segment, not its current state the ambulance was dispatched to. 

III. THEORETICAL FRAMEWORK 

A. Long Short-Term Memory (LSTM) Networks 

LSTMs are a type of RNN which can be trained to be able to capture long-term dependencies. The underlying principle is that of 

cell state ($C_t$) that flows all along the chain with only insignificant linear interactions. The cell state gives the opportunity to the 

LSTM to remove or add information through gates.  

The Forget Gate (F t) determines what information to forget: 

$f_t=\sigma (W_f\cdot[h_{t-1},x_t]+b_f)$ 

The Input Gate ($i_t$) && candidate layer ($\tilde{C} t$) decide what new information is be to store: 

$i_t=\sigma(W_i \cdot [h_{t-1},x_t]+b_i)$ 

$\tilde{C}t=\tanh(W_C\cdot[h_{t-1},x_t]+b_C)$ 

The new cell state updated: 

$C_t=f_t\times C_{t-1}+i_t\times\tilde{C}_t$ 

 the Output Gate ($o_t$) determines the next hidden state as : 

$o_t=\sigma(W_o \cdot [h_{t-1},x_t]+b_o)$ 

$h_t = o_t \times \tanh(C_t)$ 

B. Gated Recurrent Unit (GRU) 

The GRU simplifies LSTM combining gates. It uses an Update Gate ($z_t$) && a Reset Gate ($r_t$). 

$z_t=\sigma (W_z \cdot [h {t-1}, x_t]) $ 
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$r_t=\sigma (W_r \cdot [h {t-1}, x_t]) $ 

$\tilde{h}_t=\tanh(W \cdot [r_t \times h_{t-1}, x_t]) $ 

$h_t= (1-z_t)\times h {t-1}+z_t\times\tilde{h}_t$ 

By removing the separate cell state, GRUs train faster than usal, which is effiecient when retrain models frequently on streaming 

traffic datasets. 

C. A* (A-Star) Pathfinding 

A* best-first search algorithm is known as A* which searches the path of least-cost between a starting node and a goal node. To 

access the nodes of the graph, it applies a distance-plus-cost heuristic rudimentary, a data f(n), to compute the arrangement in which 

to visit the nodes: 

$f(n) = g(n) + h(n)$ 

Where: 

$g(n)$ is the actual cost, the start node to node $n$. 

$h(n)$ is the heuristic, estimated cost from node, $n$ to the goal. 

For application, we modify the cost function to represent the Time rather than the distance: 

$g(n) = \sum_{e \in Path} \frac{Length(e)}{PredictedSpeed(e)}$ 

IV. PROPOSED METHODOLOGY 

   We have broken our system architecture into three functional modules that include Traffic Data Simulation, Predictive 

Modelling, and Routing Optimization. This system is coded in Python under TensorFlow/Keras to deep-learn and NetworkX to 

traverse the network. 

A. Dataset Generation 

 Since the privacy of real EMS data is limited, we created a synthetic dataset with a high fidelity that is a 10km x 10km 

urban grid (100 nodes, 360 edges). The simulation produced 15,000 samples with traffic that had the following feature vectors: 

Temporal Features: Time of Day 24 hours clock (0-23), Day of Week 7 days (0-6). 

Environmental Features: Weather Condition we set numerically (0=Clear, 1=Rain, 2=Fog, 3=Snow). 

Traffic Features: Vehicle Count (in beween 50-500), Road Condition we set numerically as (0=Good,1=Fair,2=Poor). 

Target Variable: Traffic Speed (km/h), modelled as inversely to congestion. 

The traffic speed $v$ was calculated using a non-linear interaction model as following formula: 

$v = v_{max} - \lambda_1(\frac{Vehicles}{Capacity})^2 - 

\lambda_2 (WeatherIndex) + \epsilon$ 

This makes sure that the exponential decay of the speed approaching road capacity limit is captured in the data just like real-life 

traffic jams. 

B. Hybrid Model Architecture 

We developed a stacked RNN. The input layer receives a series of the traffic features. This receives the LSTM layer of 64 

units to identify the long-term periodic aspects (e.g., the morning rush hour). The LSTM sequence output is injected into a 

GRU network with 32 units that are essential to obtain the short-term anomalies (such as sudden rain). This has then followed 

by a 16 neuron Dense layer (ReLU activation) that is followed by a final, single, linear output neuron to predict speed. To 

avoid overfitting, dropout (0.2) is used both at the end of recurrent layers.                 

 

# Pseudo-code for Hybrid Model Construction                 model = Sequential()                 model.add(LSTM(64, 

return_sequences=True, input_shape=(timesteps, features)))                 model.add(Dropout(0.2))                 model.add(GRU(32, 

return_sequences=False))                 model.add(Dropout(0.2))                 model.add(Dense(16, activation='relu'))                 

model.add(Dense(1)) # Regression output                 model.compile(optimizer='adam', loss='mse') 

             

C. Hyperparameter Tuning 

The model was optimized by doing a lot of tuning. The Adam optimizer has been chosen because it has adaptive learning rate 

features, which are necessary in the noisy traffic data. 

  

 

 

 

TABLE I: HYPERPARAMETER CONFIGURATION 

Parameter Value/Setting Justification 
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Optimizer Adam Handles sparse gradients, rapid convergence. 

Learning Rate 0.001 Standard starting point for regression tasks. 

Loss Function 
Mean Squared 

Error (MSE) 

Penalizes large errors significantly (e.g., 

complete gridlock). 

Batch Size 32 
Balance between memory usage and gradient 

stability. 

Epochs 15 
Early stopping observed convergence around 

epoch 12. 

Train/Test 

Split 
80/20 12,000 training samples, 3,000 testing samples. 

 

V. EXPERIMENTAL RESULTS 

A. Traffic Prediction Performance 

  We used six algorithms to benchmark our Hybrid model. Root Mean Square Error (RMSE) and Mean Absolute Error 

(MAE) were the metrics applied to evaluate the evaluation. The smaller values have more accuracy. 

 

TABLE II: COMPARATIVE ANALYSIS OF PREDICTION MODELS 

Algorithm RMSE MAE Performance Notes 

Historical 

Average 
9.72 7.99 Effective baseline but fails to capture any variability. 

ARIMA-Approx 9.72 7.99 
Performed poorly; unable to model non-linear road 

capacity constraints. 

Random Forest 2.09 1.66 
Strong performance, showing the value of non-linear 

decision trees. 

CNN-Approx 2.10 1.67 
Captured local patterns well but missed sequence 

dependencies. 

LSTM-Approx 2.29 1.80 
Good accuracy, but slower convergence than the Hybrid 

model. 

Hybrid 

LSTM+GRU 
2.06 1.63 Best Performance. Lowest error margin. 

    

   Hybrid LSTM+GRU model was slightly lower than the Random Forest regressor in RMSE (2.06 vs 2.09) although the 

model has a more sensible architecture to operate on streaming time-series data than the nature of the randomly selected Random 

forest trees. The significant disparity between the most advanced models (~2.0 RMSE) and the ARIMA/Historical ones (~9.7 

RMSE) emphasizes the fact that traffic nature is inherently non-linear and can only be properly addressed with the help of deep 

learning 

B. Routing Efficiency and Time Savings 

Predicting speed is not the end of the test and reducing the travel times is the ultimate test of the system. We modelled the 10 

random emergency dispatch cases on the 10x10 grid of the city. On each route we incurred three costs in the form of time of 

traversal: 

1. Existing Baseline: Standard routing depending upon historical average speeds (Static). 

2. Current Distance-Based: Routing purely using the shortest distance, ignoring traffic situation (Blind). 

3. Proposed Method: Dynamic routing using the Hybrid models LSTM+GRU predictions (Smart). 
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Fig. 1. Route Optimization Quality Comparison (Travel Time in Minutes). 

 

 The Proposed Method in the visualization of Fig. 1 always chose the routes that had less travel time. The difference was 

insignificant in simple situations (Route 1), and the difference was significant in complex congestion situations (Route 4, Route 7) 

                               

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 These results are summed up in Fig. 2. The Existing baseline of 14.10 minutes per trip was the average. Our "Proposed" 

system had an average of 10.06 minutes. It represents a time savings of about 4.04 minutes per trip or 28.6 percent of time savings. 

When cardiac arrest or stroke happens, the brain death onset is in a 4-6 minutes range of oxygen deprivation; therefore, the 4-minutes 

saved is not just an efficiency indicator; it is a clinical game-changer. 

VI. DISCUSSION 

A. Algorithmic Complexity vs. Real-Time Constraints 

  Although the Hybrid LSTM +GRU model is computationally more expensive in comparison with a simple Historical 

Average, the inference time of a trained model is at the order of milliseconds. A star algorithm (A) which is a graph traversal 

algorithm has a complexity of O(E). The real-world execution would be restricted by the rate of executing the pathfinding algorithm. 

Another idea that we offer is the strategy of dynamic Re-routing of the ambulance route, when the route is re-calculated after 60 

seconds so that the computational load is low enough to be done on onboard hardware. 

B. Edge Computing Architecture 

  To use this in a practical Smart City, the use of full cloud processing can become the source of latency (network delays). 

An Edge AI architecture that we propose is based on where the traffic intersection controllers (Edge nodes) locally execute the 

prediction models and publish the predicted speeds to oncoming EMS vehicles using Dedicated Short-Range Communications 

(DSRC). This decentralized strategy will make the system resilient even in case of cellular network failures. 

C. Policy Implications 

  The time savings that are shown (28.6) are a significant economic rationale to municipal investment in Smart City traffic 

sensors. The benefits of reducing the bad health outcomes as well as the increment in the efficiency of the EMS fleet (faster response 

time would require less ambulances to cover the same population) will outweigh the cost of updating the traffic infrastructure. 

VII. CONCLUSION AND FUTURE WORK 

  The present paper managed to show that Hybrid Deep Learning applied to EMS optimization with dynamic pathfinding 

could be viable. By predicting the traffic congestion within cities with high accuracy with an LSTM+GRU network, we were 

successful in converting the ambulance routing problem into a time-minimization problem instead of a distance-minimization 

problem. The fact that the result of the simulation was a reduction of the response times by almost a third proves the fact that this 

approach can save lives.  

  The next step will involve the implementation of Vehicle-to-Everything (V2X) communication, which means that 

ambulances will not only foretell the traffic but actively shape the traffic (e.g. turn a traffic light green before it becomes an 

Fig. 2. Aggregate Time Savings Analysis. 
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ambulance). Also, we intend to examine how the Drone Ambulances could be used in the ultra-dense urban cores, and we plan to 

generalize our pathfinding algorithms to the 3D airspace. 
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