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Abstract: The bishop polynomial on a board rotated in an angle of 45𝑜𝑜 is considered a special case of the rook polynomial. Rook 
polynomials are a powerful tool in the theory of restricted permutations. It is known that the rook polynomial of any board can be 
computed recursively, using a cell decomposition technique of Riordan. This independent study examines counting problems of non-
attacking bishop placements in the game of chess and its movements in the direction of 𝜃𝜃 = 45 𝑜𝑜 to capture pieces in the same 
direction as the bishop with restricted positions. In this investigation, we developed the total number of ways to arrange n bishops 
among m positions (𝑚𝑚 ≥ 𝑛𝑛)  and also constructed the general formula of a generating function for bishop polynomial that 
decomposes into 𝑛𝑛 disjoint sub-boards 𝐵𝐵1,𝐵𝐵2, …𝐵𝐵𝑛𝑛 by using an 𝑚𝑚 × 𝑛𝑛 array board.  Furthermore, we applied it to combinatorial 
problems which involve permutation with forbidden positions to construct bishop polynomials in a combinatorial way.     
 
Key words: r-arrangement, combinatorial structures, Chess movements; Permutation; Arrangements with restrictions; Rook 
polynomials. 
 
1.0 Introduction  
The rook polynomial is a powerful tool in the theory of restricted permutations (Abigail, 2004). However, in comparison with the 
bishop polynomial, a special case of the rook polynomial, has not been established (Skoch, 2015). Furthermore, Bishop (Rook) 
polynomials provide a method of enumerating permutations with forbidden position. Kaplansky and Riordan in 1946 started this 
study, with applications to card matching problems. Riordan, in his book is considered the first systematic analysis, and remains a 
classic treatment of the subject (Riordan, 1958). The series of papers by (Joichi, Goldman, & White, 1978; Goldman, Joichi, & White, 
1977; Goldman, Joichi, Reiner, & White, 1976; White, Goldman, & Joichi, 1975) have expanded the field by applying more advanced 
combinatorial methods. More recently, (Laisin, 2018; Michaels, 2013) and (Ono, Haglund, & Sze, 1998; Haglund, 1996)also made 
investigations into various connections of rook polynomials to other parts of mathematics: hypergeometric series, enumeration of 
matrices over finite fields, and group representation theory. Furthermore, rook polynomials are also closely related to matching 
theory, chromatic theory and various other graph-theoretic topics (Chung & Graham, 1995; Farrell & Whitehead, 1991; Goldman., 
Joichi, Reiner, & White, 1976). In combinatorics proper, rook polynomials have been related to various permutation statistics (Butler, 
1985) and the inverse problem has been solved for Ferrers boards in Mitchell, Preprint. It has long been known that the rook 
polynomial of any board can be computed recursively. 
 
Nevertheless, in combinatorial mathematics, a bishop polynomial is a generating polynomial of the number of ways to place non-
attacking bishops on a board that looks like a checkerboard; that is, no two bishops may be in the same diagonal. The board is any 
subset of the squares of an 𝑚𝑚 × 𝑛𝑛 rectangular board with m rows and n columns; we think of it as the squares in which one is allowed 
to put a bishop. Even though, Combinatorics is a young field of mathematics, starting to be an independent branch only in the 20th 
century. However, combinatorial methods and problems have been around ever since. Many combinatorial problems look entertaining 
or aesthetically pleasing and indeed one can say that roots of combinatorics lie in mathematical recreations and games. Nonetheless, 
this field has grown to be of great importance in today's world, because of its use for other fields like physical sciences, social 
sciences, biological sciences, information theory and computer science (Michaels, 2013; Berge, 1971). 

The game of chess is an amazingly complicated game with a seemingly infinite number of scenarios. The rules that govern the game 
of chess have proven to be an attractive area of inquiry to mathematicians the world over. The game is played on an 8 × 8 checkered 
board and two players take turns moving their pieces around the board. The objective is to “checkmate” the opponent’s king, which 
means the king can be attacked on the next turn, and no matter how the opponent moves his pieces, there is no way to prevent the king 
from being attacked. The two players, each starting with 8 pawns, 2 rooks, 2 knights, 2 bishops, 1 queen, and 1 king. These pieces 
differ only in the way they are allowed to move around the board and “attack” other pieces. For example, rooks can move and attack 
as many squares that are unoccupied along its row or column. Bishops can move and attack only along diagonals for as many squares 
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that are unoccupied (Skoch, 2015).  However, based on the rook movement, the theory of rook polynomials was introduced by 
Kaplansky and Riordan, and developed further by Riordan. The term "rook polynomial" was coined by John Riordan (Riordan, 1980).  
Despite the name's derivation from chess, the impetus for studying rook polynomials is their connection with counting with forbidden 
positions. The rook polynomial is a generating polynomial of the number of ways to place non-attacking rooks on a board that looks 
like a checkerboard; that is, no two rooks may be in the same row or column. The rook polynomial 𝑅𝑅(𝑥𝑥,𝐵𝐵) (Laisin, 2018; Barbeau, 
2003) of a board B is the generating function for the numbers of arrangements of non-attacking rooks, i.e.: 

𝑅𝑅(𝑥𝑥,𝐵𝐵) = �𝑟𝑟𝑘𝑘(𝐵𝐵)𝑥𝑥𝑘𝑘
∞

𝑘𝑘=0

 

given that, 𝑟𝑟𝑘𝑘 is the number of ways to place k non-attacking rooks on the board B.   

Unlike the rook that moves in vertical rows and horizontal columns, the bishops move diagonally along the black or white squares on 
a chess board. Therefore, the bishop tends to capture pieces up or down along the diagonal it is placed, meaning that any piece along 
that diagonal can be captured by the bishop. To have non-attacking bishops on a board means that no two bishops must be on the 
same diagonal. To solve the problem of bishop placement with non-attacking bishops on an 𝑚𝑚 × 𝑛𝑛 board, the need to use the 
generating function of the bishop polynomial come into play. 
 If B is a board of size 𝑚𝑚 × 𝑛𝑛. The bishop polynomial of board B is denoted as 𝔅𝔅(𝑥𝑥,𝐵𝐵) for the number of ways to place 𝑛𝑛 non-
attacking bishops on the board. The other pieces follow different rules for movement, but our study will focus on the strength of a 
bishop movements.  
 
2.0 Preliminaries  
Definition 2.1 
Rook: A rook is a chess piece that moves horizontally or vertically and can take (or capture) a piece if that piece rests on a square in 
the same row or column while a bishop is a chess piece that moves diagonally and capture a piece if that piece rests on a square in the 
same diagonal (Chung & Graham, 1995; Goldman., Joichi, Reiner, & White, 1976; White, Goldman, & Joichi, 1975). 

a. Board: A board B is an 𝑚𝑚 × 𝑛𝑛 array of n rows and m columns. When a board has a darkened square, it is said to have a 
forbidden position. 

b. Bishop polynomial:  A bishop polynomial on a board B, with forbidden positions is denoted as 𝔅𝔅(𝑥𝑥,𝐵𝐵), given by 

𝔅𝔅(𝑥𝑥,𝐵𝐵) = �𝑏𝑏𝑖𝑖(𝐵𝐵)𝑥𝑥𝑖𝑖
𝑘𝑘

𝑖𝑖=1

, 

where  𝔅𝔅(𝑦𝑦,𝐵𝐵) has coefficients  𝑏𝑏𝑖𝑖(𝐵𝐵) representing the number of ways to place n non-attacking bishops on the board B.  However, 
on an m ×n board B, we have   𝑏𝑏0(𝐵𝐵) = 1 and the bishop polynomial with explicit coefficients is now: 

𝔅𝔅(𝑥𝑥,𝐵𝐵) = � �𝑚𝑚𝑘𝑘�  �𝑛𝑛𝑘𝑘�
min (𝑚𝑚,𝑛𝑛)

𝑘𝑘=0

𝑘𝑘! 𝑥𝑥𝑘𝑘 = �
𝑛𝑛!𝑚𝑚!

𝑘𝑘! (𝑛𝑛 − 𝑘𝑘)! (𝑚𝑚− 𝑘𝑘)!

min (𝑚𝑚,𝑛𝑛)

𝑘𝑘=0

𝑥𝑥𝑘𝑘. 

Nevertheless, with the limitation that, " bishops must not attack each other" is removed, in this case one must choose any k squares 
from 𝑚𝑚 × 𝑛𝑛  arrays. Then, we have;  

                                                  �𝑚𝑚𝑛𝑛𝑘𝑘 � = (𝑚𝑚𝑛𝑛)!
𝑘𝑘!(𝑚𝑚𝑛𝑛−𝑘𝑘)!

  ways.  

Suppose 𝑚𝑚 ≠  𝑛𝑛, then, the k bishops will differ in some way from each other, however, the results obtained will be multiplied by 𝑘𝑘!,  
for the k bishops. Then, we have; 

                                       �𝑚𝑚𝑘𝑘 �  �𝑛𝑛𝑘𝑘� 𝑘𝑘! = 𝑛𝑛!𝑚𝑚!
𝑘𝑘!(𝑛𝑛−𝑘𝑘)!(𝑚𝑚−𝑘𝑘)!

   (Vilenkin, 1969). 

 
Definition 2.2 Square odd boards, 
𝐵𝐵(2𝑛𝑛+1)×(2𝑛𝑛+1) can be broken down into two sub-boards: one with even number of cells – denoted as P board or 𝑃𝑃(2𝑛𝑛+1)×(2𝑛𝑛+1)- and 
the other with an odd number of cells – denoted as O board or 𝑂𝑂(2𝑛𝑛+1)×(2𝑛𝑛+1). 
Bishop polynomial of the P and O boards are expressed as𝑃𝑃(2𝑛𝑛+1)×(2𝑛𝑛+1)(𝑥𝑥) and 𝑂𝑂(2𝑛𝑛+1)×(2𝑛𝑛+1)(𝑥𝑥) 
Thus, 𝐵𝐵(2𝑛𝑛+1)×(2𝑛𝑛+1)(𝑥𝑥) = 𝑃𝑃(2𝑛𝑛+1)×(2𝑛𝑛+1)(𝑥𝑥)𝑂𝑂(2𝑛𝑛+1)×(2𝑛𝑛+1)(𝑥𝑥)  
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Decomposition of 𝐵𝐵(2𝑛𝑛)×(2𝑛𝑛) and 𝐵𝐵(2𝑛𝑛+1)×(2𝑛𝑛+1) (Abigail, 2004; Shanaz , 1999). 
 
 Definition 2.3    
P board coefficient is given by; 
 (𝑏𝑏𝑘𝑘(𝑃𝑃(2𝑛𝑛− 1)×(2𝑛𝑛− 1) (x)) = 𝑏𝑏𝑘𝑘(𝑃𝑃(2𝑛𝑛− 3)×(2𝑛𝑛− 3) (x)) +  2(2n −  k −  1) ×   

𝑏𝑏𝑘𝑘−1(𝑃𝑃(2𝑛𝑛− 3)×(2𝑛𝑛− 3) (x)) + (2n −  k)(2n −  k −  1) 𝑏𝑏𝑘𝑘−2(𝑃𝑃(2𝑛𝑛− 3)×(2𝑛𝑛− 3) (x))  
where 𝑛𝑛 ≥ 3;  2 ≤  𝑘𝑘 ≤ 2𝑛𝑛 −  3 and 𝑏𝑏1(𝑃𝑃1×1) = 1; 𝑏𝑏1(𝑃𝑃1×1) = 4; 𝑏𝑏2(𝑃𝑃3×3) = 2. Note for all k >  2n −
 2;  𝑏𝑏𝑘𝑘(𝑃𝑃(2𝑛𝑛− 1)×(2𝑛𝑛− 1) (x) = 0  (Abigail, 2004; Shanaz , 1999)     
 
2.2 The Bishop Polynomial 
A bishop moves only diagonally without restriction in the distance of each move. Here, the bishop polynomial is the generating 
function of the number of arrangements of k non-attacking bishops (k-bishop placement) on a 𝑚𝑚 × 𝑛𝑛 board: 

𝔅𝔅(𝑥𝑥,   𝐵𝐵) = �𝑏𝑏𝑖𝑖(𝐵𝐵)𝑥𝑥𝑖𝑖
𝑘𝑘

𝑖𝑖=0

 

where 𝑏𝑏𝑘𝑘 denotes the 𝑘𝑘𝑡𝑡ℎ coefficient of the bishop polynomial. While bishops move in diagonal rooks move in straight lines, they 
differ in the direction of movement. However, the movement of the two can be related through a 450 rotation of the board. Tracing 
out the path of a bishop after a 450 rotation, gives the path of a rook piece. In the Figure below, the bishop polynomial of board A is 
the rook polynomial of board B. 

 

 
Tilting board 450 converts bishop move (in A) to a rook one (in B). Given that a rook moves only vertically or horizontally, it can 
only occupy squares of the same colour (in board B above). Thus, the white board (consisting of white cells) and black board 
(consisting of black cells) are disjoint sub-boards of the overall board B. In particular, for even boards 𝐵𝐵𝑚𝑚×𝑛𝑛, note that 𝑅𝑅(𝐵𝐵𝑤𝑤ℎ𝑖𝑖𝑡𝑡𝑖𝑖) =
𝑅𝑅(𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘). Therefore, 𝑅𝑅(𝐵𝐵) = 𝑅𝑅(𝐵𝐵𝑤𝑤ℎ𝑖𝑖𝑡𝑡𝑖𝑖) × 𝑅𝑅(𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘) for all square board B (Skoch, 2015; Abigail, 2004). 
 
Lemma 2.1 Forbidden Positions 
The number of ways to arrange n-rooks among m-positions (𝑚𝑚 ≥ 𝑛𝑛) such that order is maintained, is given by; 
Case i. when 𝑚𝑚 ≠ 𝑛𝑛 

𝑟𝑟(𝑥𝑥,𝐵𝐵) =  1 −
𝑟𝑟1(𝐵𝐵) �𝑚𝑚 − 1

𝑛𝑛 − 𝑖𝑖 �

�𝑚𝑚𝑛𝑛�
+
𝑟𝑟2(𝐵𝐵) �𝑚𝑚 − 2

𝑛𝑛 − 𝑖𝑖 �

�𝑚𝑚𝑛𝑛�
−⋯ (−1)𝑖𝑖

𝑟𝑟𝑖𝑖(𝐵𝐵) �𝑚𝑚 − 𝑖𝑖
𝑛𝑛 − 𝑖𝑖 �

�𝑚𝑚𝑛𝑛�
 

=
1

�𝑚𝑚𝑛𝑛�
�(−1)𝑖𝑖𝑟𝑟𝑖𝑖(𝐵𝐵) �𝑚𝑚 − 𝑖𝑖

𝑛𝑛 − 𝑖𝑖 �
𝑛𝑛

𝑖𝑖=0

 

Case ii. when 𝑛𝑛 = 𝑛𝑛. 
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𝑟𝑟(𝑥𝑥,𝐵𝐵) =  1 −
𝑟𝑟1(𝐵𝐵) �𝑛𝑛 − 1

𝑛𝑛 − 1�

�𝑛𝑛𝑛𝑛�
+
𝑟𝑟2(𝐵𝐵) �𝑛𝑛 − 2

𝑛𝑛 − 2�

�𝑛𝑛𝑛𝑛�
−⋯ (−1)𝑖𝑖

𝑟𝑟𝑖𝑖(𝐵𝐵) �𝑛𝑛 − 𝑖𝑖
𝑛𝑛 − 𝑖𝑖�

�𝑛𝑛𝑛𝑛�
 

                         = 1

�𝑛𝑛𝑛𝑛�
∑ (−1)𝑖𝑖𝑟𝑟𝑖𝑖(𝐵𝐵) �𝑛𝑛 − 𝑖𝑖

𝑛𝑛 − 𝑖𝑖�
𝑛𝑛
𝑖𝑖=0        (Skoch, 2015). 

Lemma 2.2  
 If B is a board of darkened squares that decomposes into two disjoint sub-boards   𝐵𝐵𝑖𝑖 ∶ 𝑖𝑖 = 1 𝑎𝑎𝑛𝑛𝑎𝑎 2, then  𝔅𝔅(𝑥𝑥,𝐵𝐵) =
𝔅𝔅(𝑥𝑥,𝐵𝐵1)𝔅𝔅(𝑥𝑥,𝐵𝐵2) (White, Goldman, & Joichi, 1975). 
 
3.0 Main Results 
Theorem 3.1 
The number of ways to arrange n bishops among m positions (𝒎𝒎 ≥ 𝒏𝒏)  through an angle of  𝜽𝜽 = 𝟒𝟒𝟒𝟒𝟎𝟎 for movement on the 
board with forbidden positions is; 

𝕭𝕭(𝒚𝒚,𝑩𝑩)𝑷𝑷(𝒎𝒎,   𝒏𝒏) = �  (−𝟏𝟏)𝒌𝒌𝒃𝒃𝒌𝒌𝜽𝜽
𝒏𝒏

𝒌𝒌=𝟎𝟎

𝑷𝑷(𝒎𝒎−𝒌𝒌,   𝒏𝒏−𝒌𝒌)  

Proof 
The proof of theorem 3.1 follows immediately from Lemma 2.1 in arranging n bishops among m positions (𝑚𝑚 ≥ 𝑛𝑛)  through a 
direction of movement in an angle of 450  with forbidden positions is as follows; 
Case 1 𝑚𝑚 > 𝑛𝑛 
𝔅𝔅(𝑦𝑦,𝐵𝐵)𝑃𝑃(𝑚𝑚,   𝑛𝑛) = 𝑃𝑃(𝑚𝑚,   𝑛𝑛) − 𝑏𝑏1𝜃𝜃(𝐵𝐵)𝑃𝑃(𝑚𝑚−1,𝑛𝑛−1) + 𝑏𝑏2𝜃𝜃(𝐵𝐵)𝑃𝑃(𝑚𝑚−2,𝑛𝑛−2)   

−𝑏𝑏3𝜃𝜃(𝐵𝐵)𝑃𝑃(𝑚𝑚−3,𝑛𝑛−3)+ .  .  . (−1)𝑚𝑚𝑏𝑏𝑚𝑚𝜃𝜃 (𝐵𝐵)𝑃𝑃(𝑚𝑚−𝑛𝑛,0) 

= �  (−1)𝑘𝑘𝑏𝑏𝑘𝑘𝜃𝜃
𝑚𝑚

𝑘𝑘=0

𝑃𝑃(𝑚𝑚−𝑘𝑘,𝑛𝑛−𝑘𝑘) 

Case 2 𝑚𝑚 = 𝑛𝑛 
𝔅𝔅(𝑦𝑦,𝐵𝐵)𝑃𝑃(𝑛𝑛,   𝑛𝑛) = 𝑃𝑃(𝑛𝑛,   𝑛𝑛) − 𝑏𝑏1𝜃𝜃(𝐵𝐵)𝑃𝑃(𝑛𝑛−1,𝑛𝑛−1)  + 𝑏𝑏2𝜃𝜃(𝐵𝐵)𝑃𝑃(𝑛𝑛−2,𝑛𝑛−2) 

−𝑏𝑏3𝜃𝜃(𝐵𝐵)𝑃𝑃(𝑛𝑛−3,𝑛𝑛−3)+ .  .  . (−1)𝑛𝑛𝑏𝑏𝑛𝑛𝜃𝜃(𝐵𝐵)𝑃𝑃(0,0) 

= �  (−1)𝑘𝑘𝑏𝑏𝑘𝑘𝜃𝜃(𝐵𝐵)𝑃𝑃(𝑛𝑛−𝑘𝑘,𝑛𝑛−𝑘𝑘)

𝑛𝑛

𝑘𝑘=0

                    ∎ 

 
Theorem 3.2 (n-disjoint sub-boards with movements through an angle of  𝟒𝟒𝟒𝟒𝟎𝟎 ) 
Suppose, 𝑩𝑩  is an 𝒏𝒏 × 𝒏𝒏  board of darkened squares with bishops that move through a direction of an angle of 𝜽𝜽 = 𝟒𝟒𝟒𝟒𝟎𝟎  then, 
𝕭𝕭(𝒙𝒙,𝑩𝑩)  for the disjoint sub-boards is;  
 

𝕭𝕭(𝒙𝒙,𝑩𝑩) = ��𝓧𝓧𝑩𝑩𝒋𝒋,𝑲𝑲(𝒙𝒙)𝒊𝒊𝒃𝒃𝒊𝒊𝜽𝜽�𝑩𝑩𝒋𝒋�,   𝒋𝒋 = 𝟏𝟏,𝟐𝟐, …𝒏𝒏
𝒏𝒏

𝒌𝒌=𝟎𝟎

𝒏𝒏

𝒊𝒊=𝟎𝟎

 

Proof, 
The proof of theorem 3.2 follows immediately from Lemma 2.2 it follows that, the total number of bishops 𝑏𝑏𝑖𝑖𝜃𝜃 on the board is;   

𝔅𝔅(𝑥𝑥,𝐵𝐵)  = ��𝒳𝒳𝐵𝐵𝑗𝑗,𝐾𝐾(𝑥𝑥)𝑖𝑖𝑏𝑏𝑖𝑖𝜃𝜃�𝐵𝐵𝑗𝑗�,   𝑗𝑗 = 1,2, …𝑛𝑛
𝑛𝑛

𝑘𝑘=0

𝑛𝑛

𝑖𝑖=0

 

 = 𝔅𝔅(𝑥𝑥,𝐵𝐵1) × 𝔅𝔅(𝑥𝑥,𝐵𝐵2) × … × 𝔅𝔅(𝑥𝑥,𝐵𝐵𝑛𝑛) 
 
The decomposition of the board into 𝑛𝑛 disjoint sub-boards 𝐵𝐵1,𝐵𝐵2, …𝐵𝐵𝑛𝑛, is;  
   

𝔅𝔅(𝑥𝑥,𝐵𝐵1) = �(𝑥𝑥)𝑖𝑖𝑏𝑏𝑖𝑖𝜃𝜃(𝐵𝐵1) = 1 + 𝑥𝑥𝑏𝑏1𝜃𝜃(𝐵𝐵1) + 𝑥𝑥2𝑏𝑏2𝜃𝜃(𝐵𝐵1) + ⋯+ 𝑥𝑥𝑛𝑛𝑏𝑏𝑛𝑛𝜃𝜃(𝐵𝐵1)
𝑛𝑛

𝑖𝑖=0

 

𝔅𝔅(𝑥𝑥,𝐵𝐵2) = �(𝑥𝑥)𝑖𝑖𝑏𝑏𝑖𝑖𝜃𝜃(𝐵𝐵2)
𝑛𝑛

𝑖𝑖=0

= 1 + 𝑥𝑥𝑏𝑏1𝜃𝜃(𝐵𝐵2) + 𝑥𝑥2𝑏𝑏2𝜃𝜃(𝐵𝐵2) + ⋯+ 𝑥𝑥𝑛𝑛𝑏𝑏𝑛𝑛𝜃𝜃(𝐵𝐵2) 

 . 
 . 
 . 
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𝔅𝔅(𝑥𝑥,𝐵𝐵𝑛𝑛) = �(𝑥𝑥)𝑖𝑖𝑏𝑏𝑖𝑖𝜃𝜃(𝐵𝐵𝑛𝑛)
𝑛𝑛

𝑖𝑖=0

= 1 + 𝑥𝑥𝑏𝑏1𝜃𝜃(𝐵𝐵𝑛𝑛) + 𝑥𝑥2𝑏𝑏2𝜃𝜃(𝐵𝐵𝑛𝑛) + ⋯+ 𝑥𝑥𝑛𝑛𝑏𝑏𝑛𝑛𝜃𝜃(𝐵𝐵𝑛𝑛) 

The nth coefficient of 
𝔅𝔅(𝑥𝑥,𝐵𝐵) = 𝔅𝔅(𝑥𝑥,𝐵𝐵1)𝔅𝔅(𝑥𝑥,𝐵𝐵2) …𝔅𝔅(𝑥𝑥,𝐵𝐵𝑛𝑛) =  𝑏𝑏0𝜃𝜃(𝐵𝐵1)𝑏𝑏𝑛𝑛𝜃𝜃(𝐵𝐵2)𝑏𝑏𝑛𝑛−1𝜃𝜃 (𝐵𝐵3) … 𝑏𝑏𝑛𝑛−𝑖𝑖+1𝜃𝜃 (𝐵𝐵𝑛𝑛) +  
𝑏𝑏1𝜃𝜃(𝐵𝐵1)𝑏𝑏𝑛𝑛−2𝜃𝜃 (𝐵𝐵2)𝑏𝑏𝑛𝑛−3𝜃𝜃 (𝐵𝐵3) … 𝑏𝑏𝑛𝑛−𝑖𝑖𝜃𝜃 (𝐵𝐵𝑛𝑛) + ⋯+ 𝑏𝑏𝑛𝑛𝜃𝜃(𝐵𝐵1)𝑏𝑏𝑛𝑛−1𝜃𝜃 (𝐵𝐵2)𝑏𝑏𝑛𝑛−2𝜃𝜃 (𝐵𝐵3) … 𝑏𝑏0𝜃𝜃(𝐵𝐵𝑛𝑛)  

This  shows that when there is a non-attacking bishop on 𝐵𝐵1 there are n bishops on 𝐵𝐵2 and n-1 bishops on  𝐵𝐵𝑛𝑛 . This continues until we 
have n bishops on 𝐵𝐵1, there are no bishops on 𝐵𝐵2 and 1 bishop on 𝐵𝐵𝑛𝑛 . Thus 

𝔅𝔅(𝑥𝑥,𝐵𝐵) = 𝔅𝔅(𝑥𝑥,𝐵𝐵1)𝔅𝔅(𝑥𝑥,𝐵𝐵2) …𝔅𝔅(𝑥𝑥,𝐵𝐵𝑛𝑛) = ��𝜒𝜒𝐵𝐵𝑗𝑗,𝐾𝐾(𝑥𝑥)𝑖𝑖𝑏𝑏𝑖𝑖𝜃𝜃�𝐵𝐵𝑗𝑗�,   𝑗𝑗 = 1,2, …𝑛𝑛
𝑛𝑛

𝑘𝑘=0

𝑛𝑛

𝑖𝑖=0

     ∎ 

 
4.0 NUMERICAL APPLICATIONS 

Example 4.1 
A general matching service has eight positions; A, B, C, D, E, F, G, and H with eight army officers; p, q, r, s, t, u, v and w. After 
analyzing their personalities and strategies he decides that p should not be matched with A, B, D, F, and H, q should not be matched 
with B, D, F, G, and H, r should not be matched with F,  G, and H, v should not be matched with E, F and H, 𝑤𝑤 should not be 
matched with E, F,  G, and H. Use a bishop polynomial to determine the number of ways in which the general can match his army.  

Solution 
We make figure 1 as the chessboard representing the permutation with forbidden positions as decided by the general. 
Thus, we arrange figure 1 such that no army among the eight positions is non-attacking to each other through a direction of movement 
in an angle of 𝜃𝜃 = 450  with forbidden positions, thus, we have figure 2; 
However, figure 2 is the arrangement of eight armies such that no two armies should attack each other. Now, applying the bishop 
polynomial on the board consists of the forbidden positions we get fig.2. 
 

               
 

                
                

 
                

                
 

                
                ⇒                 
                

 
                

                
 

                
                

 
                

                
 

                

   
fig.1 

        
fig.2  

    Then, we have that, the 8 × 8 board can be decomposed into three disjoint sub-boards   𝐵𝐵𝑖𝑖 ∶ 𝑖𝑖 = 1, 2 𝑎𝑎𝑛𝑛𝑎𝑎 3, such that,  𝔅𝔅(𝑥𝑥,𝐵𝐵) =
𝔅𝔅(𝑥𝑥,𝐵𝐵1)𝔅𝔅(𝑥𝑥,𝐵𝐵2)𝔅𝔅(𝑥𝑥,𝐵𝐵3).    

      
 

      
 

        
      

 
      

 
        

      
         

 
𝐵𝐵1 

   
𝐵𝐵2 

   
𝐵𝐵3 

  Applying the bishop polynomial on the board with forbidden positions we have that 𝐵𝐵𝑖𝑖 ∶ 𝑖𝑖 = 1, 2 𝑎𝑎𝑛𝑛𝑎𝑎 3, for each sub board is given 
by; 
For the sub-board 𝐵𝐵1, we have; 

𝔅𝔅(𝑥𝑥,𝐵𝐵1) = �𝑏𝑏𝑖𝑖𝜃𝜃(𝐵𝐵1)(𝑥𝑥)𝑖𝑖 = 1 + 8𝑥𝑥 + 3𝑥𝑥2 + 𝑥𝑥3
3

𝑖𝑖=0

 

For the sub-board 𝐵𝐵2, we have; 
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𝔅𝔅(𝑥𝑥,𝐵𝐵2) = �𝑏𝑏𝑖𝑖𝜃𝜃(𝐵𝐵2)(𝑥𝑥)𝑖𝑖 = 1 + 5𝑥𝑥 + 2𝑥𝑥2
3

𝑖𝑖=0

+ 𝑥𝑥3 

For the sub-board 𝐵𝐵3, we have; 

𝔅𝔅(𝑥𝑥,𝐵𝐵3) = �𝑏𝑏𝑖𝑖𝜃𝜃(𝐵𝐵3)(𝑥𝑥)𝑖𝑖 = 1 + 7𝑥𝑥 + 2𝑥𝑥2 + 𝑥𝑥3
3

𝑖𝑖=0

 

Thus, the number of bishops on the 8 × 8 board that decomposed into three disjoint sub-boards   𝐵𝐵𝑖𝑖 ∶ 𝑖𝑖 = 1, 2 𝑎𝑎𝑛𝑛𝑎𝑎 3, is given by, 

                                       𝔅𝔅(𝑥𝑥,𝐵𝐵) = 𝔅𝔅(𝑥𝑥,𝐵𝐵1)𝔅𝔅(𝑥𝑥,𝐵𝐵2)𝔅𝔅(𝑥𝑥,𝐵𝐵3).    

𝔅𝔅(𝑥𝑥,𝐵𝐵) = (1 + 8𝑥𝑥 + 3𝑥𝑥2 + 𝑥𝑥3)(1 + 5𝑥𝑥 + 2𝑥𝑥2 + 𝑥𝑥3)(1 + 7𝑥𝑥 + 2𝑥𝑥2 + 𝑥𝑥3) 

Here, the bishop polynomial is a generating function of the number of arrangements of 9 non-attacking bishops (9-armies placement) 
on a 8 × 8 board, to give; 

𝔅𝔅(𝑥𝑥,𝐵𝐵) = 1 + 20𝑥𝑥 + 102𝑥𝑥2 + 123𝑥𝑥3 + 28𝑥𝑥4 + 213𝑥𝑥5 + 
                                 107𝑥𝑥6 + 36𝑥𝑥7 + 7𝑥𝑥8 + 𝑥𝑥9  
Therefore, we have 9 armies to arrange in 9 positions (𝑚𝑚 ≥ 𝑛𝑛)  through a direction of movement in an angle of 450  with forbidden 
positions. Thus, the total number of ways for the arrangement is given by; 

𝔅𝔅(𝑥𝑥,𝐵𝐵)𝑃𝑃(9,9) = ��𝒳𝒳𝐵𝐵𝑗𝑗,𝐾𝐾(𝑥𝑥)𝑖𝑖𝑏𝑏𝑖𝑖𝜃𝜃�𝐵𝐵𝑗𝑗�𝑃𝑃(9−𝑘𝑘,9−𝑘𝑘),   𝑗𝑗=1,2,3

3

𝑘𝑘=0

9

𝑖𝑖=0

 

= 1 + 20 + 102 + 123 + 28 + 213 + 107 + 36 + 7 + 1 = 638 𝑤𝑤𝑎𝑎𝑦𝑦𝑤𝑤 

The general can match his army in 638 ways.   

Conclusion 
Bishop polynomials are not just interesting for their own sake. They have a variety of applications because they directly relate to 
permutations with restricted positions. This means that bishop polynomials can be used in everything from cryptography to 
combinatorial design theory.  
 
In this paper we were able to develop the total number of ways to arrange n bishops among m positions (𝑚𝑚 ≥ 𝑛𝑛)  and also to 
construct a bishop polynomial that decomposes into n −disjoint sub-boards B1, B2, … Bn by using an m × n array board. Furthermore, 
we applied these results to obtain the total number of bishops and the maximum number of arrangements for the k non-attacking 
bishops can be obtained on an m × n array board.  
 
Recommendations  
Further study can be carried out with the bishops on three-dimensional boards. In addition, further studies could also examine what 
would happen to rook and bishop polynomials by changing the shape of the boards. 
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