A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

Tomba I.

Department of Mathematics, Manipur University, Imphal, Manipur (INDIA)
tombairom@gmail.com

Abstract- In this paper, a technique for constructing n^{2} magic squares (when n is odd) using n^{2} basic Latin square is developed. Magic squares are practically important of the properties of equality in the sum of its rows, columns, diagonals. The construction is made by fixing the pivot element and arranging other elements in an orderly manner. The construction is illustrated with numerical examples. .

Index Terms- Latin square (basic), magic square (normal), pivot element, rotation, reflection

I. Introduction

The Latin squares and Greco-Latin squares are used in statistical research particularly in agricultural sciences and design of experiments whereas magic squares are used in puzzle games of cubes, pattern recognition and magic carpet constructions, magic square cipher in Cryptology etc.

Basic Latin Squares

A basic (3×3) Latin square can be represented with Latin letters A, B and C as

$$
\left[\begin{array}{lll}
A & B & C \tag{1}\\
B & C & A \\
C & A & B
\end{array}\right]
$$

$\left[\begin{array}{ccc}B & A & C \\ C & B & A \\ A & C & B\end{array}\right]\left[\begin{array}{lll}C & A & B \\ A & B & C \\ B & C & A\end{array}\right]\left[\begin{array}{ccc}B & C & A \\ A & B & C \\ C & A & B\end{array}\right] \quad\left[\begin{array}{ccc}C & A & B \\ A & B & C \\ B & C & A\end{array}\right]$ etc.
(Inter-changing rows and columns) are other forms of (3×3) Latin Squares.

In all cases Latin letters are seen once in each row and column. In a Latin square, the sums of rows and columns are equal but not the sums of diagonals.
The basic Latin Square is represented as $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
Where, $\sum_{i} a_{i j}=\sum_{j} a_{i j}$ but $\sum_{i} d_{i j} \neq \sum_{j} d_{i j}$

Normal Magic Squares

On the other hand, (3×3) magic square (normal) with numbers $1,2,3, \ldots, 9$ is represented as;

$$
\left[\begin{array}{lll}
4 & 9 & 2 \tag{3}\\
3 & 5 & 7 \\
8 & 1 & 6
\end{array}\right]
$$

Where, the sums of the rows, columns and diagonals are equal. The above (3×3) magic square (normal) can be expressed as A $=\left\{a_{i j}\right\} ; i, j=1,2,3$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{4}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Satisfying $\sum_{i} a_{i j}=\sum_{j} a_{i j}=\sum_{i} d_{i j}=\sum_{j} d_{i j} ; i, j=1,2,3$
Since the elements are consecutive and not repeated and therefore normal magic square.

Magic squares (normal) may be classified an arrangement of non repeated integers ($\mathrm{n} \geq 0$) in an array of equal rows and columns such that the sums of its rows, columns and diagonals are equal.

For a normal magic square, the following properties can be established
(a) Elements or numbers $(\mathrm{n} \geq 0)$ are consecutive
(b) Elements are not repeated
(c) Sums of the rows, columns and diagonals are equal
$\Rightarrow \sum_{i} a_{i j}=\sum_{j} a_{i j}=\sum_{i} d_{i j}=\sum_{j} d_{i j}$ for all $i, j=1,2, \ldots \ldots, n$
(d) Equality property of the rows, columns and diagonals remain unaltered for rotations and reflections.

There exists different ($\mathrm{n} \times \mathrm{n}$) magic square not satisfying these properties. Examples of such magic squares, not satisfying the above properties are: magic squares (special or random, prime numbers etc.)
Examples: (i) magic square (special) $\left[\begin{array}{lccc}1 & 14 & 14 & 4 \\ 11 & 7 & 6 & 9 \\ 8 & 10 & 10 & 5 \\ 13 & 2 & 3 & 15\end{array}\right]$
(ii) Magic square (prime numbers) $\left[\begin{array}{ccc}17 & 39 & 71 \\ 113 & 59 & 5 \\ 47 & 29 & 101\end{array}\right]$.

It satisfies; $\sum_{i} a_{i j}=\sum_{j} a_{i j}=\sum_{i} d_{i j}=\sum_{j} d_{i j}$
However, these magic squares are not normal because in
(i) the elements are repeated and non-consecutive and
(ii) the numbers (prime) are not repeated but non-consecutive

3. Symmetric properties of Basic Latin Squares

Lemma-1: A ($\mathrm{n} \times \mathrm{n}$) basic Latin square (n is odd) is symmetric and non-duplicated.
Let a (3×3) basic Latin square be

$$
\left[\begin{array}{ccc}
\boldsymbol{A} & \boldsymbol{B} & \boldsymbol{C} \\
\boldsymbol{B} & \boldsymbol{C} & \boldsymbol{A} \\
\boldsymbol{C} & \boldsymbol{A} & \boldsymbol{B}
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Here, $\left\{a_{i j}\right\}=\left\{a_{j i}\right\}$ for all i and $j \Rightarrow a_{13}=a_{31}=\mathrm{C}, a_{23}=$ $a_{32}=\mathrm{A}$ and so on.

But $a_{11}=A \quad a_{22}=C \quad a_{33}=B$
The diagonal elements are not equal or repeated \Rightarrow nonduplicated

Lemma-2: A ($\mathrm{n} \times \mathrm{n}$) basic Latin square (n is even) is symmetric but duplicated
Again, let a (4 x 4) basic Latin square be

$$
\left[\begin{array}{llll}
A & B & C & D \\
B & C & D & A \\
C & D & A & B \\
D & A & B & C
\end{array}\right] \Rightarrow\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{22} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]
$$

Clearly, $\left\{a_{i j}\right\}=\left\{a_{j i}\right\}$ for all i and $j \Rightarrow$ Basic Latin squares (of all orders) are symmetric.
But $a_{11}=A \quad a_{22}=C \quad a_{33}=A a_{44}=C$

$$
\begin{equation*}
\Rightarrow a_{11}=A=a_{33} \text { and } a_{22}=C=a_{44} \tag{6}
\end{equation*}
$$

The diagonal elements are equal or repeated \Rightarrow duplicated
Lemma-3: Conversely, a ($\mathrm{n} \times \mathrm{n}$) square (n is odd), satisfying the symmetric and non duplication properties is a basic Latin square. Prof: If $\left\{a_{i j}\right\}=\left\{a_{j i}\right\}$ for all i and j, then it follows that $\left\{a_{i j}\right\}$ is a Basic Latin square.
Lemma-4: In a basic Latin square (n is odd), one of the sum of diagonal is equal to the sum of rows or columns.
Prof: It follows immediately that in a basic Latin square (when n is odd),

$$
\begin{equation*}
\sum_{i} a_{i j}=\sum_{j} a_{i j}=\sum_{i} d_{i j} \text { or } \sum_{j} d_{i j} \text { holds. } \tag{7}
\end{equation*}
$$

2. METHODOLOGY

2.1 For constructing \boldsymbol{n}^{2} (n is odd) magic square

The technique of constructing magic square using basic Latin square principle can be expressed as follows:

Let the $\left(\begin{array}{ll}n & x\end{array}\right)$ matrix $\left\{a_{i j}\right\} ; i, j=1,2, \ldots n$ with the consecutive elements/numbers of $\left(\begin{array}{llll}a_{11} & a_{12} & \ldots & a_{1 n}\end{array}\right)$, ($\left.a_{21} a_{22} \ldots a_{2 n}\right), \ldots\left(\begin{array}{lll}a_{n 1} & \left.a_{n 2} \ldots a_{n n}\right), \text { arranged in Basic }\end{array}\right.$ Latin square format be; $\left[\begin{array}{ccccc}a_{11} & a_{12} & \ldots & a_{1 n-1} & a_{1 n} \\ a_{22} & a_{23} & \ldots . & a_{2 n} & a_{21} \\ \ldots . ~ \\ a_{n n} & a_{n 1} & \ldots . . & a_{n n-2} & a_{n n-1}\end{array}\right]$
giving $\sum_{i} a_{i j}=S$ for all i where $\mathrm{S}=\frac{n\left(n^{2}+1\right)}{2}$
This condition will be true for all n (odd or even) due to basic Latin square property
The pivot element (number) in the middle cell, when n is odd can be defined as

$$
\begin{equation*}
a_{\frac{n+1}{2}, \frac{n+1}{2}} \tag{9}
\end{equation*}
$$

Since the pivot element is fixed, we select the row, associated with it and assign as the diagonal of the ($\mathrm{n} \times \mathrm{n}$) array, fixing the pivot element in the middle and arranging the other elements in an orderly manner to get a new matrix $\left\{b_{i j}\right\} ; i, j=1,2, \ldots . n$, satisfying symmetric property of Latin Square
Hence, $\quad \sum_{i} b_{i j}=\sum_{i} d_{i j}=\sum_{j} d_{i j}=S$ for all i and j
Again, since sum of the columns of $\left\{a_{i j}\right\}$ are now the rows of $\left\{b_{i j}\right\}$.
Therefore, $\sum_{i} a_{i j}=\sum_{i} b_{i j}=S$
Hence, $\sum_{i} a_{i j}=\sum_{j} a_{i j}=\sum_{i} d_{i j}=\sum_{j} d_{i j}$ is fulfilled

$$
\Rightarrow\left\{b_{i j}\right\} ; i, j=1,2, \ldots n \text { is a magic square. }
$$

Hence the theorem is established as:
The ($n \times n$) square, developed by using basic Latin square format when the pivot element is fixed and rearranging in an orderly manner represents a magic square

2.2 Steps for construction of a magic square (n is odd)

The construction of magic square by using basic Latin square can be expressed in the following steps:
Step-1: First arrange the consecutive numbers ($\left.\begin{array}{llll}a_{11} & a_{12} & \ldots & a_{1 n}\end{array}\right)$, $\left(\begin{array}{ll}a_{21} & a_{22} \ldots a_{2 n}\end{array}\right), \ldots\left(\begin{array}{lll}a_{n 1} & a_{n 2} & \ldots \\ a_{n n}\end{array}\right)$ in basic
Latin square form

Step-2: Determine the pivot element to be assigned in the middle cell, $\boldsymbol{a}_{\frac{n}{2}+1, \frac{n}{2}+1}$ and select the row associated with this pivot element.
Step-3: Assign this row as diagonal elements, fixing the pivot element in the middle and arrange other elements in an orderly manner to give the desired magic square.

Check whether it satisfies the property or not,

$$
\sum_{i} b_{i j}=\sum_{j} b_{i j}=\sum_{i} d_{i j}=\sum_{j} d_{i j}
$$

Note:
(i) For the consecutive numbers ($\mathrm{n} \geq 1$), then pivot element (P) and sum (S) are

$$
\begin{equation*}
\mathrm{P}=\frac{\left(n^{2}+1\right)}{2} \text { and } \mathrm{S}=\frac{n\left(n^{2}+1\right)}{2} \tag{13}
\end{equation*}
$$

(ii) If the consecutive number ($\mathrm{n} \geq 0$), then it gives the lowest magic square.
(iii) If the consecutive number starts from $s+1$ where $s \geq 1$, the corresponding

$$
\begin{equation*}
\mathrm{P}=\mathrm{s}+\frac{\left(n^{2}+1\right)}{2} \text { and } \mathrm{S}=n\left\{s+\frac{\left(n^{2}+1\right)}{2}\right\} \tag{14}
\end{equation*}
$$

(iv) Maximum and minimum elements can be determined using

$$
\begin{equation*}
a_{\frac{n+1}{2}, \frac{n+1}{2}}+\left(\frac{n^{2}-1}{2}\right) \text { and } a_{\frac{n+1}{2}, \frac{n+1}{2}}-\left(\frac{n^{2}-1}{2}\right) \tag{15}
\end{equation*}
$$

2.3 Alternate Structures of ($\boldsymbol{n} \boldsymbol{x} \boldsymbol{n}$) magic squares

Let $\left\{a_{i j}\right\}$ be a magic square satisfying the properties (a) to (d). Equality in the sums of rows, columns and diagonals will remain unchanged for rotations and reflections

The alternate structures of a magic square can be expressed (clockwise or anticlockwise rotation)
$\left.\left(k \frac{\pi}{2}\right) ; k= \pm 1, \pm 2, \ldots \pm m\right)$ as $\left\{a_{i j}(k)\right\}$
Where $\left\{a_{i j}\right\}=\left\{a_{i j}(k)\right\}$ for all $i=0,4,8, \ldots \ldots$

2.4 More properties

(a) Infinite number of magic squares can be generated by multiplying or adding by a number $\mathrm{p} \geq 1$ to each element of the given magic square.
Or, if $\left\{a_{i j}\right\}$ is a magic square, then $\mathrm{p}\left\{a_{i j}\right\}$ and $\left\{a_{i j}+p\right\}$ are magic squares
(b) If the minimum element/number is 0 , then $\left\{a_{i j}\right\}$ gives the lowest magic square
(c) Sum of two magic squares in the same rotation/reflection gives a magic square
(d) Sum of two magic squares in different rotation are not magic squares.
(e) Product of two magic squares is not a magic square

Magic squares in the same rotation/reflection are additive

3. NUMERICAL EXAMPLES

3.1 To construct a (3×3) magic square

Let the numbers be $(1,2,3),(4,5,6)$ and $(7,8,9)$
Step-1: Latin square format gives $\left[\begin{array}{lll}1 & 2 & 3 \\ 5 & 6 & 4 \\ 9 & 7 & 8\end{array}\right]$
It gives the column totals equal, $\sum_{i} a_{i j}=15$ for all j
Here, $\mathrm{P}=\frac{\left(n^{2}+1\right)}{2}=5$ and $\mathrm{S}=\frac{n\left(n^{2}+1\right)}{2}=15$ for $\mathrm{n}=3$
Step-2: Select the row associated with the pivot element (say 5, $6,4)$ and assign it as diagonal elements, fixing the pivot element in the middle (say 4, 5, 6)

Step-3: Rearrange the other elements in an orderly manner to get a new (3×3) array $\left\{b_{i j}\right\} i, j=1,2,3$ as

$$
\left[\begin{array}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{array}\right] \text { which represents the } 3^{2} \text { magic square }
$$

On alternate structures of 3^{2} magic square

By rotation or reflex ion, alternate structures of a magic square $\mathrm{A}=\left\{a_{i j}\right\} i, j=1,2,3$ can be expressed in different structures (multiples of 90°)
Let $A=\left[\begin{array}{lll}8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2\end{array}\right] \quad$ Reflection: $\left[\begin{array}{lll}6 & 1 & 8 \\ 7 & 5 & 3 \\ 2 & 9 & 4\end{array}\right]$ and Rotation $\left(+90^{\circ}\right):\left[\begin{array}{lll}4 & 3 & 8 \\ 9 & 5 & 1 \\ 2 & 7 & 6\end{array}\right]$
(i) $\mathrm{A}^{(\mathrm{m})}=\left\{a_{i j}(m)\right\}$ with the rotation of $\mathrm{m} 90^{\circ}$ clockwise or anti-clockwise, where m is real and positive or negative.

$$
\begin{array}{ll}
\mathrm{A}^{(1)}=\left\{a_{i j}(1)\right\} \Rightarrow\left[\begin{array}{lll}
4 & 3 & 8 \\
9 & 5 & 1 \\
2 & 7 & 6
\end{array}\right] & \mathrm{A}^{(-1)}=\left[\begin{array}{ccc}
6 & 7 & 2 \\
1 & 5 & 9 \\
8 & 3 & 4
\end{array}\right] \\
\mathrm{A}^{(2)}=\left\{a_{i j}(2)\right\} \Rightarrow\left[\begin{array}{lll}
2 & 9 & 4 \\
7 & 5 & 3 \\
6 & 1 & 8
\end{array}\right] & \mathrm{A}^{(-2)}=\left[\begin{array}{lll}
2 & 9 & 4 \\
7 & 5 & 3 \\
6 & 1 & 8
\end{array}\right]
\end{array}
$$

$$
\mathrm{A}^{(3)}=\left\{a_{i j}(3)\right\} \Rightarrow\left[\begin{array}{lll}
6 & 7 & 2 \\
1 & 5 & 9 \\
8 & 3 & 4
\end{array}\right] \quad \mathrm{A}^{(-3)}=\left[\begin{array}{ccc}
4 & 3 & 8 \\
9 & 5 & 1 \\
2 & 7 & 6
\end{array}\right]
$$

In all cases, $\sum_{i} a_{i j}=\sum_{j} a_{i j}=\sum_{i} d_{i j}=\sum_{j} d_{i j}$ are fulfilled.

3.2 To construct a $\mathbf{5}^{\mathbf{2}}$ magic square

Let the consecutive numbers be $(1,2,3,4,5),(6,7,8$, $9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25)$

Step-1: Arranging in basic Latin square format, it gives

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
7 & 8 & 9 & 10 & 6 \\
13 & 14 & 15 & 11 & 12 \\
19 & 20 & 16 & 17 & 18 \\
25 & 21 & 22 & 23 & 24
\end{array}\right] \text { Satisfying } \sum_{i} a_{i j}=\mathrm{S} \text { for all } j,} \\
& \mathrm{P}=\frac{\left(n^{2}+\mathbf{1}\right)}{2}=13 \text { and } \mathrm{S}=\frac{n\left(n^{2}+1\right)}{2}=65
\end{aligned}
$$

Step-2: Select the row associated with the pivot element (13) as $(13,14,15,11,12)$ and assign this row as diagonal elements, fixing the pivot element (13) in the middle.

Step-3: Rearrange the other elements in an orderly manner to get a new matrix

$$
\left\{b_{i j}\right\}=\left[\begin{array}{rcccc}
17 & 24 & 1 & 8 & 15 \\
23 & 5 & 7 & 14 & 16 \\
4 & 6 & 13 & 20 & 22 \\
10 & 12 & 19 & 21 & 3 \\
11 & 18 & 25 & 2 & 9
\end{array}\right] \text { where } i, j=1,2,3
$$

Satisfying $\sum_{i} a_{i j}=\sum_{j} a_{i j}=\sum_{i} d_{i j}=\sum_{j} d_{i j}$

3.3 To construct a $7^{\boldsymbol{2}}$ magic square

Let the consecutive numbers be $(1,2,3,4,5,67),(8,9,10$, $11,12,13,14), \ldots(43,44,45,46,47,48,49)$.

Following the steps of arranging in 7^{2} basic Latin square format:

$$
\left[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
9 & 10 & 11 & 12 & 13 & 14 & 8 \\
17 & 18 & 19 & 20 & 21 & 15 & 16 \\
25 & 26 & 27 & 28 & 22 & 23 & 24 \\
33 & 34 & 35 & 29 & 30 & 31 & 32 \\
41 & 42 & 36 & 37 & 38 & 39 & 40 \\
49 & 43 & 44 & 45 & 46 & 47 & 48
\end{array}\right]
$$

Selecting the row associated with the pivot element (25) and assigning it as diagonal elements, fixing the pivot element in
the middle and rearranging the other elements in an orderly manner to get a new (7x7) matrix

$$
\left[\begin{array}{ccccccc}
30 & 39 & 48 & 1 & 10 & 19 & 28 \\
38 & 47 & 7 & 9 & 18 & 27 & 29 \\
46 & 6 & 8 & 17 & 26 & 35 & 37 \\
5 & 14 & 16 & 25 & 34 & 36 & 45 \\
13 & 15 & 24 & 33 & 42 & 44 & 4 \\
21 & 23 & 32 & 41 & 43 & 3 & 12 \\
22 & 31 & 40 & 49 & 2 & 11 & 20
\end{array}\right]
$$

It satisfies
$\sum_{i} a_{i j}=\sum_{j} a_{i j}=\sum_{i} d_{i j}=\sum_{j} d_{i j}$ where $\mathrm{P}=25$ and $\mathrm{S}=175$

3.4 Construction of 9^{2} and $13^{\mathbf{2}}$ magic squares using basic Latin squares

Selecting the row associated with the pivot element and assigning it as diagonal elements, fixing the pivot element in the middle and rearranging the other elements in an orderly manner, one can construct the magic squares.
(a) Arranging in 9^{2} basic Latin square format

$$
\mathrm{P}=\frac{\left(n^{2}+1\right)}{2}=41 \text { and } \mathrm{S}=\frac{n\left(n^{2}+1\right)}{2}=369
$$

$$
\left[\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 10 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 19 & 20 \\
31 & 32 & 33 & 34 & 35 & 36 & 28 & 29 & 30 \\
41 & 42 & 43 & 44 & 45 & 37 & 38 & 39 & 40 \\
51 & 52 & 53 & 54 & 46 & 47 & 48 & 49 & 50 \\
61 & 62 & 63 & 55 & 56 & 57 & 58 & 59 & 60 \\
71 & 72 & 64 & 65 & 66 & 67 & 68 & 69 & 70 \\
81 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80
\end{array}\right]
$$

\Rightarrow the required 9^{2} magic square is
$\left[\begin{array}{ccccccccc}47 & 58 & 69 & 80 & 1 & 12 & 23 & 34 & 45 \\ 57 & 68 & 79 & 9 & 11 & 22 & 33 & 44 & 46 \\ 67 & 78 & 8 & 10 & 21 & 32 & 43 & 54 & 56 \\ 77 & 7 & 18 & 20 & 31 & 42 & 53 & 55 & 66 \\ 6 & 17 & 19 & 30 & 41 & 52 & 63 & 65 & 76 \\ 16 & 27 & 29 & 40 & 51 & 62 & 64 & 75 & 5 \\ 26 & 28 & 39 & 50 & 61 & 72 & 74 & 4 & 15 \\ 36 & 38 & 49 & 60 & 71 & 73 & 3 & 14 & 25 \\ 37 & 48 & 59 & 70 & 81 & 2 & 13 & 24 & 35\end{array}\right]$
(b) Arranging in 13^{2} basic Latin square format;

$$
\mathrm{P}=\frac{\left(n^{2}+1\right)}{2}=85 \text { and } \mathrm{S}=\frac{n\left(n^{2}+1\right)}{2}=1105
$$

$\left[\begin{array}{ccccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 14 \\ 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 27 & 28 \\ 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 & 51 & 52 & 40 & 41 & 42 \\ 57 & 58 & 59 & 60 & 61 & 62 & 63 & 64 & 65 & 53 & 54 & 55 & 56 \\ 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 66 & 67 & 68 & 69 & 70 \\ 85 & 86 & 87 & 88 & 89 & 90 & 91 & 79 & 80 & 81 & 82 & 83 & 84 \\ 99 & 100 & 101 & 102 & 103 & 104 & 92 & 93 & 94 & 95 & 96 & 97 & 98 \\ 113 & 114 & 115 & 116 & 117 & 105 & 106 & 107 & 108 & 109 & 110 & 111 & 112 \\ 127 & 128 & 129 & 130 & 118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 \\ 141 & 142 & 143 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 & 140 \\ 155 & 156 & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 151 & 152 & 153 & 154 \\ 169 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168\end{array}\right]$

$$
\Rightarrow \text { the required } 13^{2} \text { magic square is }
$$

$\left[\begin{array}{rrrrrrrrrrrrr}93 & 108 & 123 & 138 & 153 & 168 & 1 & 16 & 31 & 46 & 61 & 76 & 91 \\ 107 & 122 & 137 & 152 & 167 & 13 & 15 & 30 & 45 & 60 & 75 & 90 & 92 \\ 121 & 136 & 151 & 166 & 12 & 14 & 29 & 44 & 59 & 74 & 89 & 104 & 106 \\ 135 & 150 & 165 & 11 & 26 & 28 & 43 & 58 & 73 & 88 & 103 & 105 & 120 \\ 149 & 164 & 10 & 25 & 27 & 42 & 57 & 72 & 87 & 102 & 117 & 119 & 134 \\ 163 & 9 & 24 & 39 & 41 & 56 & 71 & 86 & 101 & 116 & 118 & 133 & 148 \\ 8 & 23 & 38 & 40 & 55 & 70 & 85 & 100 & 115 & 130 & 132 & 147 & 162 \\ 22 & 37 & 52 & 54 & 69 & 84 & 99 & 114 & 129 & 131 & 146 & 161 & 7 \\ 36 & 51 & 53 & 68 & 83 & 98 & 113 & 128 & 143 & 145 & 160 & 6 & 21 \\ 50 & 65 & 67 & 82 & 97 & 112 & 127 & 142 & 144 & 159 & 5 & 20 & 35 \\ 64 & 66 & 81 & 96 & 111 & 126 & 141 & 156 & 158 & 4 & 19 & 34 & 49 \\ 78 & 80 & 95 & 110 & 125 & 140 & 155 & 157 & 3 & 18 & 33 & 48 & 63 \\ 79 & 94 & 109 & 124 & 139 & 154 & 169 & 2 & 17 & 32 & 47 & 62 & 77\end{array}\right]$

8. Construction of $\mathbf{3}^{\mathbf{2}}$ magic squares of complex numbers

Taking two 3×3 magic squares, magic squares of complex numbers can be generated. Let the two magic squares, modified with the subtraction of 7 and 4 respectively be

$$
\left[\begin{array}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{array}\right] \text { and }\left[\begin{array}{lll}
2 & 9 & 4 \\
7 & 5 & 3 \\
6 & 1 & 8
\end{array}\right] \text { give }\left[\begin{array}{rrr}
1 & -6 & -1 \\
-4 & -2 & 0 \\
-3 & 2 & -5
\end{array}\right] \text { and }\left[\begin{array}{rrr}
4 & -5 & 2 \\
-1 & 1 & 3 \\
0 & 5 & -2
\end{array}\right]
$$

Hence a magic square of complex numbers, can be generated as

$$
\left[\begin{array}{ccc}
1+4 i & -6-5 i & -1+2 i \\
-4-i & -2+i & 3 i \\
-3 & 2+5 i & -5-2 i
\end{array}\right] \text { where } \mathrm{P}=-2+\mathrm{i} \text { and } \mathrm{S}=-6+3 \mathrm{i}
$$

Similarly, magic squares of complex numbers of any order (n is odd) can be generated.

4. CONCLUSION

The technique can be used for finding magic squares from basic Latin Squares of any order ($\mathrm{n} \geq 1$, for n is odd) easily within a shortest possible time. In this paper ,construction of odd order magic squares using basic Latin squares is shown.

However, even-order magic squares can't be constructed directly in the same process because of duplications in diagonal elements and therefore separate techniques are to be adopted.

REFERENCES

[1]. Carl, B Boyer (Revised by Uta, C. Merzbach): A History of Mathematics, Revised Edition, 1998
[2]. Flannery, S. and Flannery, D.: In code: A Mathematical Journey, London's Profile Books, p16-24, 2000
[3]. Heinz, H and Hendricks J. R.: Magic Squares Lexicor, Illustrated Self Published, 2001
[4]. McCranie, Judson: Magic Squares of All Orders, Mathematics Teacher, 674-678, 1988

