
International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012 1
ISSN 2250-3153

www.ijsrp.org

Horizontal Fragmentation Technique in Distributed

Database

Ms. P. R. Bhuyar

M.E. I st Year (CSE)

Sipna College of Engineering & Technology, Amravati, India

Dr.A.D.Gawande

HOD (CMPS)

Department of computer science & Engineering

Sipna College of Engineering & Technology, Amravati, India

Prof. A.B.Deshmukh

Professor (CMPS)

Department of computer science & Engineering

Sipna College of Engineering & Technology, Amravati, India

Abstract- Distributed database technology is expected to have a

significant impact on data processing in the upcoming years.

Today’s business environment has an increasing need for

distributed database and Client/server applications as the desire

for consistent, scalable, reliable and accessible information is

steadily growing. Distributed processing is an effective way to

improve reliability and performance of a database system.

Distribution of data is a collection of fragmentation, allocation

and replication processes. Previous research works provided

fragmentation solution based on empirical data about the type

and frequency of the queries submitted to a centralized system.

These solutions are not suitable at the initial stage of a database

design for a distributed system. The purpose of this work is to

present an introduction to Distributed Databases which are

becoming very popular now days with the description of

distributed database environment, fragmentation and horizontal

fragmentation technique. Horizontal fragmentation has an

important impact in improving the applications performance that

is strongly affected by distributed databases design phase. In this

report, we have presented a fragmentation technique that can be

applied at the initial stage as well as in later stages of a

distributed database system for partitioning the relations.

Allocation of fragments is done simultaneously in the algorithm.

Result shows that proposed technique can solve initial

fragmentation problem of relational databases for distributed

systems properly.

 Index Terms- Distributed database, Fragmentation, Horizontal

Fragmentation, Allocation.

I. INTRODUCTION

1.1 Distributed Database System

 A distributed database (DDB) is a collection of data that

logically belongs to the same system but is spread over the sites

of a computer network. It is not necessary that database system

have to be geographically distributed. The sites of the distributed

database can have the same network address and may be in the

same room but the communication between them is done over a

network instead of shared memory. As communication

technology, hardware, software protocols advances rapidly and

prices of network equipments falls every day, developing

distributed database systems become more and more feasible.

Design of efficient distributed database is one of the major

research problems in database & information technology areas.

 A distributed database management system (DDBMS) is then

defined as the software system that permits the management of

the DDB and makes the distribution transparent to the users.

Distributed database system (DDBS) is the integration of DDB

and DDBMS. This integration is achieved through the merging

the database and networking technologies together. Or it can be

described as, a system that runs on a collection of machines that

do not have shared memory, yet looks to the user like a single

machine. Assumptions regarding the system that underlie these

definitions are:

1. Data is stored at a number of sites. Each site is assumed

to logically consist of a single processor. Even if some

sites are multiprocessor machines, the distributed

DBMS is not concerned with the storage and

management of data on this parallel machine.

International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012 2

ISSN 2250-3153

www.ijsrp.org

Figure 1: A Distributed Database Environment

2. The processors at these sites are interconnected by a

computer network rather than a multiprocessor

configuration.

3. To form a DDB, distributed data should be logically

related, where the relationship is defined according to

some structural formalism, and access to data should be

at a high level via a common interface. The typical

formalism that is used for establishing the logical

relationship is the relational model.

4. The system has the full functionality of a DBMS.

Distributed processing on database management

systems (DBMS) is an efficient way of improving

performance of applications that manipulate large volumes

of data. This may be accomplished by removing irrelevant

data accessed during the execution of queries and by

reducing the data exchange among sites, which are the two

main goals of the design of distributed databases. Primary

concern of distributed database system design is to making

fragmentation of the relations in case of relational database

or classes in case of object oriented databases, allocation and

replication of the fragments in different sites of the

distributed system, and local optimization in each site.

1.2 Fragmentation

Primary concern of distributed database system design

is to making fragmentation of the relations in case of relational

database or classes in case of object oriented databases,

allocation and replication of the fragments in different sites of the

distributed system, and local optimization in each site.

Fragmentation is a design technique to divide a single relation or

class of a database into two or more partitions such that the

combination of the partitions provides the original database

without any loss of information. This reduces the amount of

irrelevant data accessed by the applications of the database, thus

reducing the number of disk accesses. Fragmentation can be

horizontal, vertical or mixed/hybrid.

1.2.1. Horizontal fragmentation

Horizontal fragmentation (HF) allows a relation or class

to be partitioned into disjoint tuples or instances. Intuition behind

horizontal fragmentation is that Every site should hold all

information that is used to query at the site and the information at

the site should be fragmented so the queries of the site run faster.

Horizontal fragmentation is defined as selection

operation, σ _p(R).

For example, the following relation

EMPLOYEE (eid, fname, lname, site ,pos, salary)

Eid Fname Lname Site Pos Salary

Fragment1

Fragment2

Fragment3

Figure 2: Horizontal fragmentation

1.2.2. Vertical Fragmentation

Vertical fragmentation (VF) allows a relation or class to be

partitioned into disjoint sets of columns or attributes except the

primary key. Each partition must include the primary key

attribute(s) of the table. This arrangement can make sense when

different sites are responsible for processing different functions

involving an entity.

Objective of vertical fragmentation is to partition a relation

into a set of smaller relations so that many of the applications

will run on only one fragment.

a. Vertical fragmentation of a relation R produces

fragments R1,R2, . . . , each of which contains a subset

of R’s attributes.

b. Vertical fragmentation is defined using the projection

operation of the relational algebra:

 П _A1,A2,...,An(R)

Eid Fname Lname Site Eid Pos Salary

Fragment1 Fragment2

Figure 3: Vertical fragmentation

1.2.3. Hybrid fragmentation

Combination of horizontal and vertical fragmentations

is mixed or hybrid fragmentations (MF). In this type of

fragmentation scheme, the table is divided into arbitrary blocks,

based on the needed requirements. Each fragmentation can be

allocated on to a specific site. This type of fragmentation is the

most complex one, which needs more management, in most

cases simple horizontal or vertical fragmentation of DB

applications.

Mixed fragmentation (hybrid fragmentation) Consists of

a horizontal fragment followed schema will not be sufficient to

satisfy the requirements of the by a vertical fragmentation, or a

vertical fragmentation followed by a horizontal fragmentation.

Mixed Fragmentation is defined using the selection and

projection operations of relational algebra:

П_p(_A1,...,An(R))

International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012 3

ISSN 2250-3153

www.ijsrp.org

П _A1,...,An(_p(R))

Salary Eid Fname Lname Site Pos

Fragment1 Fragment2

Fragment3 Fragment4

Figure 4: Hybrid fragmentation

The main reasons of fragmentation of the relations are

to: increase locality of reference of the queries submitted to

database, improve reliability and availability of data and

performance of the system, balance storage capacities and

minimize communication costs among sites.

Previous techniques of HF, VF or MF have the following

problems in common:

 They use frequency of queries, midterm predicates’

affinity or attribute affinity matrix (AAM) as a basis of

fragmentation. These require sufficient empirical data

that are not available in most cases at the initial stage.

 Most of them concentrate only fragmentation problem

and overlooked allocation problem to reduce complexity

Allocation is the process of assigning the fragments of a

database on the sites of a distributed network. When data are

allocated, it may either be replicated or maintained as a single

copy. The replication of fragments improves reliability and

efficiency of read-only queries but increase update cost

In this report, we have presented a new technique for

horizontal fragmentation of the relations of a distributed

database. This technique is capable of taking proper

fragmentation decision at the initial stage by using the

knowledge gathered during requirement analysis phase without

the help of empirical data about query execution. It can also

allocate the fragments properly among the sites of DDBMS.

II. LITERATURE REVIEW

Distributed databases are not new, nor are they a

consideration unique to client/server architectures or relational

databases. Data distribution needs, no doubt, arose immediately

after the first database management systems appeared 30 years

ago, and various solutions to the distribution problem have been

implemented over the years on mainframe and minicomputer

platforms using a wide variety of database management software.

HF using min-term predicate is first proposed by Ceri et

al.[5]. Ozsu and Valduriez proposed an iterative algorithm

COMMIN to generate a complete and minimal set of predicates

from a given set of simple predicates [1]. Navathe et al. proposed

a MF technique. The input of the procedure comprises a

predicate affinity table and an attribute affinity table [3]. Bai˜oo

et al. inputted predicate affinity matrix to build a predicate

affinity graph thus defines horizontal class fragments [4].

Navathe et al. used attribute usage matrix (AUM) and Bond

energy algorithm to produce vertical fragments [6]. Shin and

Irani proposed knowledge based approach in which user

reference clusters are derived from the user queries to the

database and the knowledge about the data [7]. Ra presented a

graph based algorithm for HF in which predicates are clustered

based on the predicate affinities [8]. Cheng et al. presented a

genetic algorithm based fragmentation approach that treats

horizontal fragmentation as a travelling salesman problem [9].

Ma et al. Used an attribute uses frequency matrix (AUFM) and a

cost model for VF [10]. Alfares et al. used AAM to generate

groups based on affinity values [11]. Marwa et al. uses the

instance request matrix to horizontally fragment object oriented

database [12]. Abuelyaman proposed a static algorithm StatPart

for VF [13]. Mahboubi H. and Darmont J. used predicate

affinity for HF in data warehouse [14].

To the best of our knowledge, only Abuelyaman [13]

provided a solution for initial fragmentation of relations of a

distribution database. A randomly generated reflexivity matrix, a

symmetry matrix and a transitivity module has been used to

produce vertical fragments of the relations and no algorithm for

horizontal fragmentation. But he could not justify his hypothesis

that why it will produce good fragments.

III. RELATED WORK

To solve the problem of taking proper fragmentation

decision at the initial stage of a distributed database, we have

provided a new technique of fragmentation. That is to fragment a

relation horizontally according to locality of precedence of its

attributes. Attribute locality precedence (ALP) can be defined as

the value of importance of an attribute with respect to sites of

distributed database. ALP table will be constructed by database

designer for each relation of a DDBMS at the time of designing

the database with the help of modified CRUD (Create, Read,

Update, and Delete) matrix and cost functions. A block diagram

of our system is depicted in Figure 5.

Figure 5: Block diagram of the system

A relation in a database contains different types of

attributes those describe properties of the relation. But the

important thing is that the attributes of a relation do not have

same importance with respect to data distribution in different

sites. According to above importance we can calculate locality

precedence of each attribute for each relation and construct ALP

table for the relations.

3.1 CRUD Matrix

A CRUD (data-to-location) matrix is a table of which

rows indicate attributes of the entities of a relation and columns

indicate different locations of the applications (processes that

affect those attributes). If a particular process uses a particular

Relation CRUD Matrix

MCRUD Matrix

ALP Table

Predicate Set Fragmented Sub-Relations Allocation

International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012 4

ISSN 2250-3153

www.ijsrp.org

entity attribute, the appropriate cell is filled in with the letters C,

R, U, or D.A "C" in the cell of a CRUD matrix indicates that the

process sometimes creates new instances of the corresponding

entity type. An "R" in the cell indicates that the process

sometimes reads existing instances of the entity type. A "U" in

the cell indicates that the process sometimes updates instances of

the corresponding entity type. A "D" in the cell indicates that the

process sometimes deletes instances of the corresponding entity

type.

A process does not necessarily use an entity every time

it occurs. This does not mean that the interaction should not be

shown on the CRUD matrix. If the process ever uses the entity,

the interaction must be documented in the CRUD matrix. A

CRUD matrix is used by the system analysts and designers in the

requirement analysis phase of system development life cycle for

making decision of data mapping to different locations.

MCRUD Matrix - We have modified the existing CRUD matrix

according to our requirement of HF and name it Modified Create,

Read, Update, and Delete (MCRUD) matrix. It is a table

constructed by placing predicates of attributes of a relation as the

rows and applications of the sites of a DDBMS as the columns.

We have used MCRUD to generate ALP table for each relation.

We treated cost as the effort of access and modification

of a particular attribute of a relation by an application from a

particular site. For calculating precedence of an attribute of a

relation we take the MCRUD matrix of the relation as an input

and use the following cost functions:

Ci,j, k, r = fCC + fRR + fUU + fDD (1)

 Ai,j,k

Si,j,k= ∑Ci, j, k, r (2)

 r=1

Si,j,m =Max(Si,j,k) (3)

 Ai,j,k

ALPi,j= Si,j,m -∑Si,j,k (4)

 k≠m

 l

ALPi= ∑ALPi,j (5)

 j=1

where fC = frequency of create operation

fR = frequency of read operation

fU= frequency of update operation

fD = frequency of delete operation

C = weight of create operation

R = weight of read operation

U = weight of update operation

D = weight of delete operation

Ci,j, k, r= cost of predicate j of attribute i accessed by

application r at site k

Si, j, k = sum of all applications’ cost of predicate j of

attribute i at site k

Si, j, m = maximum cost among the sites for predicate j

of attribute i

ALPi j = actual cost for predicate j of attribute i

ALPi = total cost of attribute i (locality precedence)

For simplicity we have assumed that fC, fR, fU and fD=1

and C=2, R=1, U=3 and D=2. The justification of the assumption

is that at the design time of a distributed database, the designer

will not know the actual frequencies of read, delete, create and

update of a particular attribute from different applications of a

site and generally update incurs more cost than create and delete,

and reading from database always incurs least cost.

After construction of ALP table for a relation, predicate

set P will be generated for the attribute with highest precedence

value in the ALP table. Finally each relation will be fragmented

horizontally using the predicates of P as selection predicate. The

procedures can be clearly understood from the following

algorithm and pseudo code of Fig 6 and 7.

Figure 6: Fragmentation Allocation algorithm

Input: MCRUD of a relation that to be fragmented

Output: ALP table for that relation

for (i =1; i <= TotalAttributes; i++)

{

 for (j =1; j <= TotalPredicates[i]; j++)

 {

 MAX[i][j] = 0;

 for (k =1; k <= TotalSites; k++)

 {

 for (r =1; r <= TotalApplications[k]; r++) /* Calculating

sum of all applications” cost of predicate j of attribute i at site k */

 {

 C[i][j][k][r] = fc*C + fr*R + fu*U + fd*D

 S[i][j][k] + = C[i][j][k][r]

 }

 If S[i][j][k] > MAX[i][j] /*Find out at which site cost of

 predicate j is maximum*/

 {

 MAX[i][j] = S[i][j][k]

 POS[i][j] = k

 }

 SumOther = 0

 for (r =1; r <= A[i][j][k][k]; r++)

 {

 If (r!=k)

 SumOther + = S[i][j][r]

 }

 }

 ALPsingle[i][j] = S[i][j][POS[i][j]] – SumOther /* actual

 cost for predicate j of attribute i */

 }

Input: Total number of sites: S = {S1, S2,… ,Sn}

 Relation to be fragmented: R

 Modified CRUD matrix: MCRUD[R]

Output: Fragments F = {F1, F2, F3,…, Fn}

Step 1: Construct ALP[R] from MCRUD[R] based on

 Cost functions

Step 2: For the highest valued attribute of ALP table

a. Generate predicate set P={ P1, P2, … ,Pm }

b. Rearrange P so that #P = #S

c. Fragment R using P as selection predicate

 p l σp

d. Allocate F to S

International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012 5

ISSN 2250-3153

www.ijsrp.org

 ALP[i] = 0

 for (j =1; j <= TotalPredicates[i]; j++) /*calculating total cost

 for attribute i (locality precedence)*/

 {

 ALP[i] + = ALPsingle[i][j]

 }

}

Figure 7: ALP-table-construction Pseudo-code

To justify our technique, we have implemented a

distributed banking database system. One of the relations of the

database is Accounts shown in Table 1. Initially number of sites

of the distributed system is three.

Table 1: Accounts Relation

AccNo Type CustId OpenDate Balance Branch

01 Saving 101 05/01/12 30000 Pune

02 Current 102 18/01/12 48000 Pune

03 Current 103 10/02/12 15900 Nagpur

04 Saving 104 06/03/12 37750 Mumbai

05 Current 105 12/03/12 50000 Pune

06 Saving 106 25/03/12 25000 Nagpur

07 Current 107 28/03/12 45000 Mumbai

3.2. Construction of MCRUD Matrix

We have constructed the MCRUD matrix for the

Accounts relation in the requirement analysis phase. Part of

MCRUD matrix is shown in Figure 8.

 Site

 Application

Entity,Attribute.Predica

te

Site1 Site2 Site3

Ap

1

Ap

2

Ap

3

Ap

1

Ap

2

Ap

3

Ap

1

Ap

2

Ap

3

Accounts.AccNo<1000

0
C RU R

Accounts.AccNo>=100

00
 R

Accounts.Type=Saving
CR

D
RU

RU

D
 R

Accounts.Type=Curren

t
 RU R

CR

UD
RU R

.

.

.

Accounts.Balance<500

00
R R

CR

UD
 R

Accounts.Balance>=50

000
 CR

Account.Branch=Pune
CR

UD
RU

CR

UD
 R R

Account.Branch=Nagp

ur
 R

CR

UD

CR

UD
R R

Account.Branch=Mum

bai

CR

UD
RD

CR

U

Figure 8: MCRUD matrix of Accounts

3.3 Calculation of ALP

We have calculated locality precedence of each attribute

from the MCRUD matrix of Accounts relation according to the

cost functions of equation (1)-(5). Calculating the locality

precedence of the attribute Branch is shown in Figure 9.

According to the cost functions, value of the predicate

Branch=Pune is (8+4+8) - (1+1) = 18, Branch=Nagpur is

(8+8+1) – (1+1) = 15 and Branch=Mumbai is (8+3+6) – 0 = 17.

So ALP of Branch = 18+15+17 = 50.

Figure 9: ALP cost for Branch=Pune

3.4. Construction of ALP Table

ALP values of all the attributes of the Accounts relation

was computed from its MCRUD matrix. The attribute with

highest precedence value will be treated as most important

attribute for fragmentation. Table 2 shows the ALP table for

Accounts relation.

Table 2: ALP table for Accounts relation

Attribute Name Precedence

AccNo 6

Type 22

CustId 6

OpenDate 7

Balance 10

Branch 50

3.5. Generation of Predicate Set

Predicate set was generated for Branch, the attribute

with highest locality precedence of Accounts relation.

P= {p1: Branch=Pune, p2: Branch=Nagpur, p3:

Branch= Mumbai}

3.6. Fragmentation of Relation

According to the predicate set P, Account relation was

fragmented and allocated to 3 sites (figure 10) shown in table 3-

5.

 Site

 Application

Entity,Attribute.Predica

te

Site1 Site2 Site3

Ap

1

Ap

2

Ap

3

Ap

1

Ap

2

Ap

3

Ap

1

Ap

2
Ap3

Accounts.AccNo<1000

0
C RU R

Accounts.AccNo>=100

00
 R

Accounts.Type=Saving
CR

D
RU

RU

D
 R

Accounts.Type=Curren

t
 RU R

CR

UD
RU R

.

.

.

Accounts.Balance<500

00
R R

CR

UD
 R

Accounts.Balance>=50

000
 CR

Account.Branch=Pune
CR

UD
RU

CR

UD
 R R

Account.Branch=Nagp

ur
 R

CR

UD

CR

UD
R R

Account.Branch=Mum

bai

CR

UD
RD CRU

International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012 6

ISSN 2250-3153

www.ijsrp.org

Figure 10: Distributed banking database system

Table 3: Part of Accounts relation allocated to site 1

Acc

No
Type CustId OpenDate Balance Branch

01 Saving 101 05/01/12 30000 Pune

02 Current 102 18/01/12 48000 Pune

05 Current 105 12/03/12 50000 Pune

Table 4: Part of Accounts relation allocated to site 2

Acc

No
Type CustId OpenDate Balance Branch

04 Saving 104 06/03/12 37750 Mumbai

07 Current 107 28/03/12 45000 Mumbai

Table 5: Part of Accounts relation allocated to site 3

Acc

No
Type CustId OpenDate Balance Branch

03 Current 103 10/02/12 15900 Nagpur

06 Saving 106 25/03/12 25000 Nagpur

From the above result, we can see that our technique has

successfully fragmented the Accounts relation and allocated the

fragments among the sites of the distributed system. As we have

only taken highest valued attribute from ALP table, no unwanted

fragments were created. Other relations of the distributed

banking database can be fragmented in the same way like

Accounts.

For simplicity we have considered only four sites of the system

for allocation. It is worth mentioning that our fragmentation

technique will work in the same way for large number of sites of

any distributed system.

IV. CONCLUSION

In this report, we presented an introduction to

distributed database system through a study that targeted two

main parts: in the first part we presented an exploration of

distributed database environment and types of fragmentation. In

the second part, we explore the horizontal fragmentation

technique of a relation according to locality of precedence of its

attributes.

Making proper fragmentation of the relations and

allocation of the fragments is a major research area in distributed

databases. Many techniques have been proposed by the

researchers using empirical knowledge of data access and query

frequencies. But proper fragmentation and allocation at the initial

stage of a distributed database has not yet been addressed. In this

report, we have presented a fragmentation technique to partition

relations of a distributed database properly at the initial stage

when no data access statistics and query execution frequencies

are available. Using our technique, no additional complexity is

added for allocating the fragments to the sites of a distributed

database as fragmentation is synchronized with allocation. So

performance of a DDBMS can be improved significantly by

avoiding frequent remote access and high data transfer among

the sites. This work can be extended to support fragmentation in

distributed object oriented databases as well.

REFERENCES

[1] M. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems,

2nd ed., New Jersey: Prentice-Hall, 1999.

[2] S. Ceri and G. Pelagatti, Distributed Databases Principles and System, 1st
ed., New York: McGraw-Hill, 1984.

[3] S. Navathe, K. Karlapalem, and M. Ra, “A mixed fragmentation

methodology for initial distributed database design,” Journal of Computer
and Software Engineering Vol. 3, No. 4 pp 395–426, 1995.

[4] F. Bai˜ao, M. Mattoso, and G. Zaverucha, “A distribution design
methodology for object DBMS,” Distributed and Parallel Databases,

Springer, Vol. 16, No. 1, pp. 45–90, 2004.

[5] S. Ceri, M. Negri, and G. Pelagatti, “Horizontal data partitioning in
database design,” in Proc. ACM SIGMOD, 1982, pp. 128–136.

[6] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dour, “Vertical partitioning

algorithms for database design,” ACM Transactions on Database Systems
(TODS), Vol. 9, No. 4, pp. 680–710, 1984.

[7] D. G. Shin, and K. B. Irani, “Fragmenting relations horizontally using a

knowledge based approach,” IEEE Transactions on Software Engineering
(TSE), Vol. 17, No. 9, pp. 872–883, 1991.

[8] M. Ra, “Horizontal partitioning for distributed database design,” In

Advances in Database Research, World Scientific Publishing, pp. 101–120,

1993.

[9] C. H. Cheng, W. K. Lee, and K. F. Wong, “A genetic algorithm-based

clustering approach for database partitioning,” IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 32, No. 3, pp. 215–230, 2002.

[10] H. Ma, K. D. Schewe, and M. Kirchberg, “A heuristic approach to vertical

fragmentation incorporating query information,” in Proc. 7th International
Baltic Conference on Databases and Information Systems (DB&IS), 2006,

pp. 69–76.

[11] M. AlFares et al, “Vertical Partitioning for Database Design: A Grouping
Algorithm”, in Proc. International Conference on Software Engineering and

Data Engineering (SEDE), 2007, pp. 218-223.

[12] F. F. Marwa, I. E. Ali, A. A. Hesham, “A heuristic approach for horizontal
fragmentation and alllocation in DOODB,” in Proc. INFOS2008, 2008, pp.

9-16.

[13] E. S. Abuelyaman, “An optimized scheme for vertical partitioning of a
distributed database,” Int. Journal of Computer Science & Network

Security, Vol. 8, No.1, 2008.

[14] H. Mahboubi and J. Darmont, “Enhancing XML Data Warehouse Query

Performance by Fragmentation,” in Proc. ACM SAC09, 2009, pp.1555-

1562.

[15] Haroun Rababaah, Dr. H. Hakimzadeh ,“Distributed
Databases:Fundamentals and research”,Advanced Database – B561. Spring

2005.

[16] M. Tamer Özsu, Patrick Valduriez, “Distributed Database Systems: Where
Are We Now?” Appeared in IEEE Computer, Vol. 24, No. 8, August 1991.

AUTHORS

First Author – Ms. Priyanka R. Bhuyar, M.E.-I Year (CSE),

Sipna college of Engineering & Technology, Amravati, India,

priyanka.bhuyar@gmail.com

Pune Mumbai

Nagpur

 Site1 Site1

 Site1

mailto:priyanka.bhuyar@gmail.com

International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012 7

ISSN 2250-3153

www.ijsrp.org

Second Author – Dr. A.D.Gawande, HOD (CMPS), Department

of computer science & Engineering, Sipna College of

Engineering & Technology, Amravati, India,

adgawande@rediffmail.com

Third Author – Prof.A.B.Deshmukh, Professor(CMPS),

Department of computer science & Engineering, Sipna College

of Engineering & Technology, Amravati, India.

mailto:adgawande@rediffmail.com

