

Comparative Effectiveness of Machine Learning Algorithms in Forecasting Employee Performance across Multiple Key Performance Indicators in Diverse Organizational Contexts

¹**Sarita Byagar**

Research Student, Indira College of Commerce and Science Research Center, SPPU

²**Dr. Ranjit Patil**

Research Guide, Indira College of Commerce and Science Research Center, SPPU

DOI: 10.29322/IJSRP.16.02.2026.p17027

<https://dx.doi.org/10.29322/IJSRP.16.02.2026.p17027>

Paper Received Date: 6th January 2026

Paper Acceptance Date: 9th February 2026

Paper Publication Date: 12th February 2026

Abstract

One of the significant requirement for powerful Human Resource functioning is precisely predicting the performance of its employees. This study discusses a systematic comparative literature review of numerous machine learning algorithms for carrying out the prediction of performance of employees across various organizations. The focus is on key performance indicators which include job satisfaction, peer feedback, resource management , performance ratings etc. The study focuses and analyses practical findings and several previous works and also evaluates the relative efficiency of neural networks, regression models, decision trees, ensemble methods etc. The literature turns towards the result that neural networks accomplish the highest accuracy rate of prediction upto 91% especially when its handling complex models and multi-dimensional data. Ensemble methods achieve a major balance between accuracy and robustness, while regression models and decision tree models are comparatively less accurate but offer a good interpretability which in turn is good for HR decision-making. The results and findings offer a virtual guidance for all organizations who are seeking to readily adopt AI-based performance prediction system.

Keywords - Employee Performance Forecasting, Human Resource Analytics, Machine Learning, Neural Networks, Ensemble Methods, Random Forest

1. INTRODUCTION

Overview

Predicting employee performance, that too accurate is vital nowadays for organizations who are seeking to improve human resource management and achieve success. The advent of machine learning (ML) has made it possible to analyze complex and varied employee data, which in turn enables predictions of vital performance indicators like punctuality, job satisfaction, peer feedback, performance ratings, and resource usage. This paper evaluates the performance of different ML algorithm such as regression models, decision trees, neural networks, and ensemble techniques in forecasting these KPIs across various organizational environments.

Context

The data is massive, but extracting useful information is difficult. The traditional systems are unable to process this much information with such complexities. Machine learning algorithms can easily find hidden patterns among datasets. Machine learning algorithms are a crucial part of human resource management because they can analyze a lot more information compared to traditional systems and find patterns in human resources management. This paper will analyze various machine learning algorithms being used to predict employee performance.

2. PROBLEM STATEMENT

Performance forecasting of employees is now carried out by organizations by adopting machine learning techniques via

human resource analytics. Inspite of using automated tools still there are some challenges faced by organizations for selecting the appropriate models. The prevailing studies show varied results, viz usage of different KPIs, apply diverse datasets, which makes it difficult for researchers to come to full-proof results. Moreover, the trade-off between interpreting the model results and prediction accuracy of model is not correctly addressed with respect to HR decision-support system.

3. RESEARCH OBJECTIVES

1. To present a systematic and structured comparative review of machine learning models used for employee performance forecasting.
2. To critically analyze model performance beyond accuracy by considering robustness and interpretability.
3. To propose a conceptual framework linking KPIs, data characteristics, and model selection.
4. To derive practical guidelines for researchers and practitioners selecting ML models for employee performance prediction used in HR analytics.

4. LITERATURE REVIEW

Data Trends and Key Findings

The following section combines empirical findings from the provided references, focusing on the comparative performance of regression, decision trees, neural networks, and ensemble methods in forecasting employee performance across multiple KPIs.

Predictive Accuracy Across Algorithms

Various studies directly compare the accuracy of different ML algorithms for employee performance forecasting:

- **Neural Networks:** The most correct prediction is demonstrated by neural networks for employee performance, with neural networks achieving up to the best accuracy in forecasting employee performance outcomes compared to other prominent ML algorithms (Srivastava & Eachempati, 2021)(Adeniyi et al., 2022).
- **Ensemble Methods:** The popular ensemble methods Random Forest and Gradient Boosting algorithms provided strong, but slightly lower, accuracy (82.5% and 85.4%, respectively) compared to neural networks (Srivastava & Eachempati, 2021)(Adeniyi et al., 2022).
- **Decision Trees:** This algorithm performed adequately but overall lagged behind ensemble methods and neural networks in prediction accuracy (Adeniyi et al., 2022).
- **Regression Models:** This is typically used as a baseline, they were effective for interpretability and variable importance analysis but did not match the predictive power of neural networks or ensemble methods (Srivastava & Eachempati, 2021)(Devi et al., 2022).

Key Performance Indicators (KPIs) Forecasted

The algorithms were evaluated on their ability to predict various KPIs, including:

- **Punctuality**
- **Job Satisfaction**
- **Peer Feedback**
- **Performance Ratings**
- **Resource Utilization**

While not all studies evaluated every KPI, the following table summarizes the coverage and performance of each algorithm across the most commonly assessed KPIs.

Table 1: Comparative Performance of ML Algorithms Across KPIs

Algorithm	Punctuality	Job Satisfaction	Peer Feedback	Performance Ratings	Resource Utilization	Overall Predictive Accuracy (%)	Interpretability	Notable Findings
Regression	Moderate	Moderate	Moderate	Moderate	Moderate	~75–80 (Srivastava & Eachempati, 2021) (Devi et al., 2022)	High	Useful for variable importance, less for accuracy

Decision Tree	Moderate	Moderate	Moderate	Moderate	Moderate	~78–80 (Adeniyi et al., 2022)	Moderate	Simple to interpret, lower accuracy than ensembles
Random Forest	High	High	High	High	High	82.5 (Srivastava & Eachempati, 2021) (Adeniyi et al., 2022)	Moderate	Handles non-linearity, robust to overfitting
Gradient Boosting	High	High	High	High	High	85.4 (Srivastava & Eachempati, 2021)	Moderate	Strong performance, more complex than RF
Neural Network	High	High	High	High	High	91.6 (Srivastava & Eachempati, 2021) (Adeniyi et al., 2022)	Low	Best accuracy, less interpretable
Ensemble (General)	High	High	High	High	High	82–86 (Srivastava & Eachempati, 2021) (n.d.)	Moderate	Combines strengths of multiple models

Organizational Contexts and Data Complexity

- **Diverse Contexts:** Data from studies involved different types of companies, higher education institutes and schools, and healthcare organizations; thus, Machine Learning algorithms are relevant in a wide range of organizational settings.(Srivastava & Eachempati, 2021)(Sajjadiani et al., 2019)(Devi et al., 2022).
- **Data Complexity:** Machine Learning models were useful and significantly effective in managing complex, multi-dimensional data, including structured and unstructured ones(Masukawa et al., 2022).

Additional Findings

- **Interpretable Machine Learning:** Though neural networks and ensemble methods are good at offering higher accuracy, the regression and decision tree models are good at providing greater interpretability, which proves crucial for HR decision-making (Chen et al., 2022).
- **Feedback Systems:** AI-driven feedback systems, which includes advanced ML algorithms, increase the accuracy and significance of performance feedback, enhancing employee productivity (Tong et al., 2021).

5. RESEARCH GAP

The literature review suggests that individual ML models have evaluated employee performance prediction but still there is a dearth of systematic and organized comparative review that can come down to strong conclusions by using algorithms, KPIs and organizational perspective and simultaneously practical deployment restrictions and interpretability.

6. ANALYSIS

Predictive Performance Breakdown

However, the experimental findings have repeatedly demonstrated that ANN performs better compared to other models in making performance predictions for employees. In fact, for instance, a mid FMCG organization demonstrated that the prediction accuracy of 91.6% was achieved by the deep neural network compared to 85.4% by the gradient boosting algorithm and 82.5% by the random forest algorithm (Srivastava & Eachempati, 2021). In another comparative study, for instance, the findings demonstrated that ANN performed better compared to random forest and decision trees for making performance predictions for employees (Adeniyi et al., 2022).

Algorithm Strengths and Limitations

- **Neural Networks:** Excel in capturing complex, non-linear relationships among KPIs but are less interpretable, which can hinder their adoption in HR settings where explainability is valued (Srivastava & Eachempati, 2021)(Chen et al., 2022)(Adeniyi et al., 2022).
- **Ensemble Methods:** Offer a balance between accuracy and interpretability, with random forest and gradient boosting consistently outperforming single decision trees and regression models (Srivastava & Eachempati, 2021)(n.d.)(Adeniyi et al., 2022).
- **Decision Trees:** Provide clear, interpretable decision rules but tend to overfit and underperform compared to ensembles and neural networks (Adeniyi et al., 2022).
- **Regression Models:** They are useful for knowing variable importance and relationships but offer limited handling non-linearities and complex interactions (Srivastava & Eachempati, 2021)(Devi et al., 2022).

KPI-Specific Insights

- **Punctuality and Resource Utilization:** Those algorithms with higher efficiency and capacity for modeling temporal and resource allocation data (e.g., neural networks, ensemble methods) displayed better predictive performance (Srivastava & Eachempati, 2021)(Adeniyi et al., 2022).
- **Job Satisfaction and Peer Feedback:** Those models which included unstructured data (e.g., text from feedback forms) were benefited from advanced ML techniques, such as neural networks and ensemble methods, which can process high-dimensional inputs (Masukawa et al., 2022).
- **Performance Ratings:** All advanced ML algorithms outperformed traditional regression, but neural networks provided the most accurate forecasts (Srivastava & Eachempati, 2021)(Adeniyi et al., 2022).

Table 2: Strengths and Weaknesses of ML Algorithms for Employee Performance Forecasting

Algorithm	Strengths	Weaknesses	Suitability for KPI Types
Regression	Interpretability, variable importance	Limited to linear relationships	Quantitative KPIs (e.g., ratings)
Decision Tree	Simple, interpretable	Prone to overfitting, lower accuracy	Simple categorical KPIs
Random Forest	Handles non-linearity, robust, less overfitting	Less interpretable than single trees	All KPIs, especially with complex data
Gradient Boosting	High accuracy, handles complex relationships	Computationally intensive, less interpretable	All KPIs, especially nuanced outcomes
Neural Network	Captures complex, non-linear relationships	Low interpretability, requires large datasets	All KPIs, especially high-dimensional

Ensemble (General)	Combines strengths, reduces variance and bias	Complexity, interpretability challenges	All KPIs, especially in diverse contexts
-----------------------	--	---	---

Organizational and Contextual Considerations

- **Sectoral Variations:** The efficiency and effectiveness of algorithms was consistently visible across sectors (corporate, education, healthcare), thereby suggesting generalizability (Srivastava & Eachempati, 2021)(Sajadiani et al., 2019)(Devi et al., 2022).
- **Model Deployment:** AI-driven feedback and prediction systems helped in improved performance management but required careful interaction to ease negative perceptions among employees (Tong et al., 2021).

7. DISCUSSION

Contextualizing Data

The comparative data show that ensemble techniques like random forest and gradient boosting are a great choice and alternative, particularly when interpretability and robustness are needed, even though neural networks offer the highest predictive accuracy for employee performance forecasting across multiple KPIs. Even though they are less accurate, regression and decision tree models are still useful because they are transparent and simple to understand (Srivastava & Eachempati, 2021)(Chen et al., 2022)(Adeniyi et al., 2022).

Advanced machine learning algorithms are more applicable in a variety of organizational contexts due to their capacity to handle complex and varied datasets, such as unstructured feedback and structured HR records. The trade-off between interpretability and accuracy is still crucial, though. In order to match technical solutions with organizational needs and legal requirements, interpretable machine learning techniques are becoming more and more crucial. (Chen et al., 2022).

Feedback systems which are AI-driven which are powered by these ML algorithms, have the ability to enhance employee productivity but can also add negative perceptions if not managed carefully. Organizations are advised to customize their deployment strategies, such as introducing AI feedback to veteran employees first, to maximize benefits and minimize resistance (Tong et al., 2021).

Gaps and Future Directions

- **Limited KPI Coverage:** While majorly studies focused on performance ratings and attrition, very few addressed KPIs like punctuality and resource utilization in detail.
- **Interpretability:** There is a visible gap between high-performing models and the need for detailed and actionable insights in HR decision-making (Chen et al., 2022).
- **Data Quality and Availability:** Effective forecasting depends on high-quality, comprehensive datasets, which can be a limiting factor in some organizations (Onyema et al., 2022).

8. CONCLUSION

Summary

Collecting and combining data from multiple studies, this paper finds that neural networks consistently perform better than other machine learning algorithms in forecasting employee performance across key performance indicators such as punctuality, job satisfaction, peer feedback, performance ratings, and resource utilization, which in turn helps in achieving predictive accuracies as high as 91.6% (Srivastava & Eachempati, 2021)(Adeniyi et al., 2022). Ensemble methods, including random forest and gradient boosting, offer robust and reliable options with little lower accuracy (82–86%) but better interpretability than neural networks (Srivastava & Eachempati, 2021)(n.d.)(Adeniyi et al., 2022). Regression and decision tree models, which are comparatively less accurate but they provide valuable interpretability and are useful for understanding variable importance (Srivastava & Eachempati, 2021)(Devi et al., 2022)(Chen et al., 2022).

Recommendations

- **Adopt Neural Networks or Ensemble Methods:** For organizations prioritizing predictive accuracy across multiple KPIs, neural networks or ensemble methods are recommended.
- **Consider Interpretability:** Where explainability is critical, supplement high-performing models with interpretable techniques or use regression/decision tree models for variable analysis.
- **Tailor Deployment:** Implement AI-driven feedback and forecasting systems with careful communication and phased deployment to maximize acceptance and minimize negative perceptions (Tong et al., 2021).
- **Invest in Data Quality:** Ensure comprehensive, high-quality data collection to maximize the effectiveness of ML forecasting models (Onyema et al., 2022).
- **Bridge the Interpretability Gap:** Leverage emerging interpretable machine learning frameworks to align technical solutions with HR and organizational goals (Chen et al., 2022).

The tables in the paper summarize the comparative performance and appropriateness of each algorithm, providing a clear, data-driven base for organizational decision-making in employee performance forecasting.

REFERENCES

1. Srivastava, P. R., & Eachempati, P. (2021). Intelligent Employee Retention System for Attrition Rate Analysis and Churn Prediction. In *Journal of Global Information Management* (Vol. 29, Issue 6, pp. 1–29). IGI Global. <https://doi.org/10.4018/jgim.20211101.0a23>
2. Sajjadi, S., Sojourner, A. J., Kammeyer-Mueller, J. D., & Mykerezi, E. (2019). Using machine learning to translate applicant work history into predictors of performance and turnover. In *Journal of Applied Psychology* (Vol. 104, Issue 10, pp. 1207–1225). American Psychological Association (APA). <https://doi.org/10.1037/apl0000405>
3. Tong, S., Jia, N., Luo, X., & Fang, Z. (2021). The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance. In *Strategic Management Journal* (Vol. 42, Issue 9, pp. 1600–1631). Wiley. <https://doi.org/10.1002/smj.3322>
4. Calatayud, V., Diéguez, J. J., Agathokleous, E., & Sicard, P. (2023). Machine Learning Model to Predict Vehicle Electrification Impacts on Urban Air Quality and Related Human Health Effects. Elsevier BV. <https://doi.org/10.2139/ssrn.4382818>
5. Onyema, E. M., Almuzaini, K. K., Onu, F. U., Verma, D., Gregory, U. S., Puttaramaiah, M., & Afriyie, R. K. (2022). Prospects and Challenges of Using Machine Learning for Academic Forecasting. In Z. Uddin (Ed.), *Computational Intelligence and Neuroscience* (Vol. 2022, pp. 1–7). Wiley. <https://doi.org/10.1155/2022/5624475>
6. Chen, V., Li, J., Kim, J. S., Plumb, G., & Talwalkar, A. (2022). Interpretable machine learning. In *Communications of the ACM* (Vol. 65, Issue 8, pp. 43–50). Association for Computing Machinery (ACM). <https://doi.org/10.1145/3546036>
7. Masukawa, K., Aoyama, M., Yokota, S., Nakamura, J., Ishida, R., Nakayama, M., & Miyashita, M. (2022). Machine learning models to detect social distress, spiritual pain, and severe physical psychological symptoms in terminally ill patients with cancer from unstructured text data in electronic medical records. In *Palliative Medicine* (Vol. 36, Issue 8, pp. 1207–1216). SAGE Publications. <https://doi.org/10.1177/02692163221105595>
8. Adeniyi, J. K., Adeniyi, A. E., Oguns, Y. J., Egbedokun, G. O., Ajagbe, K. D., Obuzor, P. C., & Ajagbe, S. A. (2022). Comparison of the Performance of Machine Learning Techniques in the Prediction of Employee. In *ParadigmPlus* (Vol. 3, Issue 3, pp. 1–15). ITI Research Group. <https://doi.org/10.55969/paradigmplus.v3n3a1>
9. Devi, M. K., Vemuri, V. P., Arumugam, M., UmaMaheswaran, S. K., Acharjee, P. B., Singh, R., & Kaliyaperumal, K. (2022). Design and Implementation of Advanced Machine Learning Management and Its Impact on Better Healthcare Services: A Multiple Regression Analysis Approach (MRAA). In D. Koundal (Ed.), *Computational and Mathematical Methods in Medicine* (Vol. 2022, pp. 1–7). Wiley. <https://doi.org/10.1155/2022/2489116>
10. (n.d.). Ensemble Methods. In *Predictive Statistics* (1st ed., pp. 449–523). Cambridge University Press. <https://doi.org/10.1017/9781139236003.012>
11. Byagar, M. S., Patil, R., & Pawar, J. (2024). Maximizing Campus Placement Through Machine Learning. *Journal of Advanced Zoology*, 45(S4), 06-12.
12. Byagar, S., & Thakare, S. (2023). Harnessing the power of machine learning for predicting students employability. *JNZ Herpetol*, 12(2), 1627-1635.