
International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 1
ISSN 2250-3153

www.ijsrp.org

Security Aware Congestion Control Mechanism on

SPLIT-TCP over MANETs

Sakshi Bhatia
 *
, Sanjeev Rana

 **
, Rajneesh Kumar Gujral

* Asst. Professor, Deptt. of Computer Engg., M. .M University Mullana (Ambala), Haryana

** Professor, Deptt. of Computer Engg, M. .M University Mullana (Ambala), Haryana
** Professor, Deptt. of Computer Engg, M. .M University Mullana (Ambala), Haryana

Abstract- Wireless Ad hoc Networks TCP wrongly attributes

packet losses due to the high Bit Error Rate (BER) location-

dependent contention, unidirectional links, dynamic topology and

the inherent fading properties of the wireless channel to as

congestion. It causes an overall degradation of throughput; it

especially affects connections with a large number of hops,

where link failures are more likely. A number of cross layer

solutions such as TCP-F, TCP-ELFN, ATCP, TCP-Bus and

SPLIT-TCP has been proposed. Among them Split-TCP is well

suited because this scheme converts longer TCP connections to

multiple shorter TCP connection, in order to achieve greater

Throughput. Another major issue at transport layer is security

and few solutions has been proposed so far to provide secure

communication and congestion control at the Transport Layer. In

this paper we have proposed a security aware congestion control

mechanism for MANETs that not only improves performance

using SPLIT-TCP but also provide security at Transport Layer.

Index Terms- Split-TCP, ARAN, Congestion Control, Security

I. INTRODUCTION

he objectives of TCP-like Transport layer protocols in

MANET include setting up of end-to-end connection, end-

to-end reliable delivery of packets, flow control, congestion

control, clearing of end-to-end connection. Similar to TCP

protocols in the Internet, the mobile node is vulnerable to the

classic SYN flooding attack or session hijacking attacks.

However, a MANET has a higher channel error rate when

compared with wired networks. Because TCP does not have any

mechanism to distinguish between whether a loss was caused by

congestion, random error, or malicious attacks, TCP

multiplicatively decreases its congestion window upon

experiencing losses, which degrades network performance

significantly [1].

 SYN flooding attack: The SYN flooding attack is a denial-

of-service attack. The attacker creates a large number of half-

opened TCP connections with a victim node, but never completes

the handshake to fully open the connection. For two nodes to

communicate using TCP, they must first establish a TCP

connection using a three-way handshake. The three messages

exchanged during the handshake, illustrated in Figure 1, allow

both nodes to learn that the other is ready to communicate and to

agree on initial sequence numbers for the conversation. During

the attack, a malicious node sends a large amount of SYN

packets to a victim node, spoofing the return addresses of the

SYN packets. The SYNACK packets are sent out from the victim

right after it receives the SYN packets from the attacker and then

the victim waits for the response of ACK packet. Without any

response of ACK packets, the half-open data structure remains in

the victim node. If the victim node stores these half-opened

connections in a fixed-size table while it awaits the

acknowledgement of the three-way handshake, all of these

pending connections could overflow the buffer, and the victim

node would not be able to accept any other legitimate attempts to

open a connection.

Figure 1: TCP Three-way Handshake

 Normally there is a time-out associated with a pending

connection, so the half-open connections will eventually expire

and the victim node will recover. However, malicious nodes can

simply continue sending packets that request new connections

faster than the expiration of pending connections [2].

 Session hijacking: Session hijacking takes advantage of the

fact that most communications are protected (by providing

credentials) at session setup, but not thereafter. In the TCP

session hijacking attack, the attacker spoofs the victim’s IP

address, determines the correct sequence number that is expected

by the target, and then performs a DoS attack on the victim. Thus

the attacker impersonates the victim node and continues the

session with the target. The TCP ACK storm problem, illustrated

in Figure 2, could be created when an attacker launches a TCP

session hijacking attack. The attacker sends injected session data,

and node A will acknowledge the receipt of the data by sending

an ACK packet to node B. This packet will not contain a

sequence number that node B is expecting, so when node B

receives this packet, it will try to resynchronize the TCP session

with node A by sending it an ACK packet with the sequence

number that it is expecting. The cycle goes on and on, and the

ACK packets passing back and forth create an ACK storm.

Hijacking a session over UDP is the same as over TCP, except

that UDP attackers do not have to worry about the overhead of

managing sequence numbers and other TCP mechanisms. Since

T

International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 2

ISSN 2250-3153

www.ijsrp.org

UDP is connectionless, edging into a session without being

detected is much easier than the TCP session attacks. The rest of

this paper is organized as follows. Section 2 covers an overview

of SPLIT-TCP and ARAN protocols, Section 3 summarizes

related work, Section 4 discuss proposed mechanism that

degrade congestion and provide security, Section 5, simulation

analysis and result discussion is presented and Section 6

concludes this paper with discussions.

Figure 2: TCP ACK Storm

II. OVERVIEW OF SPLIT-TCP AND ARAN SECURITY

PROTOCOL

 In this paper, we have proposed a Security Aware Congestion

Control Mechanism that consists two modules Split-TCP and

ARAN. The Split-TCP is used to reduce delay and to provide

security ARAN security protocol has been embed with it.

2.1 SPLIT-TCP

 In ad hoc networks, traditional TCP protocol cannot handle

node mobility well. Due to mobility of nodes frequent links

break, lot of packet losses (until the routing layer discovers a new

route). Furthermore, as the number of hops on a path increases,

the probability of a link failure on the path increases. This

implies that shorter TCP connections enjoy an unfair advantage

in throughput as compared with longer connections. So this give

birth to new enhanced TCP protocol i.e. Split-TCP. In Split-TCP

[3] provides a unique solution to this problem by splitting the

transport layer objectives into congestion control and end-to-end

reliability. In the ad hoc wireless networks environment,

congestion control demands local solutions. At the same time,

reliability is an end-to-end requirement and needs end-to-end

acknowledgments. Split-TCP splits a long TCP connection into a

set of short concatenated TCP connections with a number of

selected intermediate nodes (known as proxy nodes) as

terminating points of these short connections. Figure 3 illustrates

the operation of split-TCP where a three segment split-TCP

connection exists between source node 1 and destination node

15. For any TCP connection, [4] certain nodes along the route

take up the role of being proxies for that connection.

15

55

55

52

1

13

33

55

55

2

14

55

55

2
11

15

55

52

12

2
8

7

10

55

55

2
4

3

5 6

2

9

Network Link

TCP Data Flow

Shaded nodes- Proxy nodes

End-to-End TCP ACK

LACK

Destination

Node

Figure 3: An illustration of Split-TCP

Source

 A proxy node receives the TCP packets, reads its contents,

stores it in local buffer, and sends an acknowledgement to the

source (or the previous proxy). This acknowledgement called

local acknowledgement (LACK) does not guarantee end-to-end

delivery. The responsibility of further delivery of packets is

assigned to the proxy nodes. A proxy node clears a buffered

packet once it receives LACK from the immediate successor

proxy nodes for that packet. Split-TCP maintains the end-to-end

acknowledgement mechanism intact, irrespective of the addition

of zone-wise LACKs. The source node clears the buffered

packets only after receiving the end-to-end acknowledgement for

those packets [5] [6]. In the figure 3 node 1 initiates a TCP

session to node 15. Node 4 and node 13 are chosen as proxy

nodes. The number of proxy nodes in a TCP session is

determined by the length of the path between source and

destination nodes. Based on a distributed algorithm, the

intermediate nodes that receive TCP packets determine whether

to act as a proxy node or just as a simple forwarding node. The

simplest algorithm makes the decision for acting as proxy node if

the packet has already traversed more than a predetermined

number of hops from the last proxy node or the sender of the

TCP session. In fig the path between node 1 and node 4 is the

first zone, the path between node 4 and 13 is the second zone,

and the last zone is between node 13 and 15.The proxy node 4,

upon receipt of each TCP packet from source node 1,

acknowledges it with a LACK packet, and buffers the received

packets. This buffered packet is forwarded to the next proxy

node (node 13) at the transmission rate proportional to the arrival

of LACKs from the next proxy node or destination. The

transmission control window at TCP sender is also split into two

windows, i.e. the congestion window and the end-to-end

window. The congestion window changes according to the rate

of arrival of LACKs from the next proxy node and end-to-end

window is updated based on the arrival of end-to-end ACKs.

Both these windows are updated as per traditional TCP except

that the congestion window should stay within the end-to-end

window. In addition to these transmission windows at the TCP

sender, every proxy node maintains a congestion window that

governs the segment level transmission rate [5]. In TCP-BUS

explicit messages such as ICMP source quench are used for

International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 3

ISSN 2250-3153

www.ijsrp.org

congestion control. ECN is used to notify TCP sender in ATCP,

congestion control is same as TCP. In split-TCP [5] since

connection is split, the congestion control is handled within a

zone by proxy nodes and proxy nodes maintain congestion

window and handle congestion.

2.2 Authenticated Routing for Ad hoc Networks

(ARAN)

 ARAN uses public key cryptography to defeat all identified

attacks. It takes care of authentication, message integrity, and

non-repudiation, but expects a small amount of prior security

coordination among nodes. During the route discovery process of

ARAN, the source node broadcasts Route Request packets. The

destination node, on receiving the Route Request packets,

responds by unicasting back a reply packet on the selected path.

The ARAN protocol uses a preliminary cryptographic

certification process, followed by an end-to-end route

authentication process, which ensures secure route establishment

[5].

 Route Formation Phase:

 Step 1: Each node, before attempting to connect to ad hoc

network, must contact the certification authority and request a

certificate, which contains the IP address of the node (IPA), the

public key of A (KA+), a timestamp k of when the certificate was

created, and a time e at which the certificate expires. These

variables are concatenated and signed by .TK The protocol

assumes that each node knows a priori the public key of

certification authority.

TAAA KetKIPcertAT],,,[:
 Step 2: The route discovery of the ARAN protocol begins

with a node broadcasting a route discovery packet (RDP) to its

neighbors. The RDP includes a packet type identifier (“RDP”),

the IP address of the destination X (IPX), A 's certificate (cert A)

and a nonce NA , all signed with A 's private key. Note that the

RDP is only signed by the source and not encrypted, so the

contents can be viewed publicly. The purpose of the nonce is to

uniquely identify an RDP coming from a source. Each time, A,

performs route discovery it monotonically increases the nonce.

Each node validates the signature with the certificate, updates its

routing table with the neighbor from which it received the RDP,

signs it, and forwards it to its neighbors after removing the

certificate and the signature of the previous node (but not the

initiator’s signature and certificate). Let B be a neighbor that has

received from A the RDP broadcast, which it subsequently

rebroadcasts.

AAAX CertKNIPRDPbrdcstA ,],,[:

BABAAX CertCertKKNIPRDPbrdcstB ,,]],,[[:

 Upon receiving the RDP B’s neighbor C validates the

signatures for both the RDP initiator, and B, the neighbor it

received the RDP from, using the certificates in the RDP. C then

removes B’s certificate and signature, records as its predecessor,

signs the contents of the message originally broadcast by Y and

appends its own certificate C then rebroadcasts the RDP.

CACAAX CertCertKKNIPRDPbrdcstC ,,]],,[[:

 Eventually, the message is received by the destination X,

who replies to the first RDP that it receives for a source and a

given nonce. This RDP need not have traveled along the path

with the least number of hops; the least-hop path may have a

higher delay, either legitimately or maliciously manifested. In

this case, however, a non-congested, non least-hop path is likely

to be preferred to a congested least hop path because of the

reduction in delay. Because RDP’s do not contain a hop count or

specific recorded source route, and because messages are signed

at each hop, malicious nodes have no opportunity to redirect

traffic. After receiving the RDP, the destination unicasts a Reply

(REP) packet back along the reverse path to the source. Let the

first node that receives the REP sent by X be node D.

XXAA CertKNIPREPDX ,],,[:

 The REP contains the address of the source node, the

destination’s certificate, a nonce, and the associated timestamp.

The destination node signs the REP before transmitting it. The

REP is forwarded back to the initiating node by a process similar

to the process described for the route discovery, except that the

REP is unicasted along the reverse path. Let D’s next hop to the

source node C.

DXDXAA CertCertKKNIPREPCD ,,]],,[[:

 C validates D's signature on the received message, removes

the signature and certificate, then signs the contents of the

message and appends its own certificate before unicasting the

REP to B. Each node checks the nonce and signature of the

previous hop as the REP is returned to the source. When the

source receives the REP, it verifies the destination’s signature

and the nonce returned by the destination.

CXCXAA CertCertKKNIPREPBC ,,]],,[[:

 Route maintenance

 When no traffic has occurred on an existing route for that

route's lifetime, the route is simply de-activated in the route

table. Data received on an inactive route causes nodes to generate

an Error (ERR) message. Nodes also use ERR messages to report

links in active routes that are broken due to node movement. All

ERR messages must be signed. For a route between source A and

destination X}, a node B generates the ERR message for its

neighbor C as follows:

BBBXA CertKNIPIPERRCB ,],,,[:

 This message is forwarded along the path toward the source

without modification. A nonce ensures that the ERR message is

fresh. It is extremely difficult to detect when ERR messages are

fabricated for links that are truly active and not broken. However,

the signature on the message prevents impersonation and enables

non-repudiation. A node that transmits a large number of ERR

messages, whether the ERR messages are valid or fabricated,

should be avoided.

 Key Revocation

 In the event that a certificate needs to be revoked, the trusted

certificate server, T, sends a broadcast message to the ad hoc

group that announces the revocation. Calling the revoked

certificate cert X, the transmission appears as:

 TT KcertrevokebrdcstT],[:
 Any node receiving this message re-broadcasts it to its

neighbors. Revocation notices need to be stored until the revoked

certificate would have expired normally. Any neighbor of the

node with the revoked certificate needs to reform routing as

necessary to avoid transmission through the now un trusted node.

International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 4

ISSN 2250-3153

www.ijsrp.org

III.RELATED WORK

 Swastik Kopparty et al. [4], has proposed that for any TCP

connection, certain nodes along the route take up the role of

being proxies for that connection. The proxies buffer packets

upon receipt and administer rate control. The buffering enables

dropped packets to be recovered from the most recent proxy. The

rate control helps in controlling congestion on inter-proxy

segments. Thus, this work concludes that shorter TCP

connections achieve better parallelism in the network.

 In [7] the main idea behind the proposed mechanism is to

notify the sender when the packets of a Transport layer flow

change their route. In this work sender can benefit from this

information when deciding whether to retransmit a missing

segment or to wait, when estimating the RTT (Round Trip Time),

and when deciding whether to change the congestion window.

 Nizar et. al. [8] suggested the techniques introducing

awareness of the physical medium into TCP are typically

implemented using different explicit notification techniques. One

of the first proposals in this category presented in [9] is Explicit

Congestion Notification (ECN). It reserves a specific bit inside

the IP header, which brings indication of network congestion

back from a router to the sender node. This allows TCP sender to

select its congestion control actions differentiating between

congestion and link error related losses.

 In [10] Sarolahti et. al. proposed explicit signaling algorithm

allowing network routers to increase TCP startup performance

over high-speed network paths. Having the core algorithms

controlling TCP functionality such as congestion control and

error recovery implemented at the sender node turns the design

of optimization algorithms towards explicit notification

solutions, which usually demonstrate considerable performance

advantages. However, the main drawback for such solutions is

the requirement for the modification of TCP sender code -

traditionally implemented inside the operating system kernel,

making the deployment of these schemes difficult on the wide

scale.

 In [8] aims at overhead reduction deriving from the

multilayer ARQ employed at the link and transport layers. It

introduces ARQ proxy [11],[12] at the base station and ARQ

client at the mobile node agents, which substitute the

transmission of the TCP ACK packet with a short link layer

request sent over the radio link. As a result, ARQ proxy releases

radio link resources required for TCP ACK packet transmission -

which can be used by other transmitting stations.

 In [13] proposed that approaches that rely on explicit

feedback from intermediate nodes, like ECN can face problems,

since no direct access for the IP header is allowed for such nodes.

In order to mitigate such a problem, some effort has to be put on

that, but a really robust solution seems to be absent.

 Ding et. al. [14] proposed TCP-MANET to detect malicious

packet drop attack based on RTT of next acknowledged packet.

Upon inferring a malicious attack, TCP-MANET trigger the

routing protocol to find a new route to connection, and locate the

malicious node in the network.

 In [15] to defeat all identified attacks on AODV and DSR

using ARAN has been proposed. ARAN can secure routing in

environments where nodes are authorized to participate but

untrusted to cooperate, as well as environments where

participants do not need to be authorized to participate. This

work evaluates ARAN and shows that it is able to effectively and

efficiently discover secure routes within an ad hoc network.

Jonny Karlssson et. al.[16] proposed that due to heavy

asymmetric cryptographic operations and large routing packets,

ARAN has a high computational cost for route discovery. ARAN

is also vulnerable against selfish nodes e.g. drop routing packets.

In particular, if the selfish node is an authenticated node, then

ARAN is unable to detect this type of attack.

 Kimaya Sanzgiri et. al. [17] proposed ARAN, a routing

protocol for ad hoc networks that uses authentication and

requires the use of a trusted certificate server. In ARAN, every

node that forwards a route discovery or a route reply message

must also sign it, (which is very computing power consuming

and causes the size of the routing messages to increase at each

hop). A proposal that only require originators to sign the message

has been proposed in [18]. In addition, it is prone to reply attacks

using error messages unless the nodes have time synchronization.

Harsh Sadawarti et. al. [19] proposed security model based on

ARAN to handle the DoS attacks. All the routing messages are

authenticated at every hop from source to destination as well as

on reverse path from destination to source.

IV.PROPOSED SECURITY AWARE AND CONGESTION

CONTROL MECHANISM

 The proposed work provided the security and performance

enhancement by controlling the congestion at transport layer.

The above said work embeds ARAN over SPLIT-TCP at

transport layer that not only prevents congestion but also provide

secure data communication in MANET. This work takes the

following assumptions:

 The scheme is based on public key cryptography using

offline certification authority (CA).

 Proxy nodes are the trusted nodes and know the public

key of other proxy nodes.

 The encryption/decryption takes place at the proxy

nodes.

 Only proxy nodes can be the source and destination

nodes.

 All links are bidirectional.

 Each node gets digital certificate from Certifying Authority

(CA) in a secure fashion before communication. Since the

intermediate nodes will act as only forwarding nodes. All the

security checks will be carried out at proxy nodes using ARAN.

Let P1 P2 be the Proxy Nodes and F1 , F2 be the intermediate

nodes. Here RP1 UP1 are the Private and Public key of node P1 and

RP2 UP2 are the Private and Public key of node P2. The packets

will have to pass through the nodes which can be in an

arrangement among the following cases:

 Case 1: (Secure communication between two proxy nodes)

In this case at proxy node P1 the message is encrypted with RP1

and further encrypted with public key UP2. At the proxy node P2

this combination is decrypted with RP2 and further decrypted

with private UP1.

International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 5

ISSN 2250-3153

www.ijsrp.org

Figure 4: Secure Communication between two proxy nodes

 Case 2: (Secure communication Through Intermediate

Node)

In this case a proxy node P1 knows RP1 and UP2. The message is

encrypted with RP1 and further encrypted with UP2. The next

node is an intermediate node F1 which will only forward the

message to the neighbour node. It does not perform any

verification and testing.

Figure 5 : Secure communication Through Intermediate

Node

Case 3: (Communication Between Forwarding Nodes)

 The first intermediate node F1 will forward the message to

next intermediate node F2 without performing any verification

and testing which will also forward the message to the neighbour

node.

Figure 6: Communications Between Forwarding Nodes

 If the message is tampered proper decryption of the

encrypted message cannot take place. If a message is unable to

reach the next proxy node in the first attempt then the message is

retransmitted. If the message is unable to reach the destination

node in three attempts then a negative acknowledgement is sent

to the source proxy node. An alternate route is then chosen with

minimum number of intermediate nodes using the information

that is present in the cache of nodes.

Figure 7: illustrates the operation of SPLIT-TCP

 Figure 7 illustrates the operation of split-TCP where a split-

TCP connection exists between source node P1 and destination

node P4. A proxy node receives the TCP packets, reads its

contents, stores it in local buffer, encrypts/decrypts the message

and sends an acknowledgement to the source (or the previous

proxy). This acknowledgement called local acknowledgement

(LACK). In the fig the P1 initiates a TCP session to node P4.

Node P2 is chosen as next proxy node after the source node. The

number of proxy nodes in a TCP session is determined by the

length of the path between source and destination nodes. The

following mechanism takes place:

 Step 1: The node P1 encrypts the message with RP1 and

further encrypts with public key UP2. Double encryption takes

place at the proxy node and the message is forwarded to

intermediate node F1.

 Step 2: Node F1 does not perform any verification and

simply forwards the message to next neighbor node (proxy node

P2).

 Step 3: Proxy node P2, upon receipt of each TCP packet or

message from node F1, carries out decryption with UP1 and one

more decryption is carried out with Rp1. At the first level of

decryption authentication, non-repudiation and integrity is

achieved. Then at the second level of decryption we are able to

achieve secrecy. If proper decryption takes place then proxy node

P2 acknowledges the previous proxy node (P1) with a LACK

packet, and buffers the received packets.

 Step 4: The buffered packet is forwarded to next neighbor

node which is an intermediate node 2. It forwards the received

message to next node which is proxy node (P3).

 Step 5: The process in step1 to step3 is repeated. If proper

results are not obtained on decryption of the encrypted message

at proxy node (P2) then the information in the message is

tampered.

4.1 Performance Analysis

 The network scenario consists of a proxy nodes followed by

an intermediate node. The proxy node can be source and

destination node. Our simulation environment consists of 5 proxy

and 4 intermediate nodes as illustrated in figure 4. For simulation

purpose we assume P1 as the source and P3 as the destination.

Node P1 sends cipher text by applying double encryption using

RSA with its private key for first encryption and RSA with

private-public key of next proxy node (P2) for second

encryption. The intermediate node 1 receives the data and

forwards the cipher text to P2 which carries out decryption using

the same algorithm and obtains the original message. Now for

transferring the message further, it again encrypts. This process

repeats till the message reaches the destination node. The cipher

text obtained on first level decryption matches that of the one

obtained after first level of encryption which has been obtained

using private key encryption. The attacker can only attack at any

of the intermediate node since we have assumed all the proxies

as trusted nodes. Interruption attacks are launched to deny

routing messages from reaching the destination nodes by

modifying the message.

P1 P2

P1 P2 F1

11

1

11

11

F

1

11

1

F

2

2

11

1

1

11

1

International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 6

ISSN 2250-3153

www.ijsrp.org

Figure 8: Simulation Scenario (when a between source and

destination is complete in graphical mode)

Figure 9: Simulation Scenario (when a transmission between

source and destination is complete in text mode)

Figure 10: Simulation Scenario to select the attacking node

Figure 11: Simulation Scenario (showing transmission in

case of attack in graphical mode)

 So, if there is an attacking node present in the network then

the message is unable to travel further in the network and is thus

unable to reach the destination node. In figure 10 and figure 11,

node 1 is causing interruption and this is detected by proxy P2

which is unable to decrypt the message since, it has been

modified at previous node (node 1).

International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 7

ISSN 2250-3153

www.ijsrp.org

Figure 12: Simulation Scenario showing transmission in case

of attack in text mode

V. RESULT AND DISCUSSIONS

 The proposed work provide Security and congestion control

on SPLIT-TCP. In this work the number of proxy nodes can be

obtained from the given equation:

)2/(nnnp
 where, n is total number of nodes

 The implementation of the network consists 9 nodes in which

4 intermediate nodes and 5 proxy nodes. Following table is used

in the graph analysis. It has been assumed that the network

topology consists of an alternate combination of proxy and

intermediate nodes. T is the time taken to travel from source to

destination at the Transport layer.

Table 1: Computational Times of ARAN at Network layer and

SPLIT-TCP

Number of

Nodes

ARAN at Network

Layer

 Proposed (ARAN

+Split-TCP)

50 50T 25T`

100 100T 50T`

150 150T 75T`

200 200T 100T`

0

50

100

150

200

250

50 100 150 200

Number of Nodes

T
im

e

ARAN at Network

Layer

Proposed (ARAN

+Split-TCP)

Figure 13: Computational Time of ARAN at Network Layer

Vs. Transport Layer

 In Figure 13 comparison of computational times of ARAN

over routing protocols of network layer and transport layer. As

we can see in the figure starting with 50 nodes in the network the

computational time taken by ARAN over Network layer is 50T

and over Transport layer is 25T, with 100 nodes the

computational time taken by ARAN over Network layer is 100T

and over Transport layer is 50T, with 150 nodes the

computational time taken by ARAN over Network layer is 150T

and over Transport layer is 75T and with 200 nodes the

computational time taken by ARAN over Network layer is 200T

and over Transport layer is 100T.

VI. CONCLUSION AND FUTURE SCOPE OF WORK

 The research work embed ARAN on Split-TCP at the

Transport layer results in a security aware congestion control

mechanism which also reduces delay and thus enhances

performance. It is secure since the proxy node does not forward

the tampered message to the next node. And it enhances the

performance as security checks are not implemented at every

node of the network. Instead security is analyzed only at the

proxy nodes. As per proposed scheme when the proxy node is

unable to carry out decryption successfully then it sends a

negative acknowledgement to the source. In the future work, this

can be extended by making three attempts for retransmission,

then considering this scenario as congestion. The work can also

be enhanced by finding an alternate route by using DSR in case

source receives a negative acknowledgement thrice.

REFERENCES

[1] H. Hsieh and R. Sivakumar 2002, Transport Over Wireless
Networks.Handbook of Wireless Networks and Mobile Computing, Edited
by Ivan Stojmenovic. John Wiley and Sons, Inc.

[2] Bing Wu, Jianmin Chen, Jie Wu, Mihaela Cardei 2006 “A Survey on
Attacks and Countermeasures in Mobile Ad Hoc Networks”,
WIRELESS/MOBILE NETWORK SECURITY, pp. 2-38.

[3] C.Siva Ram Murthy and G.Mohan, 2001. WDM Optical
Networks:Concepts, Design and algorithms, PrenticeHall PTR, New
Jersey.

[4] Kopparty, S.; Krishnamurthy, S.V.; Faloutsos, M.; Tripathi, S.K.; 2002 ,
‘Split TCP for mobile ad hoc networks,’ Global Telecommunications
Conference, 2002. GLOBECOM '02. IEEE , vol. 1, pp. 138- 142.

[5] C. Siva Ram Murthy and B. S. Manoj, 2004. “Ad Hoc Wireless Networks,
Architectures and Protocols”, Low Price Edition, Pearson Education.

[6] Swastik Kopparty, Srikanth V. Krishnamurthy, Michalis Faloutsos, Satish
K. Tripathi, “Split TCP for Mobile Ad Hoc Networks”, Department of
Computer Science and Engineering, University of California, Riverside.

[7] Reuven Cohen and Anna Levin, 2009. “A Route-Control Mechanism for
Improving the Performance of Transport Protocols in a MANET”, IEEE
Conference, 34th Local Computer Network, pp-546-553.

[8] Dzmitry Kliazovich , Fabrizio Granelli 2010. ‘ Why Cross
Layer?Advantages and Disadvantages,’ University of Trento, Italy,pp:1-33

[9] K. Ramakrishnan, S. Floyd, and D. Black, 2001. The Addition of Explicit
Congestion Notification (ECN) to IP.RFC 3168, 2001.

[10] P. Sarolahti and S. Floyd, 2007 “Cross-layer Indications for Transport
Protocols,” Internet draft draft-sarolahti-tsvwg-crosslayer-00.txt, 2007.

[11] D. Kliazovich, F. Granelli, S. Redana, and N. Riato 2007, “Cross-Layer
Error Control Optimization in 3G LTE,” IEEE Global Communications
Conference (GLOBECOM), Washington, DC, U.S.A.

[12] D. Kliazovich, N. Ben Halima, and F. Granelli, 2007. Cross-Layer Error
Recovery Optimization in WiFi Networks in Tyrrhenian International

International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 8

ISSN 2250-3153

www.ijsrp.org

Workshop on Digital Communication (TIWDC), Ischia island, Naples,
Italy.

[13] Wei-Qiang Xu and Tie-Jun Wu, “TCP Issues in Mobile Adhoc Network:
Challenges and Solutions” , J. Computer Science and Technology, vol.
21(1), pp.72-81

[14] Ding J,Medidi S R. 2004 “Distinguishing congestion from malicious
behaviour in mobile ad-hoc networks” In Proc, Digital Wireless
Communications VI, Raghuveer M Rao, Sohail A Dianat, Michael D
Zoltowski(eds.), In Proc. SPIE, vol. 5440, Bellingham, WA. USA, pp.193-
203.

[15] Kimaya Sanzgiri Daniel LaFlamme Bridget Dahill 2005. “Authenticated
Routing for Ad hoc Networks” in IEEE Journal On Selected Areas In
Communications: Special issue on Wireless Ad hoc
Networks(JSAC),23(3):598-610, March 2005.

[16] Jonny Karlssson ,Laurence S. Dooley ,Goran Pulkkis, 2012. Routing
Security in Mobile Ad hoc Networks, Issues in Informing Science and
Information Technology vol. 9,

[17] K. Sanzgiri, B. Dahill, B.N. Levine, C. Shields and E.M. Royer, 2002. “A
Secure Routing Protocol for Ad hoc Networks”, Proc. 10th IEEE Int’l.
Conf. Network Protocols (ICNP’02), IEEE Press, pp. 78-87.

[18] Jitender Ahlawat, 2012 “SECURE REACTIVE ROUTING PROTOCOLS”,
International Journal of Research in Science And Technology (IJRST), vol.
1(5) , Apr-Jun 2012

[19] Harsh Sadawarti and Anuj K. Gupta 2009. “Secure Routing Techniques for
MANETs”, International Journal of Computer Theory and Engineering, vol.
1(4).

AUTHORS

First Author – Sakshi Bhatia, Asst. Professor, Deptt. of

Computer Engg., M. .M University Mullana (Ambala), Haryana

Second Author – Sanjeev Rana, Professor, Deptt. of Computer

Engg, M. .M University Mullana (Ambala), Haryana

Third Author – Rajneesh Kumar Gujral, Professor, Deptt. of

Computer Engg, M. .M University Mullana (Ambala), Haryana

