

Internet of Things (IoT) in Smart Agriculture: A Comprehensive Review of Technologies, Applications, and Challenges

Jyoti N. Shrote¹

Assistant Professor, School of Information Technology (SOIT),
Indira University, Pune 411033, India

Vijay More²

Assistant Professor, School of Information Technology (SOIT),
Indira University, Pune 411033, India

Dr. Suwarna S. Kedari³

Assistant Professor, School of Information Technology (SOIT),
Indira University, Pune 411033, India

DOI: 10.29322/IJSRP.16.02.2026.p17043

<https://dx.doi.org/10.29322/IJSRP.16.02.2026.p17043>

Paper Received Date: 3rd January 2026

Paper Acceptance Date: 4th February 2026

Paper Publication Date: 12th February 2026

Abstract

Agriculture is undergoing a significant transformation due to the rapid advancement of digital technologies, among which the Internet of Things (IoT) plays a crucial role. Smart agriculture, also known as precision agriculture, leverages IoT-enabled sensors, devices, and data analytics to enhance productivity, optimize resource utilization, and ensure sustainable farming practices. This paper presents a comprehensive review of IoT technologies in smart agriculture, focusing on system architectures, enabling technologies, major applications, benefits, and implementation challenges. IoT-based agricultural systems integrate sensors, wireless communication, cloud computing, and data analytics to continuously monitor soil conditions, crop health, weather patterns, irrigation needs, and livestock activity. These systems enable farmers to make data-driven decisions, reduce operational costs, increase crop yield, and minimize environmental impact. Applications such as smart irrigation, crop monitoring, greenhouse automation, livestock tracking, pest detection, and supply chain traceability have shown remarkable improvements over traditional farming methods. Despite its immense potential, the adoption of IoT in agriculture faces several challenges including high deployment cost, lack of rural connectivity, data security and privacy concerns, interoperability issues, power constraints, and limited technical awareness among farmers. This paper critically reviews these challenges and discusses possible technological and policy-level solutions. The study concludes that IoT-driven smart agriculture is a key enabler of sustainable and climate-resilient farming. With proper infrastructure development, farmer training, and supportive government policies, IoT-based agricultural systems can significantly contribute to food security, economic growth, and environmental sustainability, especially in developing countries like India.

Keywords: Internet of Things, Smart Agriculture, Precision Farming, IoT Sensors, Sustainable Farming, Digital Agriculture.

Introduction

Agriculture is the backbone of many economies, especially in developing countries like India, where a large proportion of the population depends on farming for livelihood. However, traditional agricultural practices are increasingly challenged by climate change, water scarcity, soil degradation, labor shortages, and the growing demand for food due to rapid population growth. These challenges necessitate the adoption of modern, technology-driven farming methods to ensure sustainable and efficient agricultural production. Smart agriculture, also known as precision agriculture, represents a new paradigm that integrates information and communication technologies with conventional farming practices. Among these technologies, the Internet of Things (IoT) has

This publication is licensed under Creative Commons Attribution CC BY.

10.29322/IJSRP.16.02.2026.p17043

www.ijsrp.org

emerged as a powerful tool for transforming agriculture into a data-driven, intelligent, and automated system. IoT enables the deployment of interconnected sensors, devices, drones, and actuators that continuously collect and transmit data related to soil moisture, temperature, humidity, crop growth, pest infestation, and livestock health.

By analyzing this real-time data using cloud computing and artificial intelligence techniques, farmers can make accurate and timely decisions regarding irrigation, fertilization, harvesting, and disease control. This not only increases productivity but also reduces wastage of water, fertilizers, and pesticides, thereby promoting environmentally sustainable farming. In recent years, governments and research institutions across the world have shown increasing interest in digital agriculture and smart farming initiatives. In India, programs such as Digital India, Smart Agriculture Mission, and AgriTech startups are accelerating the adoption of IoT-based agricultural solutions. This paper aims to provide a comprehensive review of IoT in smart agriculture by discussing its architecture, enabling technologies, major applications, benefits, challenges, and future prospects. The objective is to present a holistic understanding of how IoT can revolutionize the agricultural sector and contribute to sustainable rural development.

Objectives of the Paper

1. To review and analyse the fundamental concepts, architecture, and key components of IoT-based smart agriculture systems.
2. To examine major applications of IoT in agriculture such as smart irrigation, crop monitoring, greenhouse automation, livestock management, and pest control.
3. To identify and discuss the benefits, challenges, and limitations associated with the adoption of IoT technologies in the agricultural sector.
4. To explore future trends and emerging technologies integrated with IoT for developing sustainable, intelligent, and data-driven agricultural practices.

Significance of the Study

This study is significant as it provides a comprehensive and systematic understanding of how Internet of Things (IoT) technologies are transforming traditional agricultural practices into intelligent, data-driven, and sustainable farming systems. By integrating real-time sensing, automation, and data analytics, IoT-based smart agriculture enhances productivity, optimizes resource utilization, and reduces operational costs, which is crucial for ensuring food security in the face of climate change, population growth, and shrinking arable land.

The study is academically valuable because it consolidates recent research, technological trends, and practical applications of IoT in agriculture into a single analytical framework. It serves as a useful reference for researchers, academicians, and students working in the areas of smart farming, precision agriculture, and agricultural informatics.

From a practical perspective, the study helps farmers, agribusiness managers, and policymakers understand how IoT solutions can improve crop monitoring, irrigation management, pest control, and supply chain efficiency. It highlights how data-driven decision-making can reduce wastage of water, fertilizers, and energy, thereby promoting environmentally sustainable agriculture.

The study is also socially and economically significant, as the adoption of smart agriculture technologies can increase farmers' income, reduce labor dependency, and improve rural livelihoods. Furthermore, it supports national and global goals related to sustainable development, digital agriculture, and climate-resilient farming systems by emphasizing the role of IoT in building efficient, resilient, and future-ready agricultural ecosystems.

IoT Architecture for Smart Agriculture

The Internet of Things (IoT) architecture for smart agriculture is designed to enable real-time monitoring, intelligent decision-making, and automated control of farming operations. This architecture typically consists of four main layers: sensing layer, communication layer, data processing layer, and application layer.

The sensing layer comprises various sensors and devices deployed in the field to collect environmental and crop-related data such as soil moisture, temperature, humidity, light intensity, pH level, and crop health indicators. These sensors continuously monitor field conditions and generate real-time data.

The communication layer is responsible for transmitting the collected data from the field to central servers using wireless technologies such as Wi-Fi, LoRaWAN, NB-IoT, ZigBee, or 4G/5G networks, depending on range, power consumption, and infrastructure availability.

The data processing layer includes cloud or edge computing platforms where the incoming data is stored, processed, and analyzed using data analytics and artificial intelligence techniques. This layer generates insights, predictions, and alerts.

Finally, the application layer provides user interfaces such as web dashboards and mobile applications that allow farmers to monitor farm conditions, receive recommendations, and control devices like irrigation systems. This layered architecture enables efficient, scalable, and intelligent agricultural management.

Core Components of IoT in Smart Agriculture

Component	Description
-----------	-------------

Sensors	Measure soil moisture, temperature, humidity, light, pH, crop health, etc.
Actuators	Control irrigation systems, valves, sprayers, and machinery
Communication Network	Transfers data using WiFi, LoRaWAN, NB-IoT, 4G/5G
Cloud Platform	Stores, processes, and analyzes large volumes of farm data
Data Analytics	Uses AI/ML to generate predictions and recommendations
User Interface	Mobile apps and dashboards for farmers and decision-makers

Role of IoT in Smart Agriculture

The Internet of Things (IoT) plays a transformative role in modern agriculture by enabling precision farming, efficient resource management, and data-driven decision-making. Traditional farming methods rely heavily on manual observation and experience, which often lead to inefficient use of water, fertilizers, and pesticides. IoT-based systems overcome these limitations by providing real-time, accurate, and continuous monitoring of agricultural fields.

Through the deployment of smart sensors and connected devices, IoT enables farmers to track soil moisture, temperature, humidity, crop growth, and weather conditions with high precision. This real-time data helps in optimizing irrigation schedules, reducing water wastage, and ensuring crops receive the right amount of nutrients at the right time. Automated irrigation systems controlled by IoT platforms can respond instantly to changing field conditions, improving crop productivity and sustainability.

IoT also supports early detection of plant diseases, pest attacks, and nutrient deficiencies by integrating sensors, drones, and imaging systems. This allows timely interventions and reduces crop losses. Moreover, IoT facilitates farm equipment monitoring, livestock tracking, and supply chain transparency. By integrating IoT with cloud computing and artificial intelligence, agriculture is becoming more intelligent, efficient, and resilient, ensuring higher yields, lower costs, and environmentally sustainable farming practices.

Components of an IoT-Based Smart Agriculture System

An IoT-based smart agriculture system integrates advanced digital technologies to monitor, analyze, and optimize farming activities in real time. It consists of multiple interconnected components that work together to collect data from the field, process it intelligently, and perform automated actions to improve productivity, efficiency, and sustainability in agriculture.

- Sensing Layer (Sensors and Data Collection Devices):** This layer consists of various sensors such as soil moisture, temperature, humidity, pH, light, and nutrient sensors. These devices continuously collect real-time data from the field environment and crops. Accurate sensing helps in monitoring soil conditions, weather variations, and crop health, forming the foundation of smart farming decisions.
- Communication and Networking Layer:** This component is responsible for transmitting data from field sensors to servers or cloud platforms using technologies such as Wi-Fi, GSM, LoRaWAN, ZigBee, and NB-IoT. Reliable communication ensures uninterrupted data flow, enabling real-time monitoring, remote access, and quick response to changing field conditions.
- Data Processing and Cloud Computing Layer:** This layer stores and processes large volumes of agricultural data collected from sensors. Cloud platforms apply data analytics, machine learning, and decision-support algorithms to transform raw data into useful insights. It helps farmers in predicting crop needs, detecting anomalies, and planning agricultural activities efficiently.
- Control and Actuation System:** The control system includes automated devices such as smart irrigation controllers, fertilizer dispensers, climate controllers, and robotic equipment. Based on analyzed data and predefined rules, these actuators perform actions automatically, reducing manual intervention and ensuring timely operations in farming processes.
- User Interface and Decision Support System:** This component provides farmers with mobile or web-based dashboards to monitor field conditions, receive alerts, and view recommendations. It supports easy interaction with the system, enabling farmers to make informed, data-driven decisions and manage their farms efficiently from anywhere.

Benefits of IoT in Smart Agriculture

The integration of Internet of Things (IoT) technology in agriculture has transformed traditional farming into a data-driven, efficient, and sustainable system. By enabling real-time monitoring, automation, and intelligent decision-making, IoT provides numerous benefits that enhance productivity, reduce costs, and promote environmentally responsible farming practices.

- Improved Crop Productivity and Yield:** IoT-based monitoring systems provide accurate information about soil health, moisture levels, weather conditions, and crop growth stages. This allows farmers to apply the right amount of water, fertilizers, and pesticides at the right time. Such precision farming practices significantly improve crop yield, quality, and overall farm productivity.

- Efficient Use of Water and Other Resources:** Smart irrigation systems powered by IoT ensure that water is supplied only when and where it is needed. This prevents over-irrigation and water wastage. Similarly, optimized use of fertilizers and energy reduces resource consumption, lowers operational costs, and supports sustainable agricultural practices.
- Real-Time Monitoring and Early Problem Detection:** IoT sensors continuously monitor crop conditions, pest activity, and environmental factors. Any abnormal changes such as disease outbreaks, water stress, or temperature fluctuations are detected early. This enables timely corrective action, reducing crop losses and preventing large-scale damage.
- Automation and Reduction of Manual Labour:** With the help of automated irrigation systems, climate controllers, and smart machinery, many agricultural operations can be performed without human intervention. This reduces labour dependency, saves time, increases operational efficiency, and allows farmers to focus on strategic decision-making rather than routine tasks.
- Data-Driven Decision Making and Farm Management:** IoT platforms collect and analyze large volumes of data to generate useful insights and recommendations. Farmers can plan sowing schedules, harvesting time, and resource allocation more scientifically. This improves farm planning, risk management, and long-term sustainability of agricultural operations.

Applications of IoT in Smart Agriculture

The application of Internet of Things (IoT) technology in agriculture has enabled the development of smart, automated, and data-driven farming systems. IoT solutions are being widely used across different agricultural activities to improve productivity, reduce losses, and ensure sustainable use of resources.

- Smart Irrigation Systems:** IoT-based smart irrigation systems use soil moisture sensors, weather data, and crop requirements to automatically control water supply. This ensures optimal watering of crops, prevents water wastage, and improves crop health. Such systems are especially useful in water-scarce regions and help in promoting sustainable water management.
- Precision Farming and Crop Monitoring:** IoT sensors continuously monitor crop growth, soil conditions, temperature, humidity, and nutrient levels. This real-time data helps farmers apply fertilizers, pesticides, and water precisely where needed. Precision farming reduces input costs, improves crop yield, and minimizes environmental impact.
- Greenhouse Automation and Climate Control:** In greenhouse farming, IoT devices are used to control temperature, humidity, light intensity, and carbon dioxide levels automatically. Smart controllers adjust environmental conditions based on crop requirements, ensuring optimal growth conditions throughout the year and increasing productivity and crop quality.
- Livestock Monitoring and Management:** IoT-based wearable devices and sensors are used to monitor animal health, movement, feeding behavior, and body temperature. Early detection of diseases and abnormal behavior helps in timely treatment, improves animal welfare, and enhances overall livestock productivity and farm management efficiency.
- Pest and Disease Detection:** IoT systems combined with image sensors and environmental monitoring devices help in detecting pest attacks and plant diseases at an early stage. Farmers receive alerts when abnormal conditions are detected, allowing them to take preventive measures and reduce crop damage and chemical usage.

Major Applications of IoT in Smart Agriculture

Application Area	IoT Technologies Used	Purpose	Benefits
Smart Irrigation	Soil moisture sensors, weather sensors, controllers	Optimize water usage	Saves water, improves crop yield
Precision Farming	GPS, soil sensors, drones	Site-specific crop management	Reduces fertilizer and pesticide use
Crop Health Monitoring	Cameras, drones, sensors	Detect diseases and pests	Early diagnosis, reduces crop loss
Weather Monitoring	IoT weather stations	Forecast climate conditions	Better planning of farming activities
Livestock Monitoring	Wearable sensors, RFID	Track animal health and movement	Improves animal health and productivity
Greenhouse Automation	Temperature, humidity, CO ₂ sensors	Control climate conditions	Increases production quality
Storage & Supply Chain	Temperature and humidity sensors	Monitor storage and transport	Reduces post-harvest losses

Challenges and Limitations of IoT in Smart Agriculture

Although IoT offers tremendous potential for transforming agriculture into a smart and sustainable system, its adoption faces several technical, economic, and social challenges. These limitations must be addressed to ensure effective, scalable, and inclusive implementation of IoT-based agricultural solutions.

- 1. High Initial Investment and Maintenance Cost:** The deployment of IoT infrastructure requires significant investment in sensors, communication devices, cloud platforms, and automation systems. Small and marginal farmers often find it difficult to afford these technologies. In addition, maintenance, replacement of faulty devices, and system upgrades further increase the overall cost.
- 2. Connectivity and Network Limitations in Rural Areas:** Most agricultural regions, especially in developing countries, suffer from poor internet connectivity and unreliable power supply. IoT systems depend heavily on stable network connections for data transmission and real-time monitoring. Limited connectivity reduces system reliability and restricts large-scale adoption of smart farming solutions.
- 3. Data Security and Privacy Issues:** IoT-based agricultural systems collect large volumes of sensitive data related to farm operations, production, and resources. This data is vulnerable to cyber-attacks, unauthorized access, and misuse. Ensuring data security, privacy, and secure communication between devices is a major challenge in IoT deployment.
- 4. Technical Complexity and Lack of Digital Skills:** Many farmers lack the technical knowledge required to operate and maintain IoT-based systems. The complexity of hardware, software platforms, and data analytics tools creates dependency on technical experts. This limits independent usage and slows down the adoption of smart agriculture technologies.
- 5. Interoperability and Standardization Issues:** Different IoT devices and platforms often use different communication protocols and data formats, making integration difficult. Lack of common standards leads to compatibility problems between systems from different vendors, increasing deployment complexity and reducing system flexibility and scalability.

Future Scope and Emerging Trends of IoT in Smart Agriculture

The future of agriculture is increasingly driven by digital technologies, and IoT is expected to play a central role in building intelligent, autonomous, and sustainable farming systems. Continuous advancements in artificial intelligence, big data, robotics, and cloud computing are expanding the scope and impact of IoT in agriculture.

- 1. Integration of IoT with Artificial Intelligence and Machine Learning:** Future smart farming systems will increasingly combine IoT with AI and machine learning to enable predictive analytics, automated decision-making, and intelligent crop management. These technologies will help in forecasting weather conditions, detecting diseases early, optimizing irrigation schedules, and improving overall farm productivity with minimal human intervention.
- 2. Use of Drones and Robotics in Agriculture:** IoT-enabled drones and agricultural robots will be widely used for crop monitoring, spraying pesticides, soil analysis, and harvesting. These autonomous systems will collect real-time data, perform repetitive tasks efficiently, and reduce labour dependency, thereby increasing precision and operational efficiency in large-scale farming.
- 3. Blockchain Integration for Traceability and Transparency:** The integration of IoT with blockchain technology will enhance transparency, traceability, and trust in the agricultural supply chain. Data collected from IoT sensors can be securely recorded on blockchain platforms, ensuring food safety, quality assurance, and better market access for farmers.
- 4. Edge Computing for Faster and Reliable Decision Making:** Instead of relying only on cloud servers, future IoT systems will increasingly use edge computing to process data locally near the farm. This reduces latency, improves real-time response, lowers bandwidth usage, and ensures continuous operation even in areas with poor internet connectivity.
- 5. Expansion of Smart Farming to Small and Marginal Farmers:** With decreasing costs of sensors and digital devices, IoT solutions will become more accessible to small and marginal farmers. Government initiatives, cooperative models, and public-private partnerships will play a crucial role in promoting inclusive and large-scale adoption of smart agriculture technologies.

Comparative Analysis: Traditional Agriculture vs IoT-Based Smart Agriculture

Traditional agriculture largely depends on manual observation, experience-based decision-making, and uniform resource application. In contrast, IoT-based smart agriculture relies on real-time data, automation, and precision technologies. The following table highlights the key differences between traditional and IoT-enabled farming systems.

Comparison between Traditional and IoT-Based Smart Agriculture

Aspect	Traditional Agriculture	IoT-Based Smart Agriculture
Decision Making	Based on experience and intuition	Based on real-time data and analytics
Irrigation Method	Manual or fixed-schedule irrigation	Automated, sensor-based smart irrigation
Resource Usage	High wastage of water, fertilizers, energy	Optimized and efficient resource utilization
Crop Monitoring	Periodic and manual inspection	Continuous real-time monitoring using sensors
Pest & Disease Control	Reactive treatment after visible damage	Early detection and preventive action
Labour Requirement	High dependency on manual labour	Reduced labour through automation
Cost Efficiency	Higher long-term operational cost	Lower operational cost after initial setup
Yield and Productivity	Moderate and inconsistent	Higher, stable, and predictable
Environmental Impact	Higher due to overuse of chemicals and water	Lower due to precision and controlled usage

Scalability	Difficult to scale efficiently	Easily scalable using digital platforms
-------------	--------------------------------	---

Conclusion

The Internet of Things (IoT) has emerged as a transformative technology with immense potential to revolutionize the agricultural sector by making farming more intelligent, data-driven, and sustainable. This review has highlighted how IoT-based smart agriculture systems integrate sensors, communication networks, cloud platforms, and analytics tools to enable real-time monitoring, automation, and precision decision-making across the entire farming lifecycle. From soil and crop monitoring to smart irrigation, livestock management, greenhouse automation, and pest detection, IoT applications are significantly improving productivity, resource efficiency, and environmental sustainability.

The study has also shown that IoT-based agriculture offers numerous benefits such as improved crop yield, optimized use of water and fertilizers, reduced operational costs, early detection of diseases, and better farm management through data-driven insights. By minimizing human intervention and enabling continuous monitoring, smart farming systems help farmers respond more effectively to climatic uncertainties and market demands. At the same time, the comparative analysis between traditional and IoT-based agriculture clearly demonstrates the superiority of smart farming in terms of efficiency, scalability, and sustainability.

However, the widespread adoption of IoT in agriculture is still constrained by challenges such as high initial investment, poor rural connectivity, data security concerns, lack of technical skills, and interoperability issues. Addressing these challenges requires coordinated efforts from governments, technology providers, researchers, and agricultural institutions. Policies supporting digital infrastructure, farmer training programs, affordable technology solutions, and standardization frameworks are essential for inclusive and large-scale implementation.

References

1. Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E. H. M. (2019). Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. *IEEE Access*, 7, 129551–129583. <https://doi.org/10.1109/ACCESS.2019.2932609>
2. Bacco, M., Barsocchi, P., Ferro, E., Gotta, A., & Ruggeri, M. (2019). The digitisation of agriculture: A survey of research activities on smart farming. *Array*, 3–4, 100009. <https://doi.org/10.1016/j.array.2019.100009>
3. Balaji, B. H., Balaji, M. S., & Venkatesh, N. (2017). Automated irrigation system using IoT. *International Journal of Computer Science and Information Technologies*, 8(1), 131–133.
4. Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., & Ellis, K. (2017). IoT in agriculture: Designing a Europe-wide large-scale pilot. *IEEE Communications Magazine*, 55(9), 26–33. <https://doi.org/10.1109/MCOM.2017.1600528>
5. Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. *IEEE Internet of Things Journal*, 5(5), 3758–3773. <https://doi.org/10.1109/JIOT.2018.2844296>
6. Farooq, M. S., Riaz, S., Abid, A., Abid, K., & Naeem, M. A. (2020). A survey on the role of IoT in agriculture for the implementation of smart farming. *IEEE Access*, 8, 156237–156271. <https://doi.org/10.1109/ACCESS.2020.3022558>
7. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. *Future Generation Computer Systems*, 29(7), 1645–1660. <https://doi.org/10.1016/j.future.2013.01.010>
8. Kamaras, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. *Computers and Electronics in Agriculture*, 143, 23–37. <https://doi.org/10.1016/j.compag.2017.09.037>
9. Li, L., Zhang, Q., & Huang, D. (2014). A review of imaging techniques for plant phenotyping. *Sensors*, 14(11), 20078–20111. <https://doi.org/10.3390/s141120078>
10. Madushanki, A. I., Halgamuge, M. N., Wirasagoda, H. M. N. D., & Syed, A. (2019). Adoption of the Internet of Things (IoT) in agriculture and smart farming towards urban greening: A review. *International Journal of Advanced Computer Science and Applications*, 10(4), 11–28.
11. Patel, N. R., Mehta, H., & Joshi, M. (2020). Smart agriculture using IoT: A survey. *International Journal of Engineering Research & Technology*, 9(3), 1–6.
12. Ray, P. P. (2017). Internet of Things for smart agriculture: Technologies, practices and future direction. *Journal of Ambient Intelligence and Smart Environments*, 9(4), 395–420. <https://doi.org/10.3233/AIS-170440>
13. Rose, D. C., & Chilvers, J. (2018). Agriculture 4.0: Broadening responsible innovation in an era of smart farming. *Frontiers in Sustainable Food Systems*, 2, 87. <https://doi.org/10.3389/fsufs.2018.00087>
14. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming – A review. *Agricultural Systems*, 153, 69–80. <https://doi.org/10.1016/j.agsy.2017.01.023>

15. Zhang, Y., Wang, G., & Jin, Y. (2018). A survey of IoT applications in agriculture. *Journal of Information Processing Systems*, 14(4), 815–828.