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Abstract

The increasing usage of Artificial Intelligence in the industrial setting has brought about a transformation in the industrial
process chain, asset management, and decision-making mechanisms. Though Al-enabled systems are increasingly being regarded
as facilitators of industrial sustainability, research evidence regarding the extent to which Al can contribute to industrial
sustainability is still limited. This research aims to explore the role of Al in industrial sustainability using both conceptual analysis
approaches and insights from existing industrial applications. This study critically analyzes the role of Al-enabled industrial
practices in terms of environmental and operation-related dimensions of industrial sustainability. The role of Al-enabled industrial
practices in terms of energy performance optimization, resource management, and industrial process reliability is specifically
explored. This study analyzes the impact of industrial applications relating to predictive maintenance, intelligent energy
management systems, and industrial process optimization on industrial sustainability. The study highlights the role of Al in resulting
in improved industrial performance in terms of process optimization, energy conservation, and waste reduction; however, this
positive role is overshadowed by the arrival cost based on industrial Al model development. This finding provides the basis for
developing a lifecycle-related conceptual model between industrial Al-related process chain stages and industrial performance
factors. The framework offers a structured approach towards making sustainability trade-offs to ensure proper decision-making
towards the use of sustainable Al. This piece makes a contribution towards the sustainable computing body of knowledge with the
provision of an empirically-informed approach that links Al implementation and sustainability goals within the industrial sector.

Keywords - Artificial Intelligence; Industrial Sustainability; Sustainable Computing; Energy Efficiency; Industry 4.0; Lifecycle
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1. Introduction
1.1 Background and Motivation

The current world industrial landscape is moving at a fast pace in the adoption of digital technologies including the use of
Acrtificial Intelligence (Al), the Internet of Things (1oT), and data analysis. Of these, the adoption of Al has become a key facilitator
in the adoption of Industry 4.0. This has improved productivity, quality, and the efficiency in the manufacturing, energy, logistics,
and process sectors (Jain & Wullert, 2002; Wu et al., 2022).

Conversely, the rising energy consumption rates and the strict environmental standards are exerting more force on industrial
sectors to embrace sustainable methods. This is because the industrial sectors contribute immensely to the global carbon emissions
(IEA, 2024). A major factor that can optimize the consumption of resources while eliminating industrial wastes effectively through
lower carbon emission processes is the application of Al technology. However, the effect brought about by the implementation of
Al technology on sustainable performance within the industrial sectors does not always yield positive outcomes.

Current literature emphasizes that while Al-based systems can optimize energy efficiency in terms of operations, their
design and subsequent deployment in Al models, especially data-driven and computationally intense tasks, result in their own energy
requirements, as well as carbon footprint (Strubell et al., 2019; Henderson et al., 2020). This phenomenon has become a paradoxical
issue related to sustainability factors.

1.2 Problem Statement
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Though the application of Al has been widely gaining momentum across various industrial sectors, the current literature
lacks adequate empirical analysis on the overall effects of Al on the sustainability of industries. Most literature either concentrates
on broad industrial sustainability goals or the average environmental impact of the computation process undertaken by the use of
Al systems. Nevertheless, the effects related to the overall industrial application of the concerned systems remain underappreciated.
1.3 Research Objectives

The research intends to fulfill the above-given research gap by achieving the following objectives:

1. To analyze existing Al tasks involved in sustainability within an industrial setting.

2. Assess the effects of Al-based industrial processes on sustainability.

3. To determine the trade-offs that could result from the development and implementation of Al models related to sustainability
4. To develop a conceptual framework on sustainable adoption of Al based on its lifecycle.

1.4 Research Questions

e What is the impact of Al implementation on sustainability in industrial operations?

o What are the benefits of Al-based industrial systems in the environment as well as in operations?

¢ What trade-offs must be made when considering Al performance versus sustainable goals?

¢ How can the lifecycle-based framework facilitate sustainable Al integration within an industrial setting?

2. Literature Review
2.1 Al and Industrial Transformation

Artificial intelligence has been increasingly used in industry-related fields to provide intelligent automation, prediction,
and adaptive control. Such tasks, among them prediction, maintenance, and optimization, have registered a noticeable improvement
in increased efficiency and, consequently, reduced costs (Wu et al., 2022). There has been a direct alignment with industry-related
goals of sustainability, which include reduced wastage of materials and reduced machine downtime.
2.2 Sustainability Implications of Al Systems

Although Al promotes efficiency in industries, its effect on the environment is becoming a concern for many researchers.
It has been shown that the process of training large-scale Al models is quite energy-intensive, leading to carbon emissions (Strubell
et al., 2019; Patterson et al., 2021). Wu et al. (2022) have suggested the need for comprehensive analysis in understanding the
sustainability of Al solutions for various data streams in their pipeline or hardware used in their operations.
2.3 Industrial Sustainability Metrics

A sustainability analysis of the industry can be made through indicators such as energy efficiency, reduced emissions,
resource use, and reliability. However, current sustainability analysis does not take into consideration factors such as computational
intensity, volume of data, and infrastructure needs that are unique to artificial intelligence (Henderson et al., 2020).
2.4 ldentified Research Gap

As the sustainability and environmental implications of Al have already been covered in the current literature
independently, there is a research gap in the development of a comprehensive and validated framework to examine the sustainability
dimensions of Al.
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3. Proposed Conceptual Framework
3.1 Framework Overview

In this regard, the paper proposes a "Lifecycle-Based Sustainable Al Framework for Industrial Systems" to investigate the
sustainability effects of implementing Al in industrial settings. This is because the sustainability effect of Al reaches beyond its use
and implementation and is rather embedded within the entire life cycle of the system involved. This is supported by Wu et al. (2022)
and Henderson et al. (2020).

Current studies on sustainable Al focus mainly on isolated results like energy optimization or emissions reduced during
the operation of industry. However, current studies fail to consider costs involved in sustainable development, like data-intensive
preprocessing, complex model training, and infrastructure scaling tasks (Strubell et al., 2019; Patterson et al., 2021). By combining
the different phases of Al development with sustainable development aspects of industry, it will be possible to cover all aspects of
sustainable development, as mentioned above.

3.2 Framework Components

The framework is made up of two closely related aspects: the stages of AI’s lifecycle and the dimensions of industrial
sustainability. These two aspects are interconnected in such a way that they offer a framework for sustainability assessment.
3.2.1 Al Lifecycle
Data Acquisition and Processing

Data acquisition and data processing represent the base for Al systems in industrial settings, including data acquisition
processes from sensors, machines, and enterprise systems. Although good data is crucial for Al model accuracy, the energy
requirements in this stage might be substantial owing to data transmission, storage, and data processing operations in the Al system
(Henderson et al., 2020). In the context of sustainability, poorly designed data flows could potentially contribute to increased digital
waste, highlighting the need for data minimization practices in Al systems in the industrial domain (Wu et al., 2022).

Model Development and Training

Model development and training are the most computationally intensive part of the Al life cycle. Many industrial Al models
are based on huge datasets and profound architecture for high predictive accuracy, which results in high energy consumption and,
consequently, acute carbon emissions. This is according to Strubell et al., 2019; Patterson et al., 2021. From this stage, significant
choices arise in terms of sustainability, which can be weighed against model complexity and environmental impact. Thus, this
framework puts into focus the importance of assessing algorithm efficiency, reusing pre-trained models, and optimizing training
strategies to reduce environmental costs.

Deployment and Inference

Deployment represents the process of integrating the trained model with the industrial systems to enable tasks like
predictive maintenance and scheduling. This phase is contributing to sustainability in the industrial applications and results in the
minimization of equipment downtime and the efficient use of materials and energy. But there could be new power consumption
requirements involved with the continuous inference of the model. The model takes into consideration the new consumption
involved with the inference of the model.

Monitoring and Optimization

For monitoring and optimization, it ensures continuous functioning of Al in dynamic industrial environments. Tasks like
performance monitoring, system retraining, and system fine-tuning are ensured in order to avoid deterioration of the Al model and
inefficient resource use. Analysis from the sustainability perspective views monitoring as crucial in avoiding unnecessary retraining
sessions and computation overheads. It thus supports long-term efficiency (Henderson et al., 2020). This phase confirms
sustainability through monitoring.

Model Reuse or Retirement

In the final stage of the life cycle, long-term management regards reuse, transfer, or retirement of the Al models. According
to Wu et al. (2022), model reuse across similar contexts reduces computational and energy costs related to retraining by a significant
amount. On the other hand, improper retirement will lead to infrastructure waste and inefficient use of technology. The framework
therefore demonstrates that long-term environmental and economic impacts can be minimized with responsible decommissioning
and lifecycle planning.

3.2.2 Sustainability Dimensions

The framework evaluates Al lifecycle stages across three key sustainability dimensions:
Environmental Sustainability

The major concern regarding environmental sustainability is related to indicators of energy use, carbon emission, and waste
management. The study of these indicators in relation to the entire lifecycle of Al can thus help determine areas of highest impact
in terms of environment and plan strategies accordingly (Strubell et al., 2019; Patterson et al., 2021).

Operational Sustainability
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Operational sustainability involves the use of Al systems in enhancing the efficiency, reliability, and resilience of industrial
operations. The metrics on downtime reduction, system stability, and process efficiency are different measures used to benchmark
the longitudinal operational values of the Al-enabled solution (Jain & Wullert, 2002).

Economic Sustainability

Economic sustainability studies the benefits of cost savings, increased productivity, or ROI related to the implementation

of artificial intelligence. For sustainable artificial intelligence solutions to be adopted on an industrial scale, they must prove to be

economically viable (Wu et al., 2022)

A Lifecycle Sustainability Framework
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3.3 Figure Description

A representation of the proposed framework based on the Al system stages mapped to the dimensions of industrial
sustainability is shown in Figure 1. It is evident from the representation in the figure that the effects of sustainability are associated
not only with the deployment stages of the Al system but with every other stage as well.

4. Expected Contributions
4.1 Theoretical Contributions

This paper adds to the sustainable Al literature by broadening the scope of sustainable evaluation to the industrial domains.
The lifecycle framework advances the current literature on sustainable Al through the connection to the dimensions of sustainability
during the design, implementation phase to the dimensions mentioned above instead of being specifically focused on one
environmental or technical point covered within previous literature (Wu et al., 2022; Henderson et al., 2020).
4.2 Practical Contributions

From a practical standpoint, the proposed framework is an organized tool that benefits the industrial community in terms
of assessing the sustainability implications of implementing Al. It enables engineers, managers, and policymakers to trade off the
optimization of performance with sustainability. Moreover, this framework helps in synchronizing the use of Al in Industry with
the requirements of regulations and sustainability in organizations (IEA, 2024).

5. Conclusion

This study shows that Artificial Intelligence can strongly support industrial sustainability when it is used thoughtfully and
evaluated in a holistic manner. The findings indicate that Al applications such as predictive maintenance, intelligent energy
management, and process optimization help industries reduce energy consumption, minimize material waste, improve operational
reliability, and enhance overall efficiency. These outcomes clearly demonstrate Al’s potential to support environmental and
operational sustainability goals.

At the same time, the study highlights an important concern. While Al improves sustainability during industrial operations,
the processes involved in building and running Al systems—such as large-scale data processing, model training, infrastructure
expansion, and continuous monitoring—consume significant energy and generate carbon emissions. This creates a clear trade-off,
where the benefits of Al must be weighed against its environmental cost. Therefore, Al should not be viewed as automatically
sustainable; its impact depends largely on how it is designed, deployed, and managed.

By taking a lifecycle-based perspective, this research emphasizes that sustainability impacts arise at every stage of an Al
system, from data collection to model retirement. The proposed framework helps industries evaluate these impacts in a structured
way by considering environmental, operational, and economic dimensions together. It encourages informed decision-making,
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allowing organizations to balance performance improvements with long-term sustainability through practices such as efficient model
design, reuse of existing systems, and responsible decommissioning.

In conclusion, Al can act as a powerful enabler of sustainable industrial development when lifecycle awareness is integrated

into its adoption. A balanced and responsible approach to Al implementation is essential to ensure that technological progress aligns
with sustainability objectives, supporting both industrial growth and environmental responsibility.
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