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Abstract

The swift digitalization of logistics and supply chain networks has exacerbated the necessity of safe, smart, and adaptable
optimization frameworks with the ability to operationalize huge volumes and heterogeneous and real-time information. Here, block-
chain technology used in conjunction with deep learning has become one of the promising paradigms to eliminate the unresolved
issues regarding the integrity of data, their transparency, confidence, and the efficiency of decisions in logistics activities. The
current work is a systematic review on literature published after 2020 on the topic of blockchain-enabled deep learning supply chain
optimization models in logistics that is guided by PRISMA. Through the selection of 50 peer-reviewed articles, the review induces
currently used blockchain structures, deep learning algorithms, and combined frameworks design used to the routing optimization,
the demand forecasting, the inventory management, and the risk prediction. The results suggest that permissioned blockchain sys-
tems, with off-chain deep learning systems like CNNs, LSTM/GRU networks, and deep reinforcement learning, are more effectively
utilized than classical and single-purpose Al-based strategies in terms of efficiency operation, prediction quality, and reliability of
a system. Nevertheless, there are still serious issues such as problems with scalability, non-standardized datasets, few real-life uses,
and model elucidation inadequacy. The review also states the major gaps in research and describes the research trends that can be
pursued in the future to facilitate scalable, clear, and intelligent logistics systems.
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1. Introduction

The logistics industry is at the core of the current supply chains and it is through it that smooth flow of commodities,
information, and money has been facilitated by overlaying a geographically dispersed network. The systems involved in logistics
have been made extremely data-intensive and demanding in terms of speed, transparency, and reliability due to the rapid develop-
ment of e-commerce, the globalization of trade, and the rise of customer demand. Conventional methods of logistics management
have frequently been found to be ineffective in the clash with obstacles that comprise fragmented facts vaults, absence of real-time
insight, unchecked fraud, ineffective direction and stakeholder coordination (Jabbar et al., 2021; Dudczyk et al., 2024).

Blockchain technology has come in the recent years as a potential solution to most of these structural inefficiencies in
logistics and supply chain management. After providing a decentralized, immutable and transparent registries blockchain stretches
to trusted sharing of data among different logistics players without the need of a centralized authority. It has been established that
blockchain has the potential to increase traceability, enhance the transparency of transactions, minimize disagreements, and stream-
line the processes with smart contracts (Agarwal et al., 2022; Ran et al., 2024). In the logistic setting, blockchain has been utilized
in shipment tracking, inventory reconciliation, payment settlement, and cross-border trade documentation, where logistics perfor-
mance, accuracy on delivery, and reduction in costs have been measured (Ran et al., 2024).

Along with the emergence of blockchain, deep learning (DL) and other artificial intelligence (Al) techniques have revolu-
tionized the process of logistics optimization because they allow making decisions based on data. The deep learning models, inclu-
sive of Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks,
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and Deep Reinforcement Learning (DRL) have proven to be very successful in forecasting demand, route planning, inventory opti-
mization, and predicting risk in logistic systems (Alzahrani and Asghar, 2023; Li et al., 2024). These models are good at identifying
patterns out of high-dimensional logistics data at scale, that are produced by I0T devices, enterprise systems, and transportation
networks. Nevertheless, standalone DL-based logistics systems have severe weaknesses concerning data integrity, trustworthiness,
explainability, and safe collaboration beyond organization boundaries despite their forecast potential (Xu et al., 2023).

Blockchain and deep learning integration has thus become the subject of the growing research interest as a synergistic
method of optimization of the logistics. Both deep learning and blockchain can improve the smartness and flexibility of blockchain-
powered logistics systems, and blockchain can deliver reliable, verifiable information streams to be used in the training and deploy-
ment of deep learning models. Recent literature on the application of blockchain to logistics emphasizes that information under
blockchain guarantees and optimization with DL could help to achieve several crucial outcomes in decreased delivery periods,
enhanced route efficiency, cut costs on inventory storage, and increased resilience against disruptions and fraud (Ran et al., 2024,
Ahmad et al., 2024). In addition, blockchain-based systems facilitate the decentralized learning models, including federated learning
and edge-Al, which are especially appropriate to large-scale logistics networks including a variety of autonomous stakeholders
(Ahamed and Karthikeyan, 2024).

In spite of these positive trends, the body of literature that looks at blockchain-enabled deep learning in logistics is still
fragmented. Lots of literature dwells on infrastructure of blockchains either with no sophisticated intelligence or deep learning
optimization, but the issues of trust, transparency, and governance are not tackled. The perennial challenges that are raised in survey
and review papers include the unavailability of standardized datasets, few real-world usages, scalability bottlenecks, and high com-
putational and energy expenses (Agarwal et al., 2024; Dasaklis et al., 2022). Moreover, although recent studies after 2020 have
created application-oriented solutions (including blockchain-assisted routing, risk prediction, and inventory control), there is a gap
in synthesizing which needs to examine the architectures, methodologies, performance metrics, and open research prospects in
blockchain-based deep learning to optimize logistics.

It is against this background that this review paper is proposed to give a systematic and critical review of blockchain-
enabled deep learning models in supply chains optimization in logistics. Based mainly on current (research done in recent years,
2020 and onwards), logistics-related studies that can be found in the reviewed document, and with the support of other recent
sources, this paper discusses the existing strategies, identifies the performance improvements that are reported, and defines the
unsolved technical and practical issues. In this way, the review aims at informing researchers and practitioners to more scalable,
secure and intelligent logistics systems that will match the requirement of the digital supply chains as they evolve.

2. Methodology (PRISMA Framework)

The systematic review has been followed by applying PRISMA 2020 (Preferred Reporting Items to Systematic Reviews and Meta-
Analyses) guidelines to be as transparent, reproducible, and methodologically sound as possible to identify, screen, and synthesize
the relevant literature regarding the use of blockchain-enabled deep learning models in supply chain optimization within the scope
of logistics.

2.1 Review Design and Reporting Standard

The systematic review methodology with PRISMA as its guide was chosen to fully address, assess, and generalize peer-
reviewed articles discussing the deployment of blockchain technology and deep learning technologies into the framework of logis-
tics and supply chain optimization. The protocol of review prioritized the new developmental areas to show the rapid dynamic
nature of blockchain, artificial intelligence, and digitization of logistics.

2.2 Information Sources

The extensive literature search has been performed in such large-scale scientific databases frequently utilized in the re-
search on engineering, computer science, and logistics, as IEEE Xplore, ScienceDirect (Elsevier), SpringerLink, MDPI, and Wiley
Online Library. These databases were picked in order to cover widely the quality articles and conference proceedings across the
board.

2.3 Search Strategy

The search strategy involved the use of structured keyword combinations with the help of Boolean operators. The search

strings representative were:

“blockchain AND deep learning AND logistics”

“supply chain optimization based on blockchain capabilities”
“logistics blockchain deep reinforcement learning logistics blockchain”
“Al blockchain application in logistics”

Articles published after January 2020, and in English were limited to searches. The reference lists of the identified papers
were also filtered to obtain more relevant studies.
2.4 Eligibility Criteria
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The inclusion and exclusion criteria were indicated before screening to limit the selection bias. Peer-reviewed journal
articles and conference papers suggesting, reviewing, or empirically assessing blockchain and deep learning, or their combination
in the optimization of logistics or supply chains, were only taken into account. Articles with non-logistics specific only (e.g.,
healthcare or finance) exclusion criteria, those published prior to the year 2020, and any editorial, theses, and non-technical report
were excluded.

2.5 Study Selection Process

The selection of the study was based on the PRISMA four-phase protocol of identification, screening, eligibility and in-
clusion. First, there was deletion of duplicate records. Subsequently, the titles and abstracts were filtered on relevancy and full text
screening of potentially eligible studies carried out. Controversies between the screening procedures were ended by discussing them
on a consensus to reach a conclusion.

2.6 Extraction and Synthesis of Data

In all studies that were included, the systematic extraction was carried out on the basis of the year of publication, field of
logistics application, blockchain architecture, and deep learning model used, dataset details, performance indicators, and main re-
sults. 1t was done through a narrative synthesis methodology, which was supplemented by thematic classification and within-study
comparison.

Table 1. PRISMA Eligibility Criteria for Study Selection

Category Criteria

2020-2025 publications; peer-reviewed journals/conferences; focus on logis-

Inclusion . . S . .
tics or supply chain optimization; use of blockchain, deep learning, or both

Pre-2020 studies; non-logistics domains; non-peer-reviewed articles; edito-

Exclusion . . .
rials, theses, or conceptual opinions without methods

Figure 1. PRISMA 2020 Flow Diagram (Study Selection Process)

3. Descriptive Review of Selected Studies

Records identified through Records identified from
database searching other sources
n =620 n=20

Records after duplicates removed m
n =580

)

Records screened ’

n =580

l

Full-text articles assessed for eligibility m
n =160

Full-text articles excluded
n=110
with reasons

Studies included in qualitative synthesis
n =50
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Here a brief descriptive overview of the chosen 50 papers, identified in the course of the PRISMA-based screening, will
be provided, focusing especially on recent entries as of 2025 that deprive the most recent tendencies of methodology and application-
level implementation of blockchain-powered deep learning in the context of logistics optimization. In general, the literature review
allows concluding that there is an evident transition between abstract conceptual blockchain systems to data-driven, performance-
focused, and intelligent logistics systems.

One significant aspect of the chosen works is that the prevalence of application-driven research, in particular transportation
optimization, demand forecasting, inventory management, and risk prediction, dominates. The previous research conducted after
2020 was primarily aimed at defining blockchain as a safe and transparent data-sharing system within the logistics networks. More
recent works, on the other hand, have more strongly focused on deep learning based optimization, with blockchain as an optimization
supporting trust and coordination layer, as opposed to the heart of the computation engine. This change is really apparent in 2025
research where scalability, real-time flexibility, and hybrid Al structure are of the first importance (Grover, 2025; Ivanov, 2024).

Concerning the methodological aspect, the descriptive review displays three overwhelming tendencies in models. To begin
with, the time-series forecasting models of the LSTM and GRU architecture are the key models in demand forecasting and inventory
planning. Second, poorer-performers are getting more and more members of dynamic such problems in logistics adaptive-Finding-
the-way and resource-distribution under uncertainty deep reinforcement learning (DRL) is being applied to learning the best policies
in this scenario. Third, the end-to-end logistics decision support with hybrid and ensemble models (that is, the models combine
predictive and optimization components) become more popular. Current 2025 sources emphasize the fact that such hybrid solutions
are superior to single-model solutions in their application in complex and multi-objective logistics frameworks (Grover, 2025;
Ivanov, 2024).

The patterns of adoption of blockchains in the examined works reveal that permissioned and consortium-based models are preferred
more, especially in business and multi-stakeholder logistics environments. Articles published in 2025 further emphasize on interop-
erability and governance and suggest cross-platform blockchain coordination mechanisms to enable global and multi-modal supply
chains (Wamba et al., 2025). The logistics workflow automation is always performed with the help of the use of smart contracts,
and the off-chain execution is embraced to address the relative lifelong limitations of blockchain in terms of latency and scalability.

Regarding validation, the majority of the studies use simulations experiments or internal data sets, but the recent publica-
tions of 2025 also request an experimental standardization and practical on-the-job pilot applications to enhance the generalization
status and the application to industrial systems (Zhang et al., 2025). All the evidence data present above demonstrate that the research
area is moving to the phase of mature, performance-sensitive intelligent logistics systems, yet, it still encounters the problems of
data availability, explainability, and massive implementation.

Table 2. Descriptive Summary of Selected Studies (n = 50)

Category Dominant Characteristics
Publication period 2020-2025, peak after 2022
Validation &

Hybrid Models
for Decision Support

Industry Pilots

28%
Permissioned
& Consortium
Blockchains
Application-
driven Research
Deep Reinforcement
Learning for Dynamic
Logistics
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Routing & transportation; inventory management; risk

Main application areas - "
PP prediction; smart logistics

Blockchain type Private and consortium blockchains

Deep learning models CNN, LSTM, GRU, DRL, hybrid DL models

Simulated data, proprietary industry data, limited public

Data sources
datasets

Evaluation metrics Delivery time, cost reduction, accuracy, RMSE, latency

Figure 2. Research Trends in Blockchain-Enabled Deep Learning for Logistics

In general, the descriptive analysis shows that deep learning studies based on blockchain in logistics are rapidly developing,
and the sophistication of the methods and the variety of applications increases. However, ongoing problems with the availability of
the datasets, their scaling, and practical application still guide the existing research landscape and support the necessity of the
comparative and critical analysis in the further sections.

4. Blockchain Technology in Logistics optimization

The use of blockchain technology as the basis that facilitates safe, transparent, and decentralized optimization of logistics
has appeared. In the 50 articles that were chosen in this PRISMA-based review, blockchain is always being presented as a reliable
data infrastructure complementary with deep learning-based analytics and optimization models. This part contains a descriptive and
analytical review of the classes of blockchain technologies, structural options, and functional capacities that have been reported in
the more current literature on logistics.

4.1 Logistics Blockchain Architecture types

The studies analyzed mostly involve the use of private and consortium blockchains as they represent an enterprise-focused
technology of logistics networks. Intra-organizational logistics is an example of a situation in which a private blockchain is prefer-
able because the network features low latency, restricted access, and enhanced transaction throughput are essential to intra-organi-
zational real-time processes like shipment tracking and inventory updates (Ran et al., 2024). Censored Consortium blockchains,
instead, are typically adapted to multi-stakeholder logistics ecosystems, which feature manufacturers, logistics service providers,
distributors, and retailers because they are designed to balance between decentralization and governance and performance require-
ments (Barenji and Montreuil, 2022).

The public blockchains are less common in the chosen sources primarily because of the limitations on the scale, the high
cost of the transaction, and latency. It is explicitly indicated in a number of review articles that public blockchains tend to be
inappropriate for scalable optimization of the logistic system without ideological adjustments like off-chain storage or sidechains
(Agarwal et al., 2022; Dudczyk et al., 2024).

4.2.2 Smart Contracts and Automation

Smart contracts are one of the key elements of a blockchain-driven logistics regime. The literature examined discusses
their vast application in automating logistic operations, such as the shipment check, the inventory reconsideration, the access man-
agement and the settlement of payments. Smart contracts facilitate the possibility of automating the process of logistics through
rules, which minimizes the role of the person in the process and helps to suppress conflicts among the stakeholders (Jabbar et al.,
2021). Smart contracts are often combined with the results of deep learning in the context of optimization-oriented research- e.g.
activating the process of route reallocation or inventory replenishment, depending on the forecasts obtained by Al applications (Ran
et al., 2024).

Nonetheless, various studies have warned that smart contracts may raise computational load and energy usage especially
when they are executed in terms of scale. This problem has led to the interest in hybrid on-chain/off-chain models of execution,
where only the hashes of important transactions are stored on-chain, and large volumes of logistics information and deep learning
operations are computed off-chain (Dasaklis et al., 2022).

4.3 Solution Interoperability with 10T and Data Management

One of the main peculiarities of logistic optimization is based on blockchain is a tight connection with the Internet of
Things (10T): gadgets. RFID tags, sensors and GPS systems create constant streams of logistics information associated with location,
temperature and handling environment. The immutability and provenance of this data will be secured with the help of blockchain
before it gets passed through deep learning models to be predicted and optimized (Alzahrani and Asghar, 2023).
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Some of them use edge or fog computing setups where initial data processing and anomaly detection are done closer to the
data source, and blockchain serves as a synchronization and the layer of trust among distributed nodes (Ahmad et al., 2024). Irre-
spective of these developments, volumes of data are reportedly viewed repeatedly, and storage scalability is an unaddressed matter
according to the literature, especially in high-frequency logistic settings (Agarwal et al., 2024).

4.4 Consensus Mechanisms and Implications to Performance

The consensus mechanisms are very critical in dictating how well blockchain-based logistics systems perform. The studies
reviewed are mainly based on Practical Byzantine Fault Tolerance (PBFT)-based protocols or lightweight implementations devel-
oped bespoke ad-hoc protocols in order to implement a low-latency and high-throughput protocol. Mechanisms like Proof of Work
are considered to be undesirable because of their inappropriateness when it comes to time-sensitive logistics services (Agarwal et
al., 2022).

Reports of performance evaluations in the literature show that well-chosen consensus mechanisms can be essential in
enhancing the time of transacting and the responses of systems thus facilitating the process of optimizing logistics in real time.
However, the interoperability of heterogeneous blockchain platforms has currently become a major challenge, especially when it
comes to global and cross-border logistics (Dudczyk et al., 2024).

Table 3. Blockchain Technologies and Their Roles in Logistics Optimization

Blockchain Aspect Common Approaches Role in Logistics Optimization

Architecture Private, Consortium Secqre and efficient enterprise data
sharing

Smart contracts Rule-based automation Wo_rkflow automation and decision exe-
cution

Data management On-chain + off-chain storage ﬁ]cear:ilblllty and performance. enhance-

loT integration Sensors, RFID, GPS Trusted real-time data acquisition

Consensus PBFT, lightweight protocols Low latency and high throughput

Off-Chain Deep Learning Modules

E=l B i

Demand Route Risk
Forecasting Optimization Prediction
A }
Blockchain Data ;| : Model Outputs
Yy v
Permisioned Blockchain

& gy =
Validated Data @ - @ Validated Data

777777777777777777777777777777

Permisioned Blockchain

Sensor Data __-—-"—
& Blockchain Smart
Data

’."’ ',“ = R - 7““‘\
W Al o8 g e

10T Devices

Figure 3. Blockchain Architecture for Logistics Optimization

Figure 3. Blockchain Architecture for Logistics Optimization
In general, the presented descriptive evidence shows that the use of blockchain technologies in the optimization of logistics
is mainly aimed at facilitating trust, automation, and confidential data transfer, but not optimization per se. Their practicality is thus
strongly based on architectural decisions, consensus machinery and seamless integration with deep learning models that are further
discussed in later sections.
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5. Deep Learning Models of Logistics Optimization

The use of deep learning (DL) has emerged as a fundamental analyzer engine in logistics and supply chain optimization
since it can construct challenging and nonlinear relationships on high-velocity and large-scale data. The deep learning models used
in all the 50 studies that comprise this PRISMA-based review are mainly used to aid in predictive analytics, optimization, and
intelligent decision-making whereas blockchain technologies are used to secure and protect data integrity, trustworthiness, and
coordination among distributed logistics stakeholders. In this section, we summarize the prevailing deep learning models as indi-
cated in the literature reviewed and where they have been applied in practice and the nature of their performance.

5.1 Convolutional Neural Networks, Routing and Pattern Analysis

Convolutional Neural Networks (CNNs) have become highly popular in solving problems related to logistics optimization
that require consideration of analysis of spatial pattern model, including route optimization, traffic forecast, and visualization of the
shipment flow. A number of studies gain access to the spatial features of the transportation networks, delivery maps, and sensor
grids that are generated by the 10T and utilize CNNs to identify the patterns of congestion and identify the best path routes (Ran et
al., 2024). In combination with data streams secured with blockchains, CNN-based models show better delivery accuracy and less
time before route planning, and the interaction between trusted data acquisition and spatial deep learning analytics.

Metaheuristic optimization methods, e.g. ant colony optimization, are also combined with CNNs to improve route effi-
ciency more. Nevertheless, it is observed in the literature that CNN-based logistics models are computationally costly and can also
be off-chain executed to ensure blockchain-based systems remain real-time responsive (Dudczyk et al., 2024).

5.2 Recurrent Neural Networks in Forecasting Time Series

Recurrent Neural Networks (RNNs) and their forms are most often applied to solve time-dependent logistics tasks, includ-
ing demand forecasting and predicting delays in delivery and inventory amount, among others. These architectures are also suited
to Twitter such modeling of sequential logistics data via enterprise systems and 10T devices (Alzahrani and Asghar, 2023).

Other works that have been reviewed indicate that LSTM and GRU models are better than the conventional statistical
forecasting methods with respect to prediction performance and the ability to endure demand uncertainty. The integration of block-
chain is needed to guarantee the integrity and authenticity of past survey and transactions data informing these models to reduce the
chance of altering the data and enhance effectiveness on forecast-based logistic decisions (Pasupuleti et al., 2024).

5.3 Deep Reinforcement Learning of Dynamic Optimization

Deep Reinforcement Learning (DRL) has become one of the strongest methods of adaptive and real-time optimization of
logistics, especially in a changing environment when decision variables are changing on a constant basis. The vehicle routing,
inventory replenishment, and resources allocation problems are solved with the help of the DRL models which are learned by
interaction with the logistics environment (Xu et al., 2023).

The analyzed literature demonstrates the fact that DRL-based logistics systems offer high performance rates in contrast to
heuristic and rule-based approaches, particularly in the context in which uncertainty is present, and disruptions are frequent. The
complements are provided by blockchain where the state transitions, rewards, and policy updates are stored in a secure and auditable
form, which supports decentralized and trustworthy learning processes. However, complexities of training and computational costs
still constitute significant issues, which are typically solved by off-chain training and a cyclic on-chain update (Agarwal et al.,
2022).

Along with these benefits, the complexity of training and the large computational cost of DRL-based logistics optimization
are still important barriers to the latter. Model convergence may often be sluggish and a real time deployment can be restricted
through the lack of resources. To avoid their problems, numerous works implement hybrid constructions where computational
intensive training of DRL takes place off-chain, with validated policies or a hash of a model being anchored periodically on-chain
to ensure integrity and accountability. The significance of scalable DRA frameworks and resilience-focused learning approaches
has also been underlined in more recent 2025-based literature, which notes their importance in facilitating the ability to optimize
logistics, which is robust and conscious of disruption effects in ever more complicated and interconnected supply chains (Ivanov,
2025).

5.4. Hybrid and Ensemble Deep Learning Models

More and more works offer hybrid deep learning schemes where CNNs, RNNs, and DRL models co-exist to solve multi-
objective logistics optimization tasks. Indicatively, CNN-BiGRU hybrids are used to make predictions about risks in loT-based
logistics networks, whereas ensemble-based models combine a forecasting module and optimization in a blockchain-enabled archi-
tecture (Alzahrani and Asghar, 2023; Li et al., 2024). These mixed methods prove to be more accurate and resistant but still worsen
the problems concerning the explainability of models and complexity of deployment.

Table 4. Deep Learning Models Used in Logistics Optimization
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On balance, the descriptive evidence suggests that deep learning models have a leading optimization role in the logistics
systems based on blockchain technology enabling predictive intelligence and adaptive control. Nevertheless issues to do with scala-
bility, interpretability, and computational efficiency are still conspicuous as evidenced by a number of architectural structures in
subsequent sections to the prevalence of hybrid architectures and performance-conscious deployment schemes.

6. Deep Learning Frameworks Enabled by Blockchain

Deep learning-based logistic optimization based on blockchain is a convergent approach to logistics optimization, with
blockchain, as a trusted, decentralized coordinator layer, and deep learning, as predictive intelligence and adaptive decision-making.
The fifty papers examined during the analysis of this review show a consistent interest in the fact that neither blockchain nor deep
learning can be sufficient to overcome the complexity, scale, and trust demands of the modern logistics systems. Rather, they can
integrate so that they share data securely, execute and optimize as distributed supply chains networks (Jabbar et al., 2021; Dudczyk
etal., 2024).

6.1 Patterns of Architectural Integrated Frameworks

The reviewed literature mostly has a layered architecture of most blockchain-enabled deep learning frameworks. At the
lowest tier, 10T systems, sensors, RFID identifiers, and business information systems create real-time logistics information regarding
the position of shipments, stock level, weather, and the transactions. This information is then verified and dated and then dedicated
to a permissioned blockchain encompassing the data, which is immutable and traceable (Alzahrani and Asghar, 2023).

Smart contracts are control mechanisms present above the data layer. They store the logistics policies like confirmation of
delivery, stock levels, and access permissions. Some are stated that the smart contracts are activated by the generated outputs of
deep learning models- e.g. to enable automatic replenishment when the LSTM based demand prediction process surpasses the
predetermined threshold or to redirect routes in response to the results of DRL-based optimization (Ran et al., 2024; Pasupuleti et
al., 2024). Close integration of smart analytics and autonomous implementation is one of the hallmarks of blockchain-enabled
logistical systems.

6.2 On-Chain and Off-Chain Learning Integration

One reoccurring study design in the studies reviewed is the isolation of the trust-sensitive operations and the thousands of
computations carried out by analytics. Data validation, access control, and coordination are only made through blockchain networks,
whereas training and inference of deep learning models are conducted off-chain to eliminate latency and scale bottlenecks (Agarwal
et al., 2022). Input model values are read out of blockchain-authenticated data archives, and some crucial value outputs, e.g. some
optimization results or model hash values are written back to the blockchain, to be audited.

This on-chain/off-chain system provides frameworks with the opportunity to achieve a trade-off between performance
efficiency and security assurances. Some works on logistics emphasize key performance metrics of on-chain storage as impractical
because of the storage overhead and transaction costs, which support the use of off-chain learning pipelines coordinated by block-
chain anchors (Dasaklis et al., 2022).

6.3 Decentralized and Collaborative Learning Models

The recent research also addresses the subject of decentralized paradigms of learning such as federated learning and edge-
based learning in the blockchain-based logistics model with growing interest. In these designs, local logistics nodes (e.g., ware-
houses or distribution centers) will train deep learning models using their local (confidential) data, and only post updated vectors
(encrypted) or model summaries on the blockchain network. Secure aggregation, provenance tracking and incentive mechanisms to
participate are ensured by blockchain (Ahamed & Karthikeyan, 2024).

Specifically, such non-centralized structures are highly applicable to logistics ecosystems of large scale in which the pri-
vacy of data, regulatory adherence and organizational independence play a pivotal role. Nevertheless, literature review reveals also
such difficulties as the overhead of communication, model convergence, and different data distributions among logistics nodes
(Dudczyk et al., 2024).

6.4 Practical and Performance Limitations

The evidence provided by empirical assessments of the reviewed literature shows that blockchain-based deep learning
systems have a substantial effect on improving logistics performance indicators, such as reduced delivery time, cost-efficiency, and
resistance to disruption (Ran et al., 2024; Xu et al., 2023). However, there are a number of limitations that still exist. Complexity of
frameworks, heavy computational costs, challenges with interoperability of blockchains and problematic large-scale implementation
are cited as barriers to large-scale adoption repeatedly (Agarwal et al., 2024).

6.5 Unified Blockchain-Deep Learning Logistics Optimization Architecture

There is a necessity to have a unified reference architecture that can explain how blockchain and deep learning can interact
to provide secure and intelligent optimisation of logistics. On the synthesis of the reviewed literature, an end-to-end logistics frame-
work comprising of generalized BC-DL is proposed as Figure 5. Data acquisition, a trust management scheme with blockchain and
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deep learning analytics and automated decision implementation are integrated into the architecture in a closed-loop optimization
system.

Throughout the data acquisition layer, 10T sensors, RFID tags, GPS devices, and enterprise information systems generate
real time logistics data configuration with regard shipment position, inventory, climate, and transactional activities.

Collected data at the blockchain layer are verified and timed and stored in a permissioned or consortium blockchain. This
renders permanence, provenance as well as controlled distribution among supply chain members. Smart contracts are used to control
access, validate events and take automatic decisions.

On the deep learning analytics layer, the data that are verified by blockchain are skimmed off to off-chain computational
servers where deep learning models are executed to do predictive and optimizing tasks. The most common ones are CNNs to analyze
routing mechanisms by space, LSTM/GRU networks to predict demand and delays, and deep reinforcement learning to make re-
source allocation and routing decisions in a dynamic fashion.

Optimized decisions produced by deep learning models are sent back to the blockchain at the decision and execution layer.
Logistics actions that are managed by smart contracts include changing the routes, restocking inventory, or pay the bills automati-
cally. The results of optimization and trained models hashes are anchored on-chain to make it auditable and accountable.

Lastly, on the monitoring and feedback layer, system performance measures and real-time events are fed back to retrain
deep learning models creating a closed-loop adaptive optimization loop.

This single design shows that blockchain is an ideal way to offer data trust and traceability, decentralize coordination, and
deep learning would offer predictive intelligence and adaptive optimization to achieve scalable, transparent, and resilient logistics
systems.

Table 5. Blockchain-Enabled Deep Learning Framework Characteristics

Framework

Typical Implementation Functional Role in Logistics
Component yp P g

. Real-time logisti
Data layer 10T, RFID, enterprise systems cal-t . ¢ logistics data
generation

Blockchain layer Permissioned blockchain Data integrity, access control
Smart contracts Rule-based automation Execution of logistics decisions
DL analytics CNN, LSTM/GRU, DRL (off-chain) Prediction and optimization
Integration model On-chain coordination, off-chain learning | Performance—security balance
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Figure 5. Unified End-to-End BC-DL Logistics Framework

To conclude, deep learning frameworks based on blockchains create a symbiotic relationship between trust and intelligence
on logistics systems. Although the existing frameworks have great potential of secure and adaptive optimization, future studies
should give consideration to issues of scalability, interoperability as well as deployment issues to allow wide adoption of the con-
struction in industries.

7. Performance Assessment and Comparative Analysis

Evaluating the performance of blockchain-enabled deep learning (BC-DL) constitutes a major theme in evaluating the
efficacy of these technologies in streamlining the logistics operations. In a PRISMA-based review, 50 studies included in this sys-
tematic review indicate that performance analysis is aimed at measuring the increase of operational efficiency, predictive accuracy,
system stability, and scalability versus conventional logistic systems and single-user Al-based strategies. In this section, a synthesis
of evaluation metrics, comparative baselines as well as empirical results on the reviewed literature are given.

7.1 Evaluation Metrics in the Literature

The set of performance measures used at the reviewed studies is not homogenous, which is due to the multi-objective
character of optimization of logistics. Classic measures of operational efficiency include a decrease in delivery time, on-time deliv-
ery rate, savings in transportation costs, and a reduction in holding cost in inventories, as these measures are in common use at the
level of system efficiency (Ran et al., 2024; Pasupuleti et al., 2024). Usually, predictive performance is estimated on the basis of
accuracy, precision, recall, F1-score, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), especially in the context
of demand forecasting and risk prediction problems (Alzahrani and Asghar, 2023).

In terms of blockchain, the latency of transactions, throughput and system overhead are also assessed in studies since they
directly affect the viability of real-time optimization of logistics. The review-focused papers point out that permissioned blockchains
tend to offer a better balance between latency and throughput in comparison to the public blockchains, which is why they are more
appropriate in the setting of logistics applications with the need to make quick responses (Agarwal et al., 2022; Dudczyk et al.,
2024).

7.2 Comparative Analysis Traditional vs Al vs Blockchain-Enabled Al

A pattern of consistent comparison takes place throughout the literature. Classical rule-based and heuristic logistics systems
are not very adaptable and optimum in demand uncertainty and network disturbances. By comparison, standalone deep learning
models are much better at forecasting performance and optimization results but can be affected by data integrity concerns and threats
of centralized control (Xu et al., 2023).
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Deep learning frameworks based on blockchain are better than the baselines, both in terms of intelligent optimization and trusted
data governance. Experimental results indicate that, on average, delivery time and performance of the route planning process re-
duced, as well as inventory utilization when deep learning models are trained and deployed with blockchain-secured information
(Ran et al., 2024). Also, integration of blockchain enhances the auditability and traceability which cannot be measured by typical
measures of performance, but is important to monitor logistics transparency and compliance (Jabbar et al., 2021).

7.3 Reported Performance Gains

The review studies provide quantitative data showing that there were measurable performance improvements. Indicatively,
CNN-based optimization systems with blockchain have demonstrated significant delays in the delivery time and the exact percent-
age delivery accuracy in logistics routing systems (Ran et al., 2024). The inventory management with LSTM-based forecasting with
transaction data verified by blockchain is recorded to have a lower forecasting error and less dead stock than the conventional
inventory control techniques (Pasupuleti et al., 2024).

The systems that are built based on deep reinforcement learning demonstrate greater flexibility in dynamic logistics by
results in more cumulative rewards and converge quicker than heuristic and Q-learning methods (Xu et al., 2023). These systems
also have the added advantage of secure state tracking and decentralized coordination, which is useful when enhanced against data
tampering and single points of failure (Agarwal et al., 2024).

7.4 Limitations and Bias of Performance Evaluation

Although the results are encouraging, the comparative analysis shows that there are a number of limitations. Many of the
studies are based on simulated environments or proprietary data, which reduces the reproducibility and external validity (Dasaklis
et al., 2022). Regular performance assessments are usually concentrated on single logistics tasks and not on end scenario supply
chain example. Additionally, the overhead of blockchain is also not adequately reported which results in the exaggerated perfor-
mance evaluations that might not be accurately intensive of field implementation restrictions (Dudczyk et al., 2024).

Table 6. Comparative Benchmark of Major Logistics Optimization Models

Model Blockchain DL o . Reported
Study Type Type Model Application | Key Metric Performance

Ran et al. BC-DL . Route optimi- . . 18-25% reduction vs
(2024) Hybrid Consortium | CNN zation Delivery time traditional routing
Pasupuleti BC-DL . Demand fore- 12-18% lower error vs
etal. 2024) | Hybrid Private LSTM | Casting RMSE ARIMA
Xu et al. . Dynamic Cumulative | 20% higher than
(2023) BC-DRL Consortium | DRL routing reward heuristic baseline
Alzahrani & loT-BC- Private CNN- Risk predic- Accurac 94.6% classification
Asghar (2023) | DL BiGRU | tion Y accuracy
Trad_ltlpnal NO. block-| — Routing Delivery time | Baseline
heuristic chain
Standalone No_ block- | LSTM Forecasting RMSE Moderate
DL chain improvement
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BC-DL (Pr Permis- CNN/LSTM | Multi- End-to-end Cost & Best combined
posed trend) sioned /DRL task logistics latency performance

Broadly speaking, Al-based deep learning models continue to be more efficient than traditional heuristic and stand-alone
Al solutions in a variety of significant logistics problems facilitated by blockchain. Some improvements reported are shorter delivery
time (15-25%), more effective demand forecasts (10-20% RMSE reduction) and being more resistant to data tampering, coordina-
tion failures. Nonetheless, the benefits of performance should be reconciled with the increase in blockchain system overhead and
latency.

Delivery Efficiency

//’}

Forecasting Accuracy = [ ==
= m =

Delivery Efficiency

1oT Devices Oeep Learning Blockchain Anchors

10T & Rep System Complexity anc 1 Overhead

Figure 6. Comparative Performance Outcomes of Logistics Optimization Approaches

Figure 6. Comparative Performance Outcomes of Logistics Optimization Approaches

All in all, the evidence presented in the performance evaluation shows that blockchain-powered deep learning applications
are always more effective than the conventional and standalone Al-based logistics systems in terms of major issue-related opera-
tional and predictive indicators. Nonetheless, the literature also highlights the necessity of standardized benchmarking data, detailed
cost-performance studies, and massive real-world validation that would help to substantiate fully these gains and provide a road,
which would inform a practical usage.

8. Computational Cost and Deployment Analysis

Although having such benefits in their performance, blockchain-based deep learning frameworks come with new compu-
tational and deployment-related overheads that need to be taken into account when implementing it in the real world. In the block-
chain context, the checks on the validity of transactions, consensus, and the execution of smart contracts reduce the system latency
and cost of computation. PBFT blockchains or Raft blockchains with permissioning are also estimated to have transaction lattencies
of between 1-3 seconds, suitable to logistics use (although this may limit real-time route implementation on larger scales).

Under the deep learning viewpoint, the process of training CNN, LSTM, and deep reinforcement learning models with large logistics
datasets requires a lot of computing power which may be through a server with a number of GPUs or a cloud based infrastructure.
To overcome this, off-chain training and inference, which only model hashes and optimization results are stored on-chain are
adopted by most papers analyzed. This hybrid design can minimize blockchain storage power to a significant degree and maintain
auditability.

Another element that leads to deployment overhead is the integration of the heterogeneous enterprise systems, 10T platforms, block-
chain networks, and Al engines. The middleware of interoperability and API gateways is usually demanded, which burdens systems
and makes them costly to maintain. Besides, with a larger number of involved logistics nodes, the bandwidth, and storage needs of
the blockchain network increase linearly, posing a scalability problem.

Generally, though superior in optimization and trust, the trade-offs made by BC-DL systems in practical deployment in-
clude critical trade-offs between computational cost, toleration to latency, security assurances, and investment in infrastructure.
Future studies should thus adopt protocols of lightweight consents, edge inference, and model compression methods to provide
scalability of real-time optimization of logistics.

9. Risk of Bias and Quality Assessment

The 50 articles forming the body of evidence in this PRISMA-based review had a systematic risk of bias and quality
assessment to determine the reliability, validity, and generalizability of the evidence on blockchain-enabled deep learning (BC-DL)
frameworks in optimization of logistics. In line with the requirement of systematic reviews in engineering and computer science,
evaluation was done in data-related bias, methodological rigor, evaluation design and reporting transparency, but not in clinical bias
constructs.
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9.1 Data-Related Bias

Data set bias is one of the most evident types of bias among the reviewed studies. A significant percentage of literature in
the area of logistics-related BC-DL experiments use simulated setting, artificial datasets, or commercial industry information, which
is not publicly available (Ran et al., 2024; Xu et al., 2023). Although simulation can facilitate controlled experimentation, it might
not provide the degree of stochasticity, disruption, and complexity of behavior of logistics networks in reality. This creates a threat
of external validity bias, which restricts the external validity of documented performance increases (Dasaklis et al., 2022).

Also, some studies involve the relatively small or domain-focused datasets, which increase the likelihood of overfitting in a deep
learning model. Even though blockchain is often framed as a tool of ensuring data integrity, it does not resolve data representative-
ness and imbalance issues per se (Alzahrani and Asghar, 2023).

9.2 Methodology Bias and Model Bias

Methodologically, it can be seen that model selection bias is a problem in the model comparison study which only compares
blockchain-enabled deep learning methods to traditional heuristics or baseline machine learning models, not to the best optimization
methods. It may cause fibre performance claims (Agarwal et al., 2022). Moreover, hyperparameter optimization procedures and
training methods are not usually well documented preventing reproducibility.

The other recurrent problem is that of black-box bias, in which deep learning models, especially deep reinforcement learn-
ing agents, give an optimization choice that is not explainable. Multiple review papers emphasize that interpretability is a weakness
that decreases the trust of stakeholders and makes it challenging to apply in real life, particularly in regulated logistic settings (Jabbar
etal., 2021; Dudczyk et al., 2024).

9.3 Evaluation and Reporting Bias

There are evaluation bias which are seen in selectively reporting performance metrics. Most researchers focus on better
delivery time, cost minimization, or prediction accuracy, and do not report overheads created by blockchain devices in use like
latency, transaction costs, and energy consumption (Agarwal et al., 2024). This imbalance may take shape of obscuring the trade-
offs among optimization performance and system scalability.

Moreover, very few studies perform end-to-end analyses of logistics operations. Majority of the assessments are conducted on
individual parts like routing or forecasting that creates scope bias and limits knowledge of the entire system in terms of performance
(Pasupuleti et al., 2024).

9.4 Overall Quality Assessment

Nonetheless, despite these disadvantages, the general methodological level of the articles under review is moderate to high.
Majorities of the papers have specific objectives, outline the system schemes and substantiate the rationale of uniting blockchain
with deep learning. The review and survey articles also contribute to an increased evidence base, as they locate a set of common
issues regarding scalability, interoperability, and the feasibility of deployment (Dudczyk et al., 2024; Agarwal et al., 2024). Never-
theless, standard benchmarks and actual pilot tests are a vital gap that has not been filled.
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Table 7. Risk of Bias and Quality Assessment Criteria

Assessment Dimension

Common Observations

Potential Impact

Data sources

Simulated or proprietary datasets

Limited generalizability

Model design

Limited baselines, black-box
DL models

Inflated performance claims

Evaluation metrics

Focus on benefits, limited
cost reporting

Incomplete performance
assessment

Reproducibility

Insufficient experimental detail

Reduced transparency

Deployment realism

Few real-world implementations

Adoption uncertainty

288

Figure 7. Risk of Bias Distribution Across Reviewed Studies

Standardized Comprehensive Tranisparenti
Datasets Benchmarking || Reporting |
e | = (
g l :i o

Dataset
Bias

35%

5%

Pusteriat Bias Dataset Methodc Selection
Bias Cloginal Bias
Bias
System Complexity === === === == o o o e e >

Figure 7. Risk of Bias Distribution Across Reviewed Studies

Overall, despite blockchain-based deep learning systems showing good potential of enhancing logistics performance, the
risk of bias testing indicates the systematic constraints regarding the quality of data, design of evaluation, and level of transparency
in the reporting. The solution of these problems with open datasets, explainable models and large scale verification of the results
will be needed to enhance the evidence base and implement these to industrial adoption in future studies.

10. Research Gaps and Open Challenges

Although the field of blockchain-enabled deep learning (BC-DL) in logistics optimization is advancing at a fast pace, the

literature review shows that there are still several research gaps and unanswered problems. The major gap is that relating to the
absence of standardized, publicly reported logistics datasets. Simulated or proprietary data is used in most studies, which reduce
feasibility of reproducibility, cross-study comparison and external validity (Dasaklis et al., 2022; Dudczyk et al., 2024). In the
absence of benchmark data, reported improvements in performance are situation-dependent and hard to extrapolate.
Scalability and system overhead is another formidable problem. Although permissioned blockchains are better in latency than the
public chains, the throughput of transactions, storage increase, and costs associated with the consensus are bottlenecks to massive,
real-time logistics systems (Agarwal et al., 2022). This problem is compounded as the results of deep learning are often anchored
to the blockchain which adds to the overhead of coordination.

Deep learning decision explainability and trust is yet to be explored as well. Most of the logistics optimization models are
based on black-box models, especially deep reinforcement learning, meaning that the stakeholders cannot interpret or audit decisions
in controlled logistics contexts (Jabbar et al., 2021). Also directly related is the problem of model governance, such as version
control, accountability, and lifecycle management in decentralized environment.

The other problem that has yet to be solved is the interoperability of heterogeneous blockchain systems and enterprise
systems, particularly in the case of cross-border and multi-modal logistics systems (Dudczyk et al., 2024). Lastly, the difference
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between academic prototypes and actual deployment is quite evident, and large-scale pilot implementation is not reported in large
numbers. These are critical issues, which are to be addressed to realize BC-DL frameworks out of theory to reality to the industry.
11. Discussion

The results of this PRISMA-based research verify that blockchain-based deep learning models can be viewed as a major
paradigm shift in optimization of logistics and combine smart analytics with reliable data management. BC-DL solutions are always
better equipped in terms of routing efficiency, load balancing (found in demand forecasting), and disaster resistance (Ran et al.,
2024; Xu et al., 2023). These advancements are explained by the complementary nature of blockchain and deep learning: blockchain
assures integrity of data, transparency and decentralized coordination and predictive and adaptive data provided by deep learning.
The trade-offs brought about by the integration must however also be discussed. Blockchain also introduces the issue of architectural
complexity, latropy and power consumption overheads that may negate optimization they in ways depending on their careful man-
agement (Agarwal et al., 2024). Consequently, these practical frameworks incorporate hybrid on-chain off-chain designs, which
stress that blockchain needs to be a layer of trust and coordination and not a computational engine.

The other significant lesson is the lack of balance in technical innovation and rigor of evaluation. Although methodological
sophistication has risen (especially via the adoption of DRL and hybrid deep learning models) most evaluation practices are still
focused on small metrics of performance and simulation. This introduces a discrepancy between the stated academic results and
real-world viability in the activity of logistics (Dasaklis et al., 2022).

The studies reviewed point to the potential of BC-DL systems to promote transparency, minimize conflicts, and facilitate
compliance in sophisticated supply chains in the supervision of complex and communal supply chains. However, it will be adopted
based on the organizational preparedness, regulatory compatibility and absolute cost-benefit evaluation. The discussion then indi-
cates interdisciplinary research, i.e. in the integration of technical progress and operational, economical and governance approaches.

All in all, the indicators indicate that BC-DL frameworks lack the status of a universal solution but are a strategic enabler
whose success relies on the context-related design, performance-related deployment, and clear-cut evaluation.

12. Conclusion

This systematic review summarized the post-2020 articles on blockchain-based deep learning-based logistics and supply
chain optimization models based on PRISMA guidelines. In a review of 50 chosen works, it was determined that the combination
of blockchain and deep learning is a strong component of logistics as it ensures the greater credibility of data, accuracy of prediction,
and adaptability of optimization. Authorized blockchains, intelligent contracts, and off chain deep learning structures are an emerg-
ing design, and the basic analysers are CNNs, LSTM/GRU networks, and deep reinforcement learning topologies.

In spite of these developments, the review reveals that there exist serious drawbacks concerning the availability of datasets,
scalability, explainability, and the empirical validation. Most of the reported profits are on simulated or proprietary data, and over-
heads in blockchain are poorly understood. Therefore, although BC-DL frameworks have good conceptual and experimental poten-
tial, their industrial use is in its infancy.

The standard benchmarks, explainable integration of Al, interoperable blockchain infrastructures, and large scale pilot
deployments should also be the focus of future research. It is through these gaps that blockchain-powered deep learning can be
developed to go beyond being an up-and-coming research topic and become a viable and life-changing answer to the future of
optimizing logistics.

References

1. Abideen, A. Z., Sundram, V. P. K., Pyeman, J., Othman, A. K., & Sorooshian, S. (2021). Digital twin integrated reinforcement
learning in supply chain and logistics. Logistics, 5(4), 84.

2. Afnan, M. S. A,, Yzem, C,, Yuan, F., & Jinpeng, W. (2024). A comprehensive review of the integration of machine learning
into blockchain technology.

3. Agarwal, U., Rishiwal, V., Tanwar, S., Chaudhary, R., Sharma, G., Bokoro, P. N., & Sharma, R. (2022). Blockchain technology
for secure supply chain management: A comprehensive review. IEEE Access, 10, 85493-85517.

4. Agarwal, U., Rishiwal, V., Yadav, M., Aslhammari, M., Yadav, P., Singh, O., & Maurya, V. (2024). Exploring blockchain and
supply chain integration: State-of-the-art, security issues and emerging directions. IEEE Access.

5. Ahmad, A. Y. A.B., Verma, N., Sarhan, N. M., Awwad, E. M., Arora, A., & Nyangaresi, V. O. (2024). An 10T- and blockchain-
based secure and transparent supply chain management framework in smart cities using optimal queue model. IEEE Access,
12, 51752-51771.

6. Alzahrani, A., & Asghar, M. Z. (2023). Intelligent risk prediction system in loT-based supply chain management in logistics
sector. Electronics, 12(13), 2760.

7. Barenji, A. V., & Montreuil, B. (2022). Open logistics: Blockchain-enabled trusted hyperconnected logistics platform. Sensors,
22(13), 4699.

This publication is licensed under Creative Commons Attribution CC BY.
10.29322/1JSRP.16.02.2026.p17041 www.ijsrp.org


http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 16, Issue 2, February 2026 290
ISSN 2250-3153

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.
28.

29.

30.

31.

32.

33.

Boujarra, M., Lechhab, A., Al Karkouri, A., Zrigui, 1., Fakhri, Y., & Bourekkadi, S. (2024). Revolutionizing logistics through
deep learning: Innovative solutions to optimize data security. Journal of Theoretical and Applied Information Technology,
102(4), 1593-1607.

Casino, F., Dasaklis, T. K., & Patsakis, C. (2021). A systematic literature review of blockchain-based applications: Current
status, classification and open issues. Telematics and Informatics, 36, 55-81.

Dasaklis, T. K., Voutsinas, T. G., Tsoulfas, G. T., & Casino, F. (2022). A systematic literature review of blockchain-enabled
supply chain traceability implementations. Sustainability, 14(4), 2439.

Dolgui, A., Ivanov, D., & Sokolov, B. (2021). Reconfigurable supply chain: The X-network. International Journal of Production
Research, 59(13), 4137-4160.

Dong, Z., Liang, W., Liang, Y., Gao, W., & Lu, Y. (2022). Blockchained supply chain management based on 10T tracking and
machine learning. EURASIP Journal on Wireless Communications and Networking, 2022(1), 127.

Dudczyk, P., Dunston, J. K., & Crosby, G. V. (2024). Blockchain technology for global supply chain management: A survey
of applications, challenges, opportunities and implications. IEEE Access, 12, 70065—70088.

Elufioye, O. A,, Ike, C. U., Odeyemi, O., Usman, F. O., & Mhlongo, N. Z. (2024). Al-driven predictive analytics in agricultural
supply chains: Assessing the benefits and challenges of Al in forecasting demand and optimizing supply. Computer Science &
IT Research Journal, 5(2), 473-497.

Feng, H., Wang, X., Duan, Y., Zhang, J., & Zhang, X. (2020). Applying blockchain technology to improve agri-food traceabil-
ity: A review. Industrial Management & Data Systems, 120(3), 642—-663.

Grover, N. (2025). Al-enabled supply chain optimization: Emerging trends, challenges, and future directions. International
Journal of Advanced Research in Science, Communication and Technology, 28, 28-44.

Gupta, S., Kumar, S., & Singh, S. K. (2021). Role of blockchain in logistics digital transformation. Technological Forecasting
and Social Change, 163, 120419.

Ivanov, D. (2024). Supply chain viability and Al-enabled resilience: Perspectives for next-generation logistics systems. Annals
of Operations Research.

Ivanov, D., & Dolgui, A. (2022). A digital supply chain twin for managing disruptions. International Journal of Production
Research, 60(6), 1735-1753.

Ivanov, D., Sethi, S., Dolgui, A., & Sokolov, B. (2021). Disruption-driven supply chain resilience. Transportation Research
Part E, 147, 102249.

Jabbar, S., Lloyd, H., Hammoudeh, M., Adebisi, B., & Raza, U. (2021). Blockchain-enabled supply chain: Analysis, challenges,
and future directions. Multimedia Systems, 27(4), 787-806.

Jraisat, L., Jreissat, M., Upadhyay, A., & Kumar, A. (2023). Blockchain technology: The role of integrated reverse supply chain
networks in sustainability. Supply Chain Forum: An International Journal, 24(1), 17-30.

Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2021). Sustainable industry 4.0 framework. International Journal of Pro-
duction Research, 59(7), 2050-2074.

Kshetri, N. (2021). Blockchain and supply chain management: Trends and challenges. International Journal of Information
Management, 58, 102356.

Li, A., Zhuang, S., Yang, T., Lu, W., & Xu, J. (2024). Optimization of logistics cargo tracking and transportation efficiency
based on data science deep learning models.

Li, Z., Wang, W., & Liu, Y. (2022). Deep reinforcement learning for dynamic logistics optimization. IEEE Transactions on
Intelligent Transportation Systems, 23(9), 14144-14156.

Liu, Y., Han, S., & Wang, Y. (2021). Federated learning for smart logistics. IEEE Network, 35(4), 52-58.

Longo, F., Nicoletti, L., & Padovano, A. (2022). Smart operators in logistics 4.0: A systematic review. Computers & Industrial
Engineering, 165, 107923.

Min, H. (2022). Artificial intelligence in supply chain management: Theory and applications. International Journal of Logistics
Research and Applications, 25(4-5), 479-493.

Nguyen, T., Zhou, L., Spiegler, V., leromonachou, P., & Lin, Y. (2022). Big data analytics in supply chain management.
International Journal of Production Economics, 247, 108405.

Pasupuleti, V., Thuraka, B., Kodete, C. S., & Malisetty, S. (2024). Enhancing supply chain agility and sustainability through
machine learning: Optimization techniques for logistics and inventory management. Logistics, 8(3), 73.

Perboli, G., Musso, S., & Rosano, M. (2018). Blockchain in logistics and supply chain: A lean approach for designing real-
world use cases. IEEE Access, 6, 62018-62028.

Queiroz, M. M., & Wamba, S. F. (2021). Blockchain adoption challenges in supply chain: An empirical investigation. Interna-
tional Journal of Information Management, 59, 102357.

This publication is licensed under Creative Commons Attribution CC BY.
10.29322/1JSRP.16.02.2026.p17041 www.ijsrp.org


http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 16, Issue 2, February 2026 291
ISSN 2250-3153

34.
35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45,

46.

47.

48.

49,

50.

Ran, L., Shi, Z., & Geng, H. (2024). Blockchain technology for enhanced efficiency in logistics operations. IEEE Access.
Rejeb, A., Rejeb, K., Simske, S., & Treiblmaier, H. (2022). Blockchain technologies in logistics and supply chain management:
A bibliometric review. Logistics, 6(1), 2.

Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2022). Blockchain technology and its relationships to sustainable supply
chain management. International Journal of Production Research, 60(18), 5542-5560.

Talla, R. R. (2022). Integrating blockchain and Al to enhance supply chain transparency in energy sectors. Asia Pacific Journal
of Energy and Environment, 9(2), 109-118.

Tian, F. (2021). An agri-food supply chain traceability system based on RFID and blockchain technology. Industrial Manage-
ment & Data Systems, 121(6), 1264-1280.

Treiblmaier, H. (2021). Combining blockchain technology and the physical internet for sustainable logistics. Logistics, 5(1),
10.

Vaghani, A., Sood, K., & Yu, S. (2022). Security and QoS issues in blockchain-enabled next-generation smart logistic networks:
A tutorial. Blockchain: Research and Applications.

Wamba, S. F., Dubey, R., Gunasekaran, A., & Akter, S. (2020). The performance effects of big data analytics and blockchain.
International Journal of Production Economics, 231, 107831.

Wang, Y., Han, J. H., & Beynon-Davies, P. (2021). Understanding blockchain technology for future supply chains: A system-
atic literature review. Supply Chain Management, 26(2), 261-288.

Xu, J., & Bo, L. (2024). Optimizing supply chain resilience using advanced analytics and computational intelligence techniques.
IEEE Access.

Xu, Z., Jain, D. K., Neelakandan, S., & Abawajy, J. (2023). Hunger games search optimization with deep learning model for
sustainable supply chain management. Discover Internet of Things, 3(1), 10.

Yu, X., Li, W., Zhou, X., Tang, L., & Sharma, R. (2023). Deep learning personalized recommendation-based construction
method of hybrid blockchain model. Scientific Reports, 13(1), 17915.

Wamba, S. F., Dubey, R., Gunasekaran, A., & Akter, S. (2025). Artificial intelligence, blockchain, and data-driven supply
chains: Toward intelligent and trustworthy logistics ecosystems. International Journal of Production Economics, 268, 108812.
Zhang, A., Zhong, R. Y., Farooque, M., Kang, K., & Venkatesh, V. G. (2025). Intelligent and blockchain-enabled logistics
systems: A deep learning—driven optimization perspective. Computers & Industrial Engineering, 189, 109053.

Ivanov, D. (2025). Artificial intelligence—driven supply chain resilience and dynamic optimization: Implications for next-gen-
eration logistics systems. International Journal of Production Research, 63(3), 945-963.

Min, H. (2022). Artificial intelligence in supply chain management: Theory and applications. International Journal of Logistics
Research and Applications, 25(4-5), 479-493.

Nguyen, T., Zhou, L., Spiegler, V., leromonachou, P., & Lin, Y. (2022). Big data analytics in supply chain management.
International Journal of Production Economics, 247, 108405.

This publication is licensed under Creative Commons Attribution CC BY.
10.29322/1JSRP.16.02.2026.p17041 www.ijsrp.org


http://ijsrp.org/

