

Blockchain based Innovations in FinTech: A Review

Dr. Suwarna Suresh Kedari

Assistant Prof. School of Information Technology, Indira University, Pune

DOI: 10.29322/IJSRP.16.02.2026.p17042

<https://dx.doi.org/10.29322/IJSRP.16.02.2026.p17042>

Paper Received Date: 6th January 2026

Paper Acceptance Date: 7th February 2026

Paper Publication Date: 12th February 2026

Abstract

Blockchain Technology leads to most revolutionary developments in the financial technology (FinTech) industry. This technology improves efficiency, security and transparency of financial services. Traditional financial systems deals with issues like high transaction cost, fraud, delays in international payments and a lack of trust. Blockchain resolves many of these problems effectively with features of blockchain like decentralization, unchangeable ledger. This gives overview of Blockchain and FinTech Technology, further it explains core aspects of FinTech. Paper also compares the traditional FinTech and Blockchain based FinTech against various banking standards. This study explores blockchain based FinTech applications. The final section of paper highlights challenges and limitations of FinTech innovations. Emerging trends and research directions are discussed in last section highlighting significance of blockchain influencing FinTech.

Keywords: FinTech, Blockchain, Digital Payment, Smart Contracts, Decentralized Finance, DeFi

Introduction

Since 2008 FinTech growth has been exponential leading global investment reaching over \$200 billion annually in the recent years. This sector has grown from few companies to thousands and having a unicorn valuation is now becoming common. FinTech is emerged after the 2008 financial crisis and expanded to annual growth rate exceeding 46%[1]. Smartphone penetration, changing consumer expectations for digital services, open banking initiatives are the key growth drivers of FinTech growth. COVID-19 pandemic also accelerated digital adoption. China, US and Europe are major markets have seen different growth patterns in mobile payments which dominates Asia, where as lending and wealth management is strong in Western markets [2].

Traditional Financial Systems Limitations

Limitations of traditional banking include a lack of flexibility, slow adaptation for technological advancements. The rise of financial technology (FinTech) has overcome these limitations whereas traditional banks struggle to meet changing customer expectations and behaviors. Traditional banks also face regulatory and security challenges. The need for digital transformation with FinTechs is to develop new business models and innovative products to remain competitive in the evolving financial landscape [12].

Traditional banking is facing declining competitiveness, a rise in bank failures and an increase in risk-taking as banks shift to riskier but higher-returning nontraditional activities. In order to manage these risks and give banks more flexibility while maintaining financial stability, strict regulations, capital requirements, open disclosure and transparent accounting can be helpful. [10].

Limitations for traditional banking incorporate poor operating profits, challenges with balance-sheet performance and problems brought on by a negative rate environment. Adaptability is also hampered by growing expenses and regulatory pressures. By providing data-rich, affordable services, the rise of FinTech disruptors jeopardizes core earnings and erodes customer loyalty. Because traditional banks frequently view cybersecurity as non-strategic, making them susceptible to cybercrime, cybersecurity continues to be a major concern. Overall, these factors contribute to a declining competitive edge in an evolving financial landscape [11].

Blockchain Technology

Blockchain technology is a decentralised, coded security system which permits the development of novel digital platforms and services using this developing technology. Trust is especially important in areas like the banking sector and blockchain is thought to be the most recent innovation in technology.

Blockchain is a distributed ledger architecture in which transactions are grouped into blocks and appended to a shared history maintained by many network participants. In the original Bitcoin design, each block includes (i) a set of transactions, (ii) a timestamped header and crucially (iii) a cryptographic hash pointer to the previous block, which links blocks into an ordered chain.

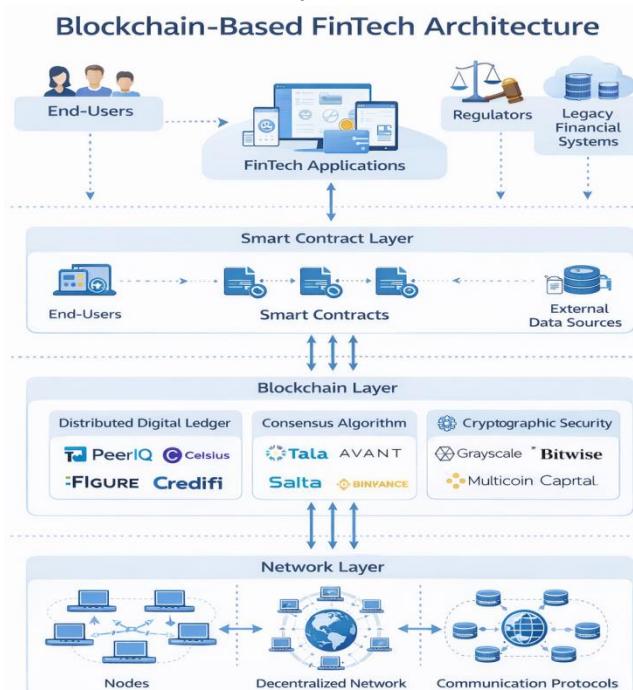
This publication is licensed under Creative Commons Attribution CC BY.

Because a block's identifier is derived from a cryptographic hash of its contents (and because later blocks commit to earlier ones via hash pointers), any alteration to prior data changes the hash and breaks the linkage, making tampering evident and computationally costly to redo at scale [15][18][19].

Blockchain's decentralization and consensus mechanisms are its architectural strengths. Blockchain data is dispersed among several network nodes or separate computers that each keep a copy of the ledger, in contrast to conventional databases that are managed by a single organization. This eliminates single points of failure or control. Decentralization allows participants to transact in a trustless environment where no single party must be trusted by default by shifting trust from middlemen to cryptographic and algorithmic protocols [17].

Decentralization is a crucial feature that makes blockchain use in FinTech possible. Rather than a single organization owning the database, numerous independent nodes store and validate the ledger, minimizing single points of failure and restricting unilateral control. Blockchains employ consensus mechanisms (such as proof-based or committee-based approaches) that allow dispersed nodes to agree on which transactions are legitimate and which block becomes the next accepted state in order to maintain consistency across all replicas. According to research surveys, consensus is the process that transforms a peer-to-peer network into a cohesive financial record by striking a balance between performance and energy/latency tradeoffs that are important for payment and settlement workloads and security (such as resistance to double spending) [16].

Overview of FinTech


FinTech has emerged as a disruptive force in the financial industry, utilizing technology to enhance and automate financial services. This shift is being driven by the integration of cutting-edge technologies like blockchain, big data analytics and artificial intelligence. FinTech have disrupted traditional banking models and introduced novel, customer-focused solutions. FinTech applications provide customers with improved accessibility, convenience and customized experiences across a range of industries, such as digital payments, peer-to-peer lending, robo-advisory services and cryptocurrency exchanges. [1].

Financial technology, or FinTech for short, is a revolutionary development in the financial services sector. One of the significant shifts in the financial landscape brought about by the global financial crisis and technological advancements is the emergence of financial technology, or fintech. [6]. Some of the most prominent and active fields that fall under the umbrella of FinTech are as follows: Smart contracts, open banking, blockchain technology, regtech, insurtech, unbanked services, robo-advisors, crowdfunding, cryptocurrency and digital currency[15].

FinTech is the creative application of technology to enhance and automate the provision and utilization of financial services. It includes a broad range of technological developments and applications that are revolutionizing the financial sector.[13]

The traditional banking industry has undergone a dramatic change as a result of fintech, which has presented both opportunities and difficulties that require established financial institutions to adapt and innovate. Traditional banking has been transformed by fintech, which has created a dynamic environment in which banks must incorporate these solutions to stay competitive while overcoming new regulatory obstacles. [13]

Conceptual Architecture of a Blockchain-Based FinTech System

The diagram shows the complete layered architecture of a blockchain-based FinTech system. The diagram illustrates how blockchain-based FinTech systems combine decentralized infrastructure with user-facing financial services to enable safe transactions, automated trust, regulatory compliance and compatibility with conventional financial systems.

Top layer (Stakeholders / Users): Banks, FinTech applications, insurance companies, institutional investors and individual consumers make up the top layer (Stakeholders/Users). Digital platforms like web portals, mobile apps and enterprise systems are how these participants engage with the system. The demand aspect of financial services is represented by this layer.

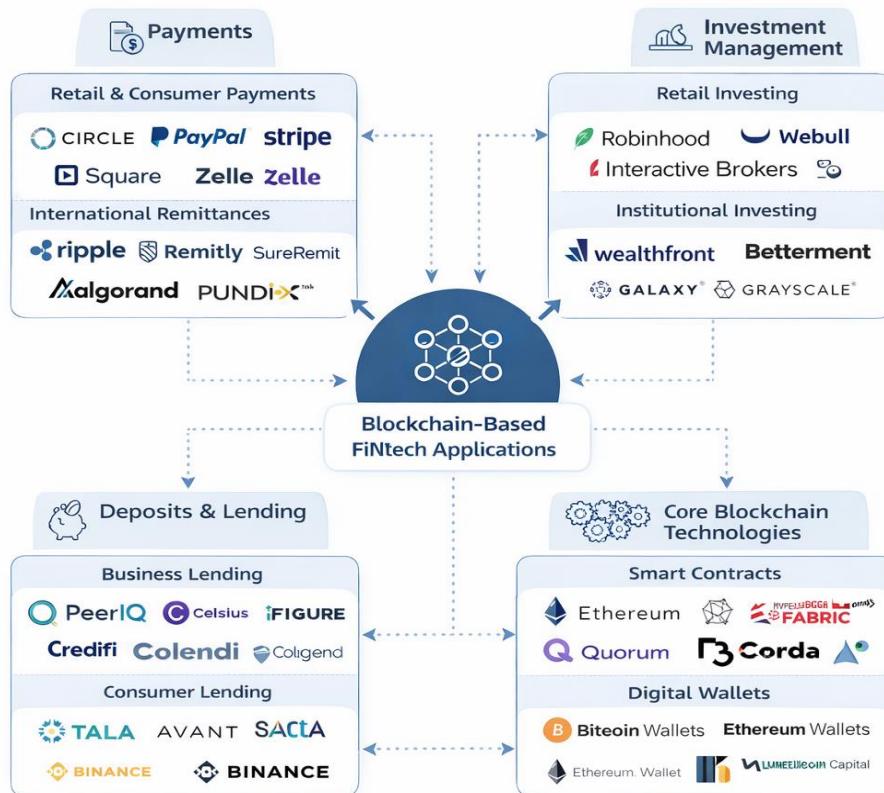
User Interface Layer: Users can initiate transactions like payments, investments, loans, or insurance requests through this Layer. It guarantees safe communication with backend services, usability and authentication.

Application & Smart Contract Layer: This layer uses smart contracts and decentralized applications (DApps) to implement FinTech services like insurance, deposits and lending and payments. This layer contains FinTech services like payments, deposits and lending and insurance, implemented using smart contracts and decentralized applications (DApps). Smart contracts eliminate manual processing and middlemen by encoding financial rules and automatically executing transactions when predetermined conditions are met.

Blockchain Network Layer: This layer provides fundamental ledger functionality. Both consortium or permissioned blockchains (like Hyperledger Fabric and Quorum) and public blockchains (like Bitcoin and Ethereum) are supported. This layer upholds the distributed ledger, guaranteeing mutual trust, transparency and immutability among all parties involved.

Infrastructure & Consensus Layer: Blockchain nodes, consensus methods (PoW, PoS, PBFT, etc.), cryptographic security, off-chain data storage and digital wallets are all part of the Infrastructure & Consensus Layer, which is located at the bottom. Network security, block creation, transaction validation and performance optimization fall under the purview of this layer.

Use-Case Differentiation of Public, Private and Consortium Blockchains


Blockchain Type	Best-Suited FinTech Use-Cases	Typical Applications	Reason for Suitability
Public Blockchain	Open and Decentralized Financial systems	<ul style="list-style-type: none">• Cryptocurrencies (Bitcoin, Ethereum)• Decentralized Finance (DeFi) platforms• Tokenized digital assets• Peer-to-peer payments	<ul style="list-style-type: none">• Permissionless access• High transparency• Trustless environmentWithout intermediaries• Global participation
Private Blockchain	Internal and Enterprise Financial operations	<ul style="list-style-type: none">• Internal bank settlements• KYC/AML data Management within a bank• Inter department reconciliation• Internal payment processing	<ul style="list-style-type: none">• High transaction speed• Strong privacy and access control• Regulatory compliance• Centralized governance
Consortium Blockchain	Multi institution and interbank collaboration	<ul style="list-style-type: none">• Cross-border Interbank payments• Trade finance platforms• Shared KYC utilities• Interbank clearing and settlement	<ul style="list-style-type: none">• Shared control among trusted institutions• Balance between decentralization and privacy• Faster settlement than Public Blockchains• Better regulatory alignment

Core Aspects of FinTech

- Enhancing Financial Services:** FinTech seeks to improve the banking industry's competitiveness, customer satisfaction and operational efficiency, among other aspects of financial services. This frequently entails simplifying procedures, providing more individualized services and improving user convenience in financial transactions [13]
- Driving Business Model Shifts:** FinTech makes it possible for the financial sector's conventional business models to undergo a substantial change. It makes it possible to offer financial services and products in novel ways, frequently upending long-standing procedures and opening up new markets.
- Leveraging Advanced Technologies:** Blockchain and Application Programming Interfaces (APIs) are two important technologies that support FinTech. For example, blockchain technology can offer transparent and safe transaction records and APIs enable smooth communication and integration between various financial platforms and services [13].

- **Improving Financial Inclusion:** A crucial impact of FinTech is its role in improving access to financial services, particularly for underserved populations. This can involve digital payment systems, mobile banking and other innovative solutions that reach individuals and businesses previously excluded from traditional banking.
- **Refining Risk Management:** FinTech also contributes to refining risk management practices in the financial sector. This can be achieved through advanced data analytics, artificial intelligence and machine learning to better assess risks, detect fraudulent activities and optimize financial portfolios[13].

Blockchain-Based FinTech Applications

AI generated image

Discussion:

- Traditional FinTech vs Blockchain-based FinTech: the following table compares key metrics of blockchain-based fintech applications against traditional banking standards

Feature / Metric	Traditional Banking (Legacy)	Blockchain Fintech	Primary Benefit / Impact
Cross-Border Speed	3–5 business days (via SWIFT)	30 seconds – 3 minutes	Eliminates settlement "float" and liquidity gaps.
Transaction Fees	\$25–\$50 + 1–3% FX markup	\$0.01 – \$5.00 (Network dep.)	Cost reduction of 70–85% for global transfers.
Settlement Time	T+2 or T+1 (Standard)	Atomic / Instant	Real-time capital Movement & better cash flow.
Asset Access	High barriers (Accredited only)	Fractional Ownership	Democratizes high value real estate & art.
KYC/ID Verification	3–5 days (Manual/Siloed)	12.5 seconds (via ZK-Proofs)	Reduces repetitive verification and data leaks.
Operating Hours	Business hours (Monday–Friday)	24/7/365	Continuous global market operation.

Compliance Cost	High (Internal overhead)	40% lower (Automated)	Smart contracts Automate AML/KYC checks.
------------------------	--------------------------	---------------------------------	---

Challenges and Limitations

- **Adoption barriers:** Research indicates that trust, financial literacy and safety have a significant impact on FinTech adoption. The Unified Theory of Acceptance and Use of Technology (UTAUT) and the Technology Acceptance Model (TAM) are the most widely used theoretical frameworks for understanding adoption patterns. Governments and central banks show crypto-hesitancy, especially when it comes to cryptocurrency, due to its links to illegal activity, speculation and its capacity to circumvent government-imposed capital controls.
- **Scalability:** FinTech scalability is constrained by blockchain technology's immaturity and lack of regulation, regulators' reluctance to accept cryptocurrencies and the challenge of fostering trust among a wide range of users. Technical limitations, growing infrastructure and security expenses and the difficulty of upholding compliance and service quality in a financial environment that is changing quickly all exacerbate these problems.
- **High energy consumption:** The high energy consumption of Proof of Work (PoW) blockchains like Bitcoin, which need intensive computation and produce substantial carbon emissions, presents significant sustainability challenges for blockchain-based FinTech systems. Proof of Stake (PoS), DPoS, and PBFT are examples of energy-efficient alternatives that significantly reduce power consumption; Ethereum's transition to PoS reduced energy consumption by over 99%. Sustainability is further enhanced by green-blockchain strategies like carbon offsets, permissioned or consortium blockchains, and the use of renewable energy. Furthermore, through carbon credit tracking, ESG reporting, and green investment products, blockchain can actively support sustainable finance, demonstrating its potential to develop into an environmentally conscious and energy-efficient FinTech infrastructure.
- **Regulatory uncertainty:** Because governments and central banks are still reluctant to accept crypto-currencies because of worries about illicit activity, speculation and capital control evasion, regulatory uncertainty is a significant obstacle for FinTech. FinTech companies face legal and operational risks as a result of unclear and inconsistent regulations, which erode trust and make it more difficult to comply across jurisdictions. As a result, they frequently have to change or leave markets when new regulations are implemented.
- **Data privacy:** Because trust and security are crucial for user adoption, particularly in banking and because sophisticated technologies like AI and machine learning require vast amounts of sensitive financial and personal data, data privacy is a significant challenge in FinTech. FinTech companies find it challenging to safeguard user privacy while still providing effective and customized services due to the widespread collection and use of such data, as well as regional regulatory variations and cyber-security threats.
- **Security threats:** Security Because user adoption, particularly in banking, depends on trust and safety, threats are a fundamental challenge in FinTech. Robust security and user protection are crucial industry priorities because, despite blockchain's strong security features, FinTech systems are vulnerable to risks like cyberattacks, fraud, data breaches and service disruptions due to its immature and unregulated implementation and regulatory concerns about cryptocurrencies.
- **Integration with legacy systems:** Because traditional banks rely on antiquated infrastructures that were not intended for contemporary digital technologies like AI, IoT and cloud platforms, integrating FinTech solutions with legacy banking systems is a significant challenge. While maintaining continuous operations, regulatory compliance and data security, achieving this integration necessitates expensive, intricate and time-consuming middleware solutions and system upgrades.

Future Trends and Research Directions

- **CBDCs:** A country's central bank issues and oversees the Central Bank Digital Currencies (CBDCs), which are digital versions of that country's official currency. Government-backed centralized digital currencies are known as CBDCs. Combining the dependability and security of fiat money with the efficiency of digital transactions is the aim of CBDCs.
- **Web3 and DeFi:** The next development of the internet and international financial systems is represented by Web3 and Decentralized Finance (DeFi). Web3, which is based on blockchain technology, eliminates the need for centralized platforms like Google or Facebook by promoting a decentralized web where users own and control their digital identities, assets and data. Web3 establishes an open, user-driven ecosystem where ownership and governance are dispersed via DAOs and cryptographic tokens through smart contracts, dApps and token-based economies.
- **Blockchain + AI:** Blockchain + AI is a potent technological convergence that improves digital systems' intelligence, efficiency and trustworthiness. Blockchain provides a secure, transparent and unbreakable foundation for data storage and transactions, while artificial intelligence (AI) offers automation, prediction and data-driven decision-making. When combined, they enable

decentralized but intelligent ecosystems where AI models can operate on verified, immutable data and blockchain ensures the integrity and traceability of AI's decisions.

Conclusion

The paper describes how FinTech has evolved since blockchain technology was developed. It explains its basic components, blockchain-based FinTech applications, limitations and challenges and prospective future trends and research areas. The study suggests that future research on fintech adoption develop a true construct because both fintech and consumer behavior are still evolving. Artificial intelligence companies will thrive in the upcoming years, indicating the industry's continuous growth and advancement.

References

1. Barroso, M., & Laborda, J. (2022). Digital transformation and the emergence of the Fintech sector: Systematic literature review. *Digital Business*, 2(2), 100028.
2. Kumari, A., & Devi, N. C. (2022). The impact of fintech and blockchain technologies on banking and financial services. *Technology Innovation Management Review*, 12(1/2).
3. Trivedi, S., Mehta, K., & Sharma, R. (2021). Systematic literature review on application of blockchain technology in E-finance and financial services. *Journal of technology management & innovation*, 16(3), 89-102.
4. Ojih, J. E., Joshi, P., Mohture, A., & Gupta, S. K. (2023). Crypto-hesitancy: is regulation the answer?. *Journal of Indian Business Research*, 15(1), 9-22.
5. Khatwani, R., Mishra, M., Bedarkar, M., Nair, K., & Mistry, J. (2023). Impact of blockchain on financial technology innovation in the banking, financial services and insurance (BFSI) sector. *Journal of Statistics Applications and Probability*, 12(1), 181-189.
6. Firmansyah, E. A., Masri, M., Anshari, M., & Besar, M. H. A. (2022). Factors affecting fintech adoption: a systematic literature review. *FinTech*, 2(1), 21-33.
7. Koskipää, S. (2022). Software development in the FinTech industry: A literature review.
8. Adwani, R., & Rao, V. S. (2025). Decentralized finance (defi): Reshaping traditional banking systems. *European Economic Letters*, 0 [10.52783/eel. v15i1. 2432].
9. Xie, P., Kassim, A. A. M., Wei, M., & Helmi, R. A. A. (2024). Comprehensive review of blockchain applications in fintech companies. *Journal of System and Management Sciences*, 14(1), 98-119.
10. Edwards, F. R., & Mishkin, F. S. (1995). The Decline of Traditional Banking: Implications for Financial Stability and Regulatory Policy. *Research Papers in Economics*. <https://econpapers.repec.org/paper/nbrnberwo/4993.htm>
11. Gurdgiev, C., & Gurdgiev, C. (2016). Is the Rise of Financial Digital Disruptors Knocking Traditional Banks Off the Track. *Social Science Research Network*. <https://doi.org/10.2139/SSRN.2795113>
12. Disruption of Traditional Banking Services by Financial Technology in the Digital Economy. (2024). <https://doi.org/10.32629/memf.v3i6.2607>
13. Shodiev, O. (2024). Fintech and its impact on traditional banks. *European International Journal of Multidisciplinary Research and Management Studies*, 4(4), 158–166. <https://doi.org/10.55640/eijmrms-04-04-25>
14. Paul, L. R., & Sadath, L. (2021, February). A systematic analysis on fintech and its applications. In 2021 International Conference on Innovative Practices in Technology and Management (ICIPTM) (pp. 131-136). IEEE.
15. Renduchintala, T., Alfauri, H., Yang, Z., Pietro, R. D., & Jain, R. (2022). A survey of blockchain applications in the fintech sector. *Journal of Open Innovation: Technology, Market and Complexity*, 8(4), 185.
16. Xu, J., Wang, C., & Jia, X. (2023). A survey of blockchain consensus protocols. *ACM Computing Surveys*, 55(13s), 1-35.
17. Monrat, A. A., Schelén, O., & Andersson, K. (2019). A survey of blockchain from the perspectives of applications, challenges and opportunities. *Ieee Access*, 7, 117134-117151.
18. Nakamoto, S., & Bitcoin, A. (2008). A peer-to-peer electronic cash system. *Bitcoin*.–URL: <https://bitcoin.org/bitcoin.pdf>, 4(2), 15.
19. <https://www.ibm.com/think/topics/blockchain>
20. Adwani, R., & Rao, V. S. (2025). Decentralized finance (defi): Reshaping traditional banking systems. *European Economic Letters*, 0 [10.52783/eel. v15i1. 2432].