GREEN HOUSE EFFECTS-PART TWO-THE FINAL SOLUTION

DR K N PRASANNA KUMAR, PROF B S KIRANAGI AND PROF C S BAGEWADI

ABSTRACT: In this final part we encompass the entire gamut of parametric representationalities and give a prediction model and analyze the systemic properties. Copious literature survey and explanations, justifications have been given in the earlier papers, wherefore we just give the model forthwith, the expositions a fait accompli desideratum.

INTRODUCTION:

The systems included in the model are:

1. hydrocarbon deposit-ozone credit
2. plant investment-oxygen output
3. oxygen income(in water)-cellular consumption
4. oxygen savings(clouds)-terrestrial organisms
5. dead organic matter-decompose organism
6. solar radiation-chemical processes

An aerosol can be defined as a dispersion of solid and liquid particles suspended in gas. Atmospheric aerosols, unsurprisingly, refer to solid and liquid particles suspended in air. Aerosols are produced by dozens of different processes that occur on land and water surfaces, and in the atmosphere itself. Aerosols occur in both the troposphere and the stratosphere, but there are considerable differences in the size ranges, chemical nature and sources of the aerosols that occur in these two atmospheric layers. Many research efforts are under way to measure, characterize and model aerosols. This is because aerosols have important consequences for global climate, ecosystem processes, and human health. Aerosols influence the amount of solar radiation reaching the surface of the earth, a consequence that is described as climate forcing, or radiative forcing. Radiative forcing is usually expressed in units of W/m², and can be a positive or negative term. A reduction of solar radiation reaching the earth is considered a negative forcing. Aerosols both absorb and scatter solar radiation. Most of the light extinction caused by aerosols is due to scattering. Particles in the 0.1 - 1.0 µm size ranges are especially active in this regard, as their radii are comparable to the wavelengths of visible solar radiation. Scattering of light in this size interval (Mie scattering) is characterized by the Mie theory, which states that particles interact with radiation as a function of their surface. Aerosols smaller than 0.1 µm are called optically small particles. They may also scatter solar radiation via a process called Rayleigh scattering. Rayleigh scattering is inversely proportional to the fourth exponent of the wavelength of the radiation. The cooling effect that aerosols have on the surface of the Earth due to direct reflection of solar radiation is referred to as the direct effect, or direct climate forcing. Aerosol particles also influence the size, abundance, and rate of production of cloud droplets. Thus they influence cloud cover, cloud albedo, and cloud lifetime. The effects of aerosols on the radiative properties of Earth’s cloud cover are referred to as the indirect effect of aerosols, or indirect climate forcing. The liquid cloud forcing consists of two parts: the 1st indirect effect (change in droplet number associated with increases in aerosols) and the 2nd indirect effect (change in precipitation efficiency associated with increases in aerosols). Aerosols are transported by prevailing winds and convection once they are in the atmosphere. For this reason, the elements contained in aerosols are seldom red posited on the surface of the Earth in the same location that they were produced. The dry or wet deposition of aerosols can serve as a source of elements to an ecosystem distinct from other sources, such as weathering. When sulfate (SO4-2) and nitrate (NO3-) containing aerosols are incorporated into cloud droplets, they lead to acidic deposition, often hundreds of miles away from the source of the aerosols or precursor gases. Although aerosols are produced by myriad natural processes, human activities are responsible for generating much of the aerosol load in today's atmosphere. Biomass and fossil fuel burning, agricultural activities, desertification, and industrial pollution all inject aerosol particles directly into the atmosphere (examples of primary production), or produce precursor gases that condense in the troposphere or stratosphere to form aerosols (examples of secondary production).
Size of Aerosols

Aerosols are usually assigned into one of the following three size categories.

- Aitken particles, or nucleation mode: \((0.001 \text{ - } 0.1 \, \mu m \text{ diameter})\)
- Large particles, or accumulation mode: \((0.1 \text{ - } 1 \, \mu m \text{ diameter})\)
- Giant particles, or coarse particle mode: \((> 1 \, \mu m \text{ diameter})\)

The terms nucleation mode and accumulation mode refer to the mechanical and chemical processes by which aerosol particles in those size ranges are usually produced. The smallest aerosols, in the nucleation mode, are principally produced by gas-to-particle conversion (GPC), which occurs in the atmosphere. Aerosols in the accumulation mode are generally produced by the coagulation of smaller particles and by the heterogeneous condensation of gas vapor onto existing aerosol particles. These generalities apply best to secondary aerosols (those produced by precursor gases, condensation and other atmospheric processes) rather than to primary aerosols (those injected into the atmosphere as particles from the surface of the earth). For example, biogenic aerosols are primary aerosols that occur over a wide range of particle sizes \((0.3 \text{ - } 50.0 \, \mu m)\). Pollen, spores, and plant and animal fragments are generally in the coarse particle mode. Bacteria, algae, protozoa, fungi and viruses will be smaller and will fall into the accumulation mode. Similarly, primary aerosols that are produced by combustion (for example the burning of vegetation) span all three size ranges. Most aerosol particles in the nucleation mode are comprised of sulfuric compounds, and are the result of the oxidation of sulfur containing precursor gases (like \(SO_2, H_2S, CS_2, COS, CH_3SCH_3\), and \(CH_3SSCH_3\)) to sulfate \((SO_4^{2-})\), and subsequent condensation into particle form (homogenous GPC). However, these miniscule sulfate aerosol particles are highly mobile and subject to coagulation: much of the sulfate aerosol produced by GPC ultimately ends up occupying the \(0.1 \text{ - } 1.0 \, \mu m\) size range. Although the number concentration (number of particles per volume air) of aerosols in the nucleation mode is high, they contribute a negligible fraction of the overall total aerosol mass. Over the continents, nitrate \((NO_3^-)\) containing aerosols are generally larger than \(1 \, \mu m\). This precludes their formation by homogenous GPC. These larger nitrate aerosols probably originate from the evaporation of cloud droplets. Mineral dust, volcanic ash, and fly ash from biomass burning are larger particles. Most mineral aerosol will belong to the coarse particle mode.

Water solubility

Aerosols that are comprised of water soluble compounds are efficient cloud condensation nuclei (CCN). Examples of water soluble aerosols are sulfate and nitrate containing aerosols and sea salt aerosol. In background (unpolluted) continental conditions, smaller particles are more likely to be water soluble; about 80% of the particles in the \(0.1 \text{ to } 0.3 \, \mu m\) size range is comprised of water soluble particles. Over oceans, however, much of the coarse particle mode, comprised of sea salt aerosols, are also water soluble. Water soluble aerosols are hygroscopic; they are capable of attracting water vapor from the air. The size of hygroscopic particles varies with relative humidity, leading to changes in optical properties as well. The presence of polar functional groups on organic aerosols, particularly carboxylic and dicarboxylic acids, makes many of the organic compounds in aerosols water-soluble and allows them to participate in cloud droplet nucleation. Insoluble aerosols include metal oxides, silicates, and clay minerals (all 3 derived from soil dust or volcanoes).

Residence Time
The residence time of aerosols depends on their size, chemistry and height in the atmosphere. Particle residence times range from minutes to hundreds of days. Aerosols between 0.1 - 1.0 μm (the accumulation mode) remain in the atmosphere longer than the other two size categories. Aerosols smaller than this (the nucleation mode) are subject to Brownian motion; higher rates of particle collision and coagulation increases the size of individual particles and removes them from the nucleation mode. The coarser particles (>1 μm radius) have higher sedimentation rates than the other two size ranges.

Spatial variability of production and consequences

Because aerosol lifetimes are short (days/weeks), and they are produced unevenly on the surface of the earth, variation between different parts of the globe in optical thickness and radiative forcing due to aerosols can amount to tens of W/m2, which is a magnitude higher than the global means for these parameters.

Ozone depletion

Image of the largest Antarctic ozone hole ever recorded (September 2006), over the Southern pole

Layers of the atmosphere (not to scale)
Ozone depletion describes two distinct but related phenomena observed since the late 1970s: a steady decline of about 4% per decade in the total volume of ozone in Earth's stratosphere (the ozone layer), and a much larger springtime decrease in stratospheric ozone over Earth's Polar Regions. The latter phenomenon is referred to as the ozone hole. In addition to these well-known stratospheric phenomena, there are also springtime polar tropospheric ozone depletion events. The details of polar ozone hole formation differ from that of mid-latitude thinning, but the most important process in both is catalytic destruction of ozone by atomic halogens. The main source of these halogen atoms in the stratosphere is photo dissociation of man-made halocarbon refrigerants (CFCs, freons, halons). These compounds are transported into the stratosphere after being emitted at the surface. Both types of ozone depletion were observed to increase as emissions of halo-carbons increased.

CFCs and other contributory substances are referred to as ozone-depleting substances (ODS). Since the ozone layer prevents most harmful UVB wavelengths (280–315 nm) of ultraviolet light (UV light) from passing through the Earth's atmosphere, observed and projected decreases in ozone have generated worldwide concern leading to adoption of the Montreal Protocol that bans the production of CFCs, halons, and other ozone-depleting chemicals such as carbon tetrachloride and trichloroethane. It is suspected that a variety of biological consequences such as increases in skin cancer, cataracts, and damage to plants, and reduction of plankton populations in the ocean's photic zone may result from the increased UV exposure due to ozone depletion.

Ozone cycle overview

Three forms (or allotropes) of oxygen are involved in the ozone-oxygen cycle: oxygen atoms (O or atomic oxygen), oxygen gas (O2 or diatomic oxygen), and ozone gas (O3 or triatomic oxygen). Ozone is formed in the stratosphere when oxygen molecules photo dissociate after absorbing an ultraviolet photon whose wavelength is shorter than 240 nm. This converts a single O2 into two atomic oxygen radicals. The atomic oxygen radicals then combine with separate O2 molecules to create two O3 molecules. These ozone molecules absorb UV light between 310 and 200 nm, following which ozone splits into a molecule of O2 and an oxygen atom. The oxygen atom then joins up with an oxygen molecule to regenerate ozone. This is a continuing process which terminates when an oxygen atom "recombines" with an ozone molecule to make two O2molecules.

\[\text{O} + \text{O}_3 \rightarrow 2 \text{O}_2 \] chemical equation

The overall amount of ozone in the stratosphere is determined by a balance between photochemical production and recombination.

Ozone can be destroyed by a number of free radical catalysts, the most important of which are the hydroxyl radical (OH·), the nitric oxide radical (NO·), the atomic chlorine ion (Cl·) and the atomic bromine ion (Br·). All of these have both natural and man-made sources; at the present time, most of the OH· and NO· in the stratosphere is of natural origin, but human activity has dramatically increased the levels of chlorine and bromine. These elements are found in certain stable organic compounds, especially chlorofluorocarbons (CFCs), which may find their way to the stratosphere without being destroyed in the troposphere due to their low reactivity. Once in the stratosphere, the Cl and Br atoms are liberated from the parent compounds by the action of ultraviolet light, e.g.

\[\text{CFCI}_3 + \text{electromagnetic radiation} \rightarrow \text{CFCI}_2 + \text{C} \]

The Cl and Br atoms can then destroy ozone molecules through a variety of catalytic cycles. In the simplest example of such a cycle, a chlorine atom reacts with an ozone molecule, taking an oxygen atom with it (forming ClO) and leaving a normal oxygen molecule. The chlorine monoxide (i.e., the ClO) can react with a second molecule of ozone (i.e., O3) to yield another chlorine atom and two molecules of oxygen. The chemical shorthand for these gas-phase reactions is:

\[\text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2 \] – The chlorine atom changes an ozone molecule to ordinary oxygen

\[\text{ClO} + \text{O}_3 \rightarrow \text{Cl} + 2 \text{O}_2 \] – The ClO from the previous reaction destroys a second ozone molecule and recreates the original chlorine atom, which can repeat the first reaction and continue to destroy ozone.

The overall effect is a decrease in the amount of ozone, though the rate of these processes can be decreased by the effects of null cycles. More complicated mechanisms have been discovered that lead to ozone destruction in the lower stratosphere as well.
The ozone cycle

Global monthly average total ozone amount.

Lowest value of ozone measured by TOMS each year in the ozone hole.

A single chlorine atom would keep on destroying ozone (thus a catalyst) for up to two years (the time scale for transport back down to the troposphere) were it not for reactions that remove them from this cycle by forming reservoir species such as hydrogen chloride (HCl) and chlorine nitrate (ClONO2). On a per atom basis, bromine is even more efficient than chlorine at destroying ozone, but there is much less bromine in the atmosphere at present. As a result, both chlorine and bromine contribute significantly to the overall ozone depletion. Laboratory studies have shown that fluorine and iodine atoms participate in analogous catalytic cycles. However, in the Earth's stratosphere, fluorine atoms react rapidly with water and methane to form strongly bound HF, while organic molecules which contain iodine react so rapidly in the lower atmosphere that they do not reach the stratosphere in significant quantities. Furthermore, a single chlorine atom is able to react with 100,000 ozone molecules. This fact plus the amount of chlorine released into the atmosphere by chlorofluorocarbons (CFCs) yearly demonstrates how dangerous CFCs are to the environment

Observations on ozone layer depletion
The most pronounced decrease in ozone has been in the lower stratosphere. However, the ozone hole is most usually measured not in terms of ozone concentrations at these levels (which are typically of a few parts per million) but by reduction in the total column ozone, above a point on the Earth's surface, which is normally expressed in Dobson units, abbreviated as "DU". Marked decreases in column ozone in the Antarctic spring and early summer compared to the early 1970s and before have been observed using instruments such as the Total Ozone Mapping Spectrometer (TOMS) Reductions of up to 70% in the ozone column observed in the austral (southern hemispheric) spring over Antarctica and first reported in 1985 (Farman et al. 1985) are continuing.[7] Through the 1990s, total column ozone in September and October have continued to be 40–50% lower than pre-ozone-hole values. In the Arctic the amount lost is more variable year-to-year than in the Antarctic. The greatest declines, up to 30%, are in the winter and spring, when the stratosphere is colder.

Reactions that take place on polar stratospheric clouds (PSCs) play an important role in enhancing ozone depletion. PSCs form more readily in the extreme cold of Antarctic stratosphere. This is why ozone holes first formed, and are deeper, over Antarctica. Early models failed to take PSCs into account and predicted a gradual global depletion, which is why the sudden Antarctic ozone hole was such a surprise to many scientists. In middle latitudes it is preferable to speak of ozone depletion rather than holes. Declines are about 3% below pre-1980 values for 35–60°N and about 6% for 35–60°S. In the tropics, there are no significant trends. Ozone depletion also explains much of the observed reduction in stratospheric and upper tropospheric temperatures. [The source of the warmth of the stratosphere is the absorption of UV radiation by ozone, hence reduced ozone leads to cooling. Some stratospheric cooling is also predicted from increases in greenhouse gases such as CO2, however the ozone-induced cooling appears to be dominant.]

Chemicals in the atmosphere

CFCs and related compounds in the atmosphere

Chlorofluorocarbons (CFCs) and other halogenated ozone depleting substances (ODS) are mainly responsible for man-made chemical ozone depletion. The total amount of effective halogens (chlorine and bromine) in the stratosphere can be calculated and are known as the equivalent effective stratospheric chlorine (EESC). CFCs were invented by Thomas Midgley, Jr. in the 1920s. They were used in air conditioning and cooling units, as aerosol spray propellants prior to the 1970s, and in the cleaning processes of delicate electronic equipment. They also occur as by-products of some chemical processes. No significant natural sources have ever been identified for these compounds — their presence in the atmosphere is due almost entirely to human manufacture. As mentioned above, when such ozone-depleting chemicals reach the stratosphere, they are dissociated by ultraviolet light to release chlorine atoms. The chlorine atoms act as a catalyst, and each can break down tens of thousands of ozone molecules before being removed from the stratosphere. Given the longevity of CFC molecules, recovery times are measured in decades. It is calculated that a CFC molecule takes an average of about five to seven years to go from the ground level up to the upper atmosphere, and it can stay there for about a century, destroying up to one hundred thousand ozone molecules during that time.

Scientists have been increasingly able to attribute the observed ozone depletion to the increase of man-made (anthropogenic) halogen compounds from CFCs by the use of complex chemistry transport models and their validation against observational data (e.g. SLIMCAT, CLaMS — Chemical Lagrangian Model of the Stratosphere). These models work by combining satellite measurements of chemical concentrations and meteorological fields with chemical reaction rate constants obtained in lab experiments. They are able to identify not only the key chemical reactions but also the transport processes which bring CFC photolysis products into contact with ozone.

The ozone hole and its causes

![Diagram of ozone hole](https://example.com/ozone-hole.png)
Ozone hole in North America during 1984 (abnormally warm reducing ozone depletion) and 1997 (abnormally cold resulting in increased seasonal depletion). Source: NASA

The Antarctic ozone hole is an area of the Antarctic stratosphere in which the recent ozone levels have dropped to as low as 33% of their pre-1975 values. The ozone hole occurs during the Antarctic spring, from September to early December, as strong westerly winds start to circulate around the continent and create an atmospheric container. Within this polar vortex, over 50% of the lower stratospheric ozone is destroyed during the Antarctic spring. As explained above, the primary cause of ozone depletion is the presence of chlorine-containing source gases (primarily CFCs and related halocarbons). In the presence of UV light, these gases dissociate, releasing chlorine atoms, which then go on to catalyze ozone destruction. The Cl-catalyzed ozone depletion can take place in the gas phase, but it is dramatically enhanced in the presence of polar stratospheric clouds (PSCs). These polar stratospheric clouds (PSC) form during winter, in the extreme cold. Polar winters are dark, consisting of 3 months without solar radiation (sunlight). The lack of sunlight contributes to a decrease in temperature and the polar traps and chills air. Temperatures hover around or below −80 °C. These low temperatures form cloud particles. There are three types of PSC clouds — nitric acid trihydrate clouds, slowly cooling water-ice clouds, and rapid cooling water-ice (nacreous) clouds — that provide surfaces for chemical reactions that lead to ozone destruction. The photochemical processes involved are complex but well understood. The key observation is that, ordinarily, most of the chlorine in the stratosphere resides in stable "reservoir" compounds, primarily hydrochloric acid (HCl) and chlorine nitrate (ClONO2). During the Antarctic winter and spring, however, reactions on the surface of the polar stratospheric cloud particles convert these "reservoir" compounds into reactive free radicals (Cl and ClO). The clouds can also remove NO2 from the atmosphere by converting it to nitric acid, which prevents the newly formed ClO from being converted back into ClONO2. The role of sunlight in ozone depletion is the reason why the Antarctic ozone depletion is greatest during spring. During winter, even though PSCs are at their most abundant, there is no light over the pole to drive the chemical reactions. During the spring, however, the sun comes out, providing energy to drive photochemical reactions and melt the polar stratospheric clouds, releasing the trapped compounds. Warming temperatures near the end of spring break up the vortex around mid-December. As warm, ozone-rich air flows in from lower latitudes, the PSCs are destroyed, the ozone depletion process shuts down, and the ozone hole closes. Most of the ozone that is destroyed is in the lower stratosphere, in contrast to the much smaller ozone depletion through homogeneous gas phase reactions, which occurs primarily in the upper stratosphere.

Consequences of ozone layer depletion

Since the ozone layer absorbs UVB ultraviolet light from the sun, ozone layer depletion is expected to increase surface UVB levels, which could lead to damage, including increase in skin cancer. This was the reason for the Montreal Protocol. Although decreases in stratospheric ozone are well-tied to CFCs and there are good theoretical reasons to believe that decreases in ozone will lead to increases in surface UVB, there is no direct observational evidence linking ozone depletion to higher incidence of skin cancer and eye damage in human beings. This is partly because UVA, which has also been implicated in some forms of skin cancer, is not absorbed by ozone, and it is nearly impossible to control statistics for lifestyle changes in the populace.

Increased UV

Ozone, while a minority constituent in Earth's atmosphere, is responsible for most of the absorption of UVB radiation. The amount of UVB radiation that penetrates through the ozone layer decreases exponentially with the slant-path thickness and density of the layer. Correspondingly, a decrease in atmospheric ozone is expected to give rise to significantly increased levels of UVB near the surface. Increases in surface UVB due to the ozone hole can be partially inferred by radiative transfer model calculations, but cannot be calculated from direct measurements because of the lack of reliable historical (pre-ozone-hole) surface UV data, although more recent surface UV observation measurement programmes exist (e.g. at Lauderdale, New Zealand). Because it is this same UV radiation that creates ozone in the ozone layer from O2 (regular oxygen) in the first place, a reduction in stratospheric ozone would actually tend to increase photochemical production of ozone at lower levels (in the troposphere), although the overall observed trends in total column ozone still show a decrease, largely because ozone produced lower down has a naturally shorter photochemical lifetime, so it is destroyed before the concentrations could reach a level which would compensate for the ozone reduction higher up.

www.ijsrp.org
Biological effects

1. Basal and squamous cell carcinomas — the most common forms of skin cancer in humans, basal and squamous cell carcinomas, have been strongly linked to UVB exposure. The mechanism by which UVB induces these cancers is well understood—absorption of UVB radiation causes the pyrimidine bases in the DNA molecule to form dimers, resulting in transcription errors when the DNA replicates. These cancers are relatively mild and rarely fatal, although the treatment of squamous cell carcinoma sometimes requires extensive reconstructive surgery. By combining epidemiological data with results of animal studies, scientists have estimated that a one percent decrease in stratospheric ozone would increase the incidence of these cancers by 2%.

2. Malignant melanoma — another form of skin cancer, malignant melanoma, is much less common but far more dangerous, being lethal in about 15–20% of the cases diagnosed. The relationship between malignant melanoma and ultraviolet exposure is not yet well understood, but it appears that both UVB and UVA are involved. Experiments on fish suggest that 90 to 95% of malignant melanomas may be due to UVA and visible radiation whereas experiments on opossums suggest a larger role for UVB. Because of this uncertainty, it is difficult to estimate the impact of ozone depletion on melanoma incidence. One study showed that a 10% increase in UVB radiation was associated with a 19% increase in melamomas for men and 16% for women. A study of people in Punta Arenas, at the southern tip of Chile, showed a 56% increase in melanoma and a 46% increase in non-melanoma skin cancer over a period of seven years, along with decreased ozone and increased UVB levels.

3. Cortical cataracts — Studies are suggestive of an association between ocular cortical cataracts and UV-B exposure. A detailed assessment of ocular exposure to UV-B was carried out in a study on Chesapeake Bay Watermen, where increases in average annual ocular exposure were associated with increasing risk of cortical opacity. In this highly exposed group of predominantly white males, the evidence linking cortical opacities to sunlight exposure was the strongest to date. However, subsequent data from the Beaver Dam study, WI suggested the risk may be confined to men. In the Beaver Dam study, the exposures among women were lower than exposures among men, and no association was seen. Moreover, there were no data linking sunlight exposure to risk of cataract in African Americans, although other eye diseases have different prevalences among the different racial groups, and cortical opacity appears to be higher in African Americans compared with whites.

4. Increased troposphere ozone — Increased surface UV leads to increased troposphere ozone. Ground-level ozone is generally recognized to be a health risk, as ozone is toxic due to its strong oxidant properties. At this time, ozone at ground level is produced mainly by the action of UV radiation on combustion gases from vehicle exhausts.

Increased production of Vitamin D

Vitamin D is produced in the skin by ultraviolet light. Thus, higher UV-B exposure raises human vitamin D in those deficient in it. Recent research (primarily since the Montreal protocol), shows that many humans have less than optimal vitamin D levels. In particular, the lowest quartile of vitamin D (<17.8 ng/ml), in the US population were found using information from the National Health and Nutrition Examination Survey to be associated with an increase in all cause mortality in the general population. While higher level of Vitamin D is associated with higher mortality, the body has mechanisms that prevent sunlight from producing too much Vitamin D.

Effects on non-human animals

A November 2010 report by scientists at the Institute of Zoology in London found that whales off the coast of California have shown a sharp rise in sun damage, and these scientists "fear that the thinning ozone layer is to blame.

The study photographed and took skin biopsies from over 150 whales in the Gulf of California and found "widespread evidence of epidermal damage commonly associated with acute and severe sunburn," having cells which form when the DNA is damaged by UV radiation. The findings suggest "rising UV levels as a result of ozone depletion are to blame for the observed skin damage, in the same way that human skin cancer rates have been on the increase in recent decades"
An increase of UV radiation would be expected to affect crops. A number of economically important species of plants, such as rice, depend on cyanobacteria residing on their roots for the retention of nitrogen. Cyanobacteria are sensitive to UV light and would be affected by its increase.

NASA projections of stratospheric ozone concentrations if chlorofluorocarbons had not been banned. The full extent of the damage that CFCs have caused to the ozone layer is not known and will not be known for decades; however, marked decreases in column ozone have already been observed (as explained before).

After a 1976 report by the United States National Academy of Sciences concluded that credible scientific evidence supported the ozone depletion hypothesis a few countries, including the United States, Canada, Sweden, Denmark, and Norway, moved to eliminate the use of CFCs in aerosol spray cans. At the time this was widely regarded as a first step towards a more comprehensive regulation policy, but progress in this direction slowed in subsequent years, due to a combination of political factors (continued resistance from the halocarbon industry and a general change in attitude towards environmental regulation during the first two years of the Reagan administration) and scientific developments (subsequent National Academy assessments which indicated that the first estimates of the magnitude of ozone depletion had been overly large). A critical DuPont manufacturing patent for Freon was set to expire in 1979. The United States banned the use of CFCs in aerosol cans in 1978.[40] The European Community rejected proposals to ban CFCs in aerosol sprays, and in the U.S., CFCs continued to be used as refrigerants and for cleaning circuit boards. Worldwide CFC production fell sharply after the U.S. aerosol ban, but by 1986 had returned nearly to its 1976 level. In 1993, DuPont shut down its CFC facility.

Prospects of ozone depletion

Ozone-depleting gas trends.

Since the adoption and strengthening of the Montreal Protocol has led to reductions in the emissions of CFCs, atmospheric concentrations of the most significant compounds have been declining. These substances are being gradually removed from the atmosphere—since peaking in 1994, the Effective Equivalent Chlorine (EECI) level in the atmosphere had dropped about 10% by 2008. It is estimated that by 2015, the Antarctic ozone hole will have reduced by 1 million km² out of 25 (Newman et al., 2004); complete recovery of the Antarctic ozone layer is not expected to occur until the year 2050 or later. Work has suggested that a detectable (and statistically significant) recovery will not occur until around 2024, with ozone levels recovering to 1980 levels by around 2068.[50] The decrease in ozone-depleting chemicals has also been significantly affected by a decrease in bromine-containing chemicals. The data...
suggest that substantial natural sources exist for atmospheric methyl bromide (CH3Br). The phase-out of CFCs means that nitrous oxide (N2O), which is not covered by the Montreal Protocol, has become the most highly emitted ozone depleting substance and is expected to remain so throughout the 21st century.

When the 2004 ozone hole ended in November 2004, daily minimum stratospheric temperatures in the Antarctic lower stratosphere increased to levels that are too warm for the formation of polar stratospheric clouds (PSCs) about 2 to 3 weeks earlier than in most recent years.

The Arctic winter of 2005 was extremely cold in the stratosphere; PSCs were abundant over many high-latitude areas until dissipated by a big warming event, which started in the upper stratosphere during February and spread throughout the Arctic stratosphere in March. The size of the Arctic area of anomalously low total ozone in 2004–2005 was larger than in any year since 1997. The predominance of anomalously low total ozone values in the Arctic region in the winter of 2004–2005 is attributed to the very low stratospheric temperatures and meteorological conditions favorable for ozone destruction along with the continued presence of ozone destroying chemicals in the stratosphere.

Temperatures during the Arctic winter of 2006 stayed fairly close to the long-term average until late January, with minimum readings frequently cold enough to produce PSCs. During the last week of January, however, a major warming event sent temperatures well above normal — much too warm to support PSCs. By the time temperatures dropped back to near normal in March, the seasonal norm was well above the PSC threshold.[56]

Preliminary satellite instrument-generated ozone maps show seasonal ozone buildup slightly below the long-term means for the Northern Hemisphere as a whole, although some high ozone events have occurred. During March 2006, the Arctic stratosphere poleward of 60° North Latitude was free of anomalously low ozone areas except during the three-day period from 17 March to 19 when the total ozone cover fell below 300 DU over part of the North Atlantic region from Greenland to Scandinavia.

The area where total column ozone is less than 220 DU (the accepted definition of the boundary of the ozone hole) was relatively small until around 20 August 2006. Since then the ozone hole area increased rapidly, peaking at 29 million km² 24 September. In October 2006, NASA reported that the year’s ozone hole set a new area record with a daily average of 26 million km² between 7 September and 13 October 2006; total ozone thicknesses fell as low as 85 DU on 8 October. The two factors combined, 2006 sees the worst level of depletion in recorded ozone history. The depletion is attributed to the temperatures above the Antarctic reaching the lowest recording since comprehensive records began in 1979.

The Antarctic ozone hole is expected to continue for decades. Ozone concentrations in the lower stratosphere over Antarctica will increase by 5%–10% by 2020 and return to pre-1980 levels by about 2060–2075, 10–25 years later than predicted in earlier assessments. This is because of revised estimates of atmospheric concentrations of Ozone Depleting Substances — and a larger predicted future usage in developing countries. Another factor which may aggravate ozone depletion is the draw-down of nitrogen oxides from above the stratosphere due to changing wind patterns.[1]

Research history

The basic physical and chemical processes that lead to the formation of an ozone layer in the Earth's stratosphere were discovered by Sydney Chapman in 1930. These are discussed in the article Ozone-oxygen cycle — briefly, short-wavelength UV radiation splits an oxygen (O2) molecule into two oxygen (O) atoms, which then combine with other oxygen molecules to form ozone. Ozone is removed when an oxygen atom and an ozone molecule "recombine" to form two oxygen molecules, i.e. O + O3 → 2O2. In the 1950s, David Bates and Marcel Nicolet presented evidence that various free radicals, in particular hydroxyl (OH) and nitric oxide (NO), could catalyze this recombination reaction, reducing the overall amount of ozone. These free radicals were known to be present in the stratosphere, and so were regarded as part of the natural balance — it was estimated that in their absence, the ozone layer would be about twice as thick as it currently is.

In 1970 Prof. Paul Crutzen pointed out that emissions of nitrous oxide (N2O), a stable, long-lived gas produced by soil bacteria, from the Earth's surface could affect the amount of nitric oxide (NO) in the stratosphere. Crutzen showed that nitrous oxide lives long enough to reach the stratosphere, where it is converted into NO. Crutzen then noted that increasing use of fertilizers might have led to an increase in nitrous oxide emissions over the natural background, which would in turn result in an increase in the amount of NO in the stratosphere. Thus human activity could have an impact on the stratospheric ozone.
layer. In the following year, Crutzen and (independently) Harold Johnston suggested that NO emissions from supersonic aircraft, which fly in the lower stratosphere, could also deplete the ozone layer.

The Rowland–Molina hypothesis

In 1974 Frank Sherwood Rowland, Chemistry Professor at the University of California at Irvine, and his postdoctoral associate Mario J. Molina suggested that long-lived organic halogen compounds, such as CFCs, might behave in a similar fashion as Crutzen had proposed for nitrous oxide. James Lovelock (most popularly known as the creator of the Gaia hypothesis) had recently discovered, during a cruise in the South Atlantic in 1971, that almost all of the CFC compounds manufactured since their invention in 1930 were still present in the atmosphere. Molina and Rowland concluded that, like N2O, the CFCs would reach the stratosphere where they would be dissociated by UV light, releasing Cl atoms. (A year earlier, Richard Stolarski and Ralph Cicerone at the University of Michigan had shown that Cl is even more efficient than NO at catalyzing the destruction of ozone. Similar conclusions were reached by Michael McElroy and Steven Wofsy at Harvard University. Neither group, however, had realized that CFCs were a potentially large source of stratospheric chlorine — instead, they had been investigating the possible effects of HCl emissions from the Space Shuttle, which are very much smaller.)

The Rowland–Molina hypothesis was strongly disputed by representatives of the aerosol and halocarbon industries. The Chair of the Board of DuPont was quoted as saying that ozone depletion theory is "a science fiction tale...a load of rubbish...utter nonsense". Robert Abplanalp, the President of Precision Valve Corporation (and inventor of the first practical aerosol spray can valve), wrote to the Chancellor of UC Irvine to complain about Rowland's public statements (Roan, p 56.) Nevertheless, within three years most of the basic assumptions made by Rowland and Molina were confirmed by laboratory measurements and by direct observation in the stratosphere. The concentrations of the source gases (CFCs and related compounds) and the chlorine reservoir species (HCl and ClONO2) were measured throughout the stratosphere, and demonstrated that CFCs were indeed the major source of stratospheric chlorine, and that nearly all of the CFCs emitted would eventually reach the stratosphere. Even more convincing was the measurement, by James G. Anderson and collaborators, of chlorine monoxide (ClO) in the stratosphere. ClO is produced by the reaction of Cl with ozone — its observation thus demonstrated that Cl radicals not only were present in the stratosphere but also were actually involved in destroying ozone. McElroy and Wofsy extended the work of Rowland and Molina by showing that bromine atoms were even more effective catalysts for ozone loss than chlorine atoms and argued that the brominates organic compounds known as halons, widely used in fire extinguishers, were a potentially large source of stratospheric bromine. In 1976 the United States National Academy of Sciences released a report which concluded that the ozone depletion hypothesis was strongly supported by the scientific evidence. Scientists calculated that if CFC production continued to increase at the going rate of 10% per year until 1990 and then remain steady, CFCs would cause a global ozone loss of 5 to 7% by 1995, and a 30 to 50% loss by 2050. In response the United States, Canada and Norway banned the use of CFCs in aerosol spray cans in 1978. However, subsequent research, summarized by the National Academy in reports issued between 1979 and 1984, appeared to show that the earlier estimates of global ozone loss had been too large.[63]

Crutzen, Molina, and Rowland were awarded the 1995 Nobel Prize in Chemistry for their work on stratospheric ozone.

The ozone hole

The discovery of the Antarctic "ozone hole" by British Antarctic Survey scientists Farman, Gardiner and Shanklin (announced in a paper in *Nature* in May 1985) came as a shock to the scientific community, because the observed decline in polar ozone was far larger than anyone had anticipated. Satellite measurements showing massive depletion of ozone around the south pole were becoming available at the same time. However, these were initially rejected as unreasonable by data quality control algorithms (they were filtered out as errors since the values were unexpectedly low); the ozone hole was detected only in satellite data when the raw data was reprocessed following evidence of ozone depletion in in situ observations. When the software was rerun without the flags, the ozone hole was seen as far back as 1976.

Susan Solomon, an atmospheric chemist at the National Oceanic and Atmospheric Administration (NOAA), proposed that chemical reactions on polar stratospheric clouds (PSCs) in the cold Antarctic stratosphere caused a massive, though localized and seasonal, increase in the amount of chlorine present.
in active, ozone-destroying forms. The polar stratospheric clouds in Antarctica are only formed when there are very low temperatures, as low as −80 °C, and early spring conditions. In such conditions the ice crystals of the cloud provide a suitable surface for conversion of unreactive chlorine compounds into reactive chlorine compounds which can deplete ozone easily.

Moreover the polar vortex formed over Antarctica is very tight and the reaction which occurs on the surface of the cloud crystals is far different from when it occurs in atmosphere. These conditions have led to ozone hole formation in Antarctica. This hypothesis was decisively confirmed, first by laboratory measurements and subsequently by direct measurements, from the ground and from high-altitude airplanes, of very high concentrations of chlorine monoxide (ClO) in the Antarctic stratosphere. Alternative hypotheses, which had attributed the ozone hole to variations in solar UV radiation or to changes in atmospheric circulation patterns, were also tested and shown to be untenable. Meanwhile, analysis of ozone measurements from the worldwide network of ground-based Dobson spectrophotometers led an international panel to conclude that the ozone layer was in fact being depleted, at all latitudes outside of the tropics. These trends were confirmed by satellite measurements. As a consequence, the major halocarbon producing nations agreed to phase out production of CFCs, halons, and related compounds, a process that was completed in 1996. Since 1981 the United Nations Environment Programme, under the auspices of the World Meteorological Organization, has sponsored a series of technical reports on the Scientific Assessment of Ozone Depletion, based on satellite measurements. The 2007 report showed that the hole in the ozone layer was recovering and the smallest it had been for about a decade.[66] The 2010 report found that "Over the past decade, global ozone and ozone in the Arctic and Antarctic regions is no longer decreasing but is not yet increasing... the ozone layer outside the Polar regions is projected to recover to its pre-1980 levels some time before the middle of this century..." In contrast, the springtime ozone hole over the Antarctic is expected to recover much later. The hole in the Earth’s ozone layer over the South Pole has affected atmospheric circulation in the Southern Hemisphere all the way to the equator. The ozone hole has influenced atmospheric circulation all the way to the tropics and increased rainfall at low, subtropical latitudes in the Southern Hemisphere.

Ozone depletion and global warming

There are five areas of linkage between ozone depletion and global warming:

![Radiative Forcing Components](image)

Radiative forcing from various greenhouse gases and other sources.

The same CO2 radiative forcing that produces global warming is expected to cool the stratosphere.[78] This cooling, in turn, is expected to produce a relative increase in ozone (O3) depletion in polar area and the frequency of ozone holes. Conversely, ozone depletion represents a radiative forcing of the climate system. There are two opposing effects: Reduced ozone causes the stratosphere to absorb less solar radiation, thus cooling the stratosphere while warming the troposphere; the resulting colder stratosphere emits less long-wave radiation downward, thus cooling the troposphere. Overall, the cooling dominates; the IPCC concludes that "observed stratospheric O3 losses over the past two decades have caused a negative forcing of the surface-troposphere system"[10] of about −0.15 ± 0.10 watts per square meter (W/m²). One of the strongest predictions of the greenhouse effect is that the stratosphere will cool.[78] Although this cooling has been observed, it is not trivial to separate the effects of changes in the concentration of greenhouse gases and ozone depletion since both will lead to cooling. However, this can be done by numerical stratospheric modeling. Results from the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory show that above 20 km (12 mi), the greenhouse gases dominate the cooling
Misconceptions about ozone depletion

CFCs are "too heavy" to reach the stratosphere

Since CFC molecules are heavier than air (nitrogen or oxygen), it is commonly believed that the CFC molecules cannot reach the stratosphere in significant amount. But atmospheric gases are not sorted by weight; the forces of wind can fully mix the gases in the atmosphere. The CFCs are evenly distributed throughout the stratosphere and reach the upper atmosphere

Man-made chlorine is insignificant compared to natural sources

Another misconception is that "it is generally accepted that natural sources of troposphere chlorine are four to five times larger than man-made one". While strictly true, troposphere chlorine is irrelevant; it is stratospheric chlorine that affects ozone depletion. Chlorine from ocean spray is soluble and thus is washed by rainfall before it reaches the stratosphere. CFCs, in contrast, are insoluble and long-lived, allowing them to reach the stratosphere. In the lower atmosphere, there is much more chlorine from CFCs and related haloalkanes than there is in HCl from salt spray, and in the stratosphere halocarbons are dominant Only methyl chloride which is one of these halocarbons has a mainly natural source and it is responsible for about 20 percent of the chlorine in the stratosphere; the remaining 80% comes from manmade sources. Very violent volcanic eruptions can inject HCl into the stratosphere, but researchers have shown that the contribution is not significant compared to that from CFCs. A similar erroneous assertion is that soluble halogen compounds from the volcanic plume of Mount Erebus on Ross Island, Antarctica are a major contributor to the Antarctic ozone hole. Some people thought that the ozone hole should be above the sources of CFCs. However, CFCs are well mixed globally in the troposphere and the stratosphere. The reason for occurrence of the ozone hole above Antarctica is not because there are more CFCs concentrated but because the low temperatures help form polar stratospheric clouds. In fact, there are findings of significant and localized "ozone holes" above other parts of the earth.

The "ozone hole" is a hole in the ozone layer

There is a common misconception that the "ozone hole" is really a hole in the ozone layer. When the "ozone hole" occurs, the ozone in the lower stratosphere is destroyed. The upper stratosphere is less affected, so that the amount of ozone over the continent decreases by 50 percent or even more. The ozone does not disappear through the layer, nor is there a uniform 'thinning' of the ozone layer. It is a "hole" which is a depression, not in the sense of "a hole in the windshield."

HYDROCARBON DEPOSIT AND OZONE CREDIT: MODULE ONE

NOTATION :

\(G_{13} \) : Category One Of Ozone

\(G_{14} \) : Category Two Of Ozone

\(G_{15} \) : Category Three Of Ozone
T_{13} : Category One Of Hydrocarbon Deposit

T_{14} : Category Two Of Hydro Carbon Deposit

T_{15} : Category Three Of Hydrocarbon Deposit

PLANT INVESTMENT AND OXYGEN OUTPUT: MODULE TWO

G_{16} : Category One Of Oxygen Output

G_{17} : Category Two Of Oxygen Output

G_{18} : Category Three Of Oxygen Output

T_{16} : Category One Of Plant Investment

T_{17} : Category Two Of Plant Investment

T_{18} : Category Three Of Plant Investment

OXYGEN INCOME(IN WATER) AND CELLULAR CONSUMPTION: MODULE THREE

G_{20} : Category One Of Oxygen Income In Water

G_{21} : Category Two Of Oxygen Income In Water

G_{22} : Category Three Of Oxygen Income In Water

T_{20} : Category One Of Cellular Consumption

T_{21} : Category Two Of Cellular Consumption

T_{22} : Category Three Of Cellular Consumption

OXYGEN SAVINGS AND TERRESTIAL ORGANISMS: MODULE FOUR

G_{24} : Category One Of Oxygen Savings

G_{25} : Category Two Of Oxygen Savings

G_{26} : Category Three Of Oxygen Savings

T_{24} : Category One Of Terrestrial Organisms

T_{25} : Category Two Of Terrestrial Organisms

T_{26} : Category Three Of Terrestrial Organisms

DEAD ORGANIC MATTER AND DECOMPOSER ORGANISMS: MODULE NUMBERED FIVE
\(G_{28} : \) Category One Of Dead Organic Matter

\(G_{29} : \) Category Two Of Dead Organic Matter

\(G_{30} : \) Category Three Of Dead Organic Matter

\(T_{28} : \) Category One Of Decomposer Organisms

\(T_{29} : \) Category Two Of Decomposer Organisms

\(T_{30} : \) Category Three Of Decomposer Organisms

SOLAR RADIATION-CHEMICAL PROCESSES MODULE NUMBERED SIX

\(G_{32} : \) Category One Of Solar Radiation

\(G_{33} : \) Category Two Of Solar Radiation

\(G_{34} : \) Category Three Of Solar Radiation

\(T_{32} : \) Category One Of Chemical Processes

\(T_{33} : \) Category Two Of Chemical Processes

\(T_{34} : \) Category Three Of Chemical Processes

ACCENTUATION COEFFICIENTS OF THE HOLISTIC SYSTEM:

\((a_{13})^{(1)}, (a_{14})^{(1)}, (a_{15})^{(1)}, \quad (b_{13})^{(1)}, (b_{14})^{(1)}, (b_{15})^{(1)}, \quad (a_{16})^{(2)}, (a_{17})^{(2)}, (a_{18})^{(2)}, \quad (b_{16})^{(2)}, (b_{17})^{(2)}, (b_{18})^{(2)}, \quad (a_{20})^{(3)}, (a_{21})^{(3)}, (a_{22})^{(3)}, (b_{20})^{(3)}, (b_{21})^{(3)}, (b_{22})^{(3)} \)

\((a_{23})^{(4)}, (a_{24})^{(4)}, (a_{25})^{(4)}, (a_{26})^{(4)}, (a_{27})^{(4)}, (a_{28})^{(4)}, (a_{29})^{(5)}, (b_{28})^{(5)}, (b_{29})^{(5)}, (b_{30})^{(5)}, \quad (a_{20})^{(6)}, (a_{21})^{(6)}, (a_{22})^{(6)}, (a_{23})^{(6)}, (a_{24})^{(6)}, (b_{23})^{(6)}, (b_{24})^{(6)} \)

DISSIPATION COEFFICIENTS OF GLOBAL SYSTEM:

\((a'_{13})^{(1)}, (a'_{14})^{(1)}, (a'_{15})^{(1)}, \quad (b'_{13})^{(1)}, (b'_{14})^{(1)}, (b'_{15})^{(1)}, \quad (a'_{16})^{(2)}, (a'_{17})^{(2)}, (a'_{18})^{(2)}, \quad (b'_{16})^{(2)}, (b'_{17})^{(2)}, (b'_{18})^{(2)}, \quad (a'_{20})^{(3)}, (a'_{21})^{(3)}, (a'_{22})^{(3)}, (b'_{20})^{(3)}, (b'_{21})^{(3)}, (b'_{22})^{(3)} \)

\((a'_{23})^{(4)}, (a'_{24})^{(4)}, (a'_{25})^{(4)}, (a'_{26})^{(4)}, (a'_{27})^{(4)}, (a'_{28})^{(4)}, (a'_{29})^{(5)}, (b'_{28})^{(5)}, (b'_{29})^{(5)}, (b'_{30})^{(5)}, \quad (a'_{20})^{(6)}, (a'_{21})^{(6)}, (a'_{22})^{(6)}, (a'_{23})^{(6)}, (a'_{24})^{(6)}, (b'_{23})^{(6)}, (b'_{24})^{(6)} \)
GOVERNING EQUATIONS: HYDROCARBON DEPOSIT AND OZONE CREDIT: MODULE ONE

The differential system of this model is now

\[
\frac{dG_{13}}{dt} = (a_{13})^{(1)} G_{14} - \left[(a_{13}')^{(1)} + (a_{13}'')^{(1)}(T_{14}, t) \right] G_{13}
\]

\[
\frac{dG_{14}}{dt} = (a_{14})^{(1)} G_{13} - \left[(a_{14}')^{(1)} + (a_{14}'')^{(1)}(T_{14}, t) \right] G_{14}
\]

\[
\frac{dG_{15}}{dt} = (a_{15})^{(1)} G_{14} - \left[(a_{15}')^{(1)} + (a_{15}'')^{(1)}(T_{14}, t) \right] G_{15}
\]

\[
\frac{dT_{13}}{dt} = (b_{13})^{(1)} T_{14} - \left[(b_{13}')^{(1)} - (b_{13}'')^{(1)}(G, t) \right] T_{13}
\]

\[
\frac{dT_{14}}{dt} = (b_{14})^{(1)} T_{13} - \left[(b_{14}')^{(1)} - (b_{14}'')^{(1)}(G, t) \right] T_{14}
\]

\[
\frac{dT_{15}}{dt} = (b_{15})^{(1)} T_{14} - \left[(b_{15}')^{(1)} - (b_{15}'')^{(1)}(G, t) \right] T_{15}
\]

\[+ (a_{13}'')^{(1)}(T_{14}, t) = \text{ First augmentation factor} \]

\[- (b_{13}'')^{(1)}(G, t) = \text{ First detritons factor} \]

GOVERNING EQUATIONS: PLANT INVESTMENT AND OXYGEN OUT PUT: MODULE TWO

The differential system of this model is now

\[
\frac{dG_{16}}{dt} = (a_{16})^{(2)} G_{17} - \left[(a_{16}')^{(2)} + (a_{16}'')^{(2)}(T_{17}, t) \right] G_{16}
\]

\[
\frac{dG_{17}}{dt} = (a_{17})^{(2)} G_{16} - \left[(a_{17}')^{(2)} + (a_{17}'')^{(2)}(T_{17}, t) \right] G_{17}
\]

\[
\frac{dG_{18}}{dt} = (a_{18})^{(2)} G_{17} - \left[(a_{18}')^{(2)} + (a_{18}'')^{(2)}(T_{17}, t) \right] G_{18}
\]

\[
\frac{dT_{16}}{dt} = (b_{16})^{(2)} T_{17} - \left[(b_{16}')^{(2)} - (b_{16}'')^{(2)}(G_{19}, t) \right] T_{16}
\]

\[
\frac{dT_{17}}{dt} = (b_{17})^{(2)} T_{16} - \left[(b_{17}')^{(2)} - (b_{17}'')^{(2)}(G_{19}, t) \right] T_{17}
\]

\[
\frac{dT_{18}}{dt} = (b_{18})^{(2)} T_{17} - \left[(b_{18}')^{(2)} - (b_{18}'')^{(2)}(G_{19}, t) \right] T_{18}
\]

\[+ (a_{16}'')^{(2)}(T_{17}, t) = \text{ First augmentation factor} \]

\[- (b_{16}'')^{(2)}(G_{19}, t) = \text{ First detritons factor} \]

GOVERNING EQUATIONS: OXYGEN INCOME(IN WATER) AND CELLULAR CONSUMPTION MODULE THREE

The differential system of this model is now

\[
\frac{dG_{20}}{dt} = (a_{20})^{(3)} G_{21} - \left[(a_{20}')^{(3)} + (a_{20}'')^{(3)}(T_{21}, t) \right] G_{20}
\]

www.ijsrp.org
\[
\frac{dG_{21}}{dt} = (a_{21})^3 G_{20} - \left[(a_{21}')(3) + (a_{21})''(T_{21}, t) \right] G_{21}
\]
\[
\frac{dG_{22}}{dt} = (a_{22})^3 G_{21} - \left[(a_{22}')(3) + (a_{22})''(T_{21}, t) \right] G_{22}
\]
\[
\frac{dT_{20}}{dt} = (b_{20})^3 T_{21} - \left[(b_{20}')(3) - (b_{20})''(G_{23}, t) \right] T_{20}
\]
\[
\frac{dT_{21}}{dt} = (b_{21})^3 T_{20} - \left[(b_{21}')(3) - (b_{21})''(G_{23}, t) \right] T_{21}
\]
\[
\frac{dT_{22}}{dt} = (b_{22})^3 T_{21} - \left[(b_{22}')(3) - (b_{22})''(G_{23}, t) \right] T_{22}
\]
\[+(a_{20})''(T_{21}, t) = \text{First augmentation factor}\]
\[-(b_{20})''(G_{23}, t) = \text{First detritions factor}\]

GOVERNING EQUATIONS: OXYGEN SAVINGS AND TERRESTRIAL ORGANISMS MODULE FOUR

The differential system of this model is now
\[
\frac{dG_{24}}{dt} = (a_{24})^4 G_{25} - \left[(a_{24})'(4) + (a_{24})''(T_{25}, t) \right] G_{24}
\]
\[
\frac{dG_{25}}{dt} = (a_{25})^4 G_{24} - \left[(a_{25})'(4) + (a_{25})''(T_{25}, t) \right] G_{25}
\]
\[
\frac{dG_{26}}{dt} = (a_{26})^4 G_{25} - \left[(a_{26})'(4) + (a_{26})''(T_{25}, t) \right] G_{26}
\]
\[
\frac{dT_{24}}{dt} = (b_{24})^4 T_{25} - \left[(b_{24})'(4) - (b_{24})''(G_{27}, t) \right] T_{24}
\]
\[
\frac{dT_{25}}{dt} = (b_{25})^4 T_{24} - \left[(b_{25})'(4) - (b_{25})''(G_{27}, t) \right] T_{25}
\]
\[
\frac{dT_{26}}{dt} = (b_{26})^4 T_{25} - \left[(b_{26})'(4) - (b_{26})''(G_{27}, t) \right] T_{26}
\]
\[+(a_{24})''(T_{25}, t) = \text{First augmentation factor}\]
\[-(b_{24})''(G_{27}, t) = \text{First detritions factor}\]

GOVERNING EQUATIONS: DEAD ORGANISC MATTER AND DECOMPOSER ORGANISMS MODULE NUMBERED FIVE

The differential system of this model is now
\[
\frac{dG_{28}}{dt} = (a_{28})^5 G_{29} - \left[(a_{28})'(5) + (a_{28})''(T_{29}, t) \right] G_{28}
\]
\[
\frac{dG_{29}}{dt} = (a_{29})^5 G_{28} - \left[(a_{29})'(5) + (a_{29})''(T_{29}, t) \right] G_{29}
\]
\[
\frac{dG_{30}}{dt} = (a_{30})^5 G_{29} - \left[(a_{30})'(5) + (a_{30})''(T_{29}, t) \right] G_{30}
\]
\[
\frac{dT_{28}}{dt} = (b_{28})^5 T_{29} - \left[(b_{28})'(5) - (b_{28})''(G_{31}, t) \right] T_{28}
\]
\[\frac{dT_{29}}{dt} = (b_{29}^{(5)})T_{29} - \left[(b_{29}^{v})(G_{31}, t) - (b_{29}^{u})(G_{31}, t) \right]T_{29} \]

\[\frac{dT_{30}}{dt} = (b_{30}^{(5)})T_{29} - \left[(b_{30}^{v})(G_{31}, t) - (b_{30}^{u})(G_{31}, t) \right]T_{30} \]

\[+ (a_{28}^{v})(G_{29}, t) = \text{First augmentation factor} \]

\[- (b_{28}^{v})(G_{31}, t) = \text{First detritus factor} \]

GOVERNING EQUATIONS: **SOLAR RADIATION-CHEMICAL PROCESSES MODULE NUMBERED SIX**

The differential system of this model is now

\[\frac{dG_{32}}{dt} = (a_{32}^{(6)})G_{32} - \left[(a_{32}^{v})(G_{33}, t) + (a_{32}^{u})(G_{33}, t) \right]G_{32} \]

\[\frac{dG_{33}}{dt} = (a_{33}^{(6)})G_{33} - \left[(a_{33}^{v})(G_{33}, t) + (a_{33}^{u})(G_{33}, t) \right]G_{33} \]

\[\frac{dG_{34}}{dt} = (a_{34}^{(6)})G_{34} - \left[(a_{34}^{v})(G_{33}, t) + (a_{34}^{u})(G_{33}, t) \right]G_{34} \]

\[+ (a_{32}^{v})(G_{33}, t) = \text{First augmentation factor} \]

\[- (b_{32}^{v})(G_{35}, t) = \text{First detritus factor} \]

GOVERNING EQUATIONS OF THE HOLISTIC SYSTEM:

1) HYDROCARBON DEPOSIT- OZONE CREDIT

2) PLANT INVESTMENT-OXYGEN OUTPUT

3) OXYGEN INCOME(IN WATER)-CELLULAR CONSUMPTION

4) OXYGEN SAVINGS(CLOUDS)-TERRESTRIAL ORGANISMS

5) DEAD ORGANIC MATTER-DECOMPOSE ORGANISMS

6) SOLAR RADIATION-CHEMICAL PROCESSES

\[\frac{dG_{13}}{dt} = (a_{13}^{(1)})G_{14} - \left[(a_{13}^{v})(G_{14}, t) + (a_{13}^{w})(G_{14}, t) + (a_{13}^{t})(G_{14}, t) \right]G_{13} \]

\[+ (a_{13}^{v})(G_{14}, t) + (a_{13}^{w})(G_{14}, t) + (a_{13}^{t})(G_{14}, t) \]

\[\frac{dG_{14}}{dt} = (a_{14}^{(1)})G_{13} - \left[(a_{14}^{v})(G_{14}, t) + (a_{14}^{w})(G_{14}, t) + (a_{14}^{t})(G_{14}, t) \right]G_{14} \]

\[+ (a_{14}^{v})(G_{14}, t) + (a_{14}^{w})(G_{14}, t) + (a_{14}^{t})(G_{14}, t) \]

www.ijsrp.org
\[
\frac{dG_{15}}{dt} = (a_{15})^{(1)}G_{14} - \begin{pmatrix}
(a_{15})^{(1)}(T_{14,t}) + (a_{15})^{(1)}(T_{14,t}) + (a_{16})^{(1)}(T_{14,t}) + (a_{17})^{(1)}(T_{17,t}) + (a_{22})^{(3,3)}(T_{21,t}) \\
+ (a_{26})^{(4,4,4,4)}(T_{25,t}) + (a_{26})^{(4,4,4,4)}(T_{25,t}) + (a_{30})^{(5,5,5,5)}(T_{29,t}) + (a_{24})^{(6,6,6,6)}(T_{33,t})
\end{pmatrix} G_{15}
\]

Where \((a_{15})^{(1)}(T_{14,t}), (a_{16})^{(1)}(T_{14,t}), (a_{17})^{(1)}(T_{14,t})\) are first augmentation coefficients for category 1, 2 and 3

\((a_{16})^{(2,2)}(T_{14,t}), (a_{17})^{(2,2)}(T_{17,t}), (a_{18})^{(2,2)}(T_{17,t})\) are second augmentation coefficient for category 1, 2 and 3

\((a_{26})^{(3,3)}(T_{21,t}), (a_{27})^{(3,3)}(T_{21,t}), (a_{22})^{(3,3)}(T_{21,t})\) are third augmentation coefficient for category 1, 2 and 3

\((a_{24})^{(4,4,4,4)}(T_{25,t}), (a_{25})^{(4,4,4,4)}(T_{25,t}), (a_{26})^{(4,4,4,4)}(T_{25,t})\) are fourth augmentation coefficient for category 1, 2 and 3

\((a_{28})^{(5,5,5,5)}(T_{29,t}), (a_{29})^{(5,5,5,5)}(T_{29,t}), (a_{30})^{(5,5,5,5)}(T_{29,t})\) are fifth augmentation coefficient for category 1, 2 and 3

\((a_{32})^{(6,6,6,6)}(T_{33,t}), (a_{33})^{(6,6,6,6)}(T_{33,t}), (a_{34})^{(6,6,6,6)}(T_{33,t})\) are sixth augmentation coefficient for category 1, 2 and 3

\[
\begin{align*}
\frac{d\tau_{13}}{dt} &= (b_{13})^{(1)}T_{14} - \begin{pmatrix}
(b_{13})^{(1)}(G_{14,t}) - (b_{13})^{(1)}(G_{14,t}) - (b_{14})^{(2,2)}(G_{19,t}) - (b_{14})^{(3,3)}(G_{23,t}) \\
- (b_{13})^{(1)}(G_{14,t}) - (b_{14})^{(2,2)}(G_{19,t}) - (b_{14})^{(3,3)}(G_{23,t}) - (b_{24})^{(4,4,4,4,4)}(G_{27,t}) - (b_{24})^{(4,4,4,4,4)}(G_{27,t}) - (b_{28})^{(5,5,5,5)}(G_{31,t}) - (b_{28})^{(5,5,5,5)}(G_{31,t}) - (b_{30})^{(6,6,6,6)}(G_{35,t}) - (b_{30})^{(6,6,6,6)}(G_{35,t})
\end{pmatrix} T_{13}
\end{align*}
\]

\[
\begin{align*}
\frac{d\tau_{14}}{dt} &= (b_{14})^{(1)}T_{13} - \begin{pmatrix}
(b_{14})^{(1)}(G_{14,t}) - (b_{14})^{(1)}(G_{14,t}) - (b_{15})^{(1)}(G_{14,t}) - (b_{15})^{(2,2)}(G_{19,t}) - (b_{15})^{(3,3)}(G_{23,t}) \\
- (b_{14})^{(1)}(G_{14,t}) - (b_{15})^{(1)}(G_{14,t}) - (b_{15})^{(2,2)}(G_{19,t}) - (b_{15})^{(3,3)}(G_{23,t}) - (b_{25})^{(4,4,4,4,4)}(G_{27,t}) - (b_{25})^{(4,4,4,4,4)}(G_{27,t}) - (b_{29})^{(5,5,5,5)}(G_{31,t}) - (b_{29})^{(5,5,5,5)}(G_{31,t}) - (b_{30})^{(6,6,6,6)}(G_{35,t}) - (b_{30})^{(6,6,6,6)}(G_{35,t})
\end{pmatrix} T_{14}
\end{align*}
\]

\[
\begin{align*}
\frac{d\tau_{15}}{dt} &= (b_{15})^{(1)}T_{14} - \begin{pmatrix}
(b_{15})^{(1)}(G_{14,t}) - (b_{15})^{(1)}(G_{14,t}) - (b_{16})^{(1)}(G_{14,t}) - (b_{16})^{(2,2)}(G_{19,t}) - (b_{16})^{(3,3)}(G_{23,t}) \\
- (b_{15})^{(1)}(G_{14,t}) - (b_{16})^{(1)}(G_{14,t}) - (b_{16})^{(2,2)}(G_{19,t}) - (b_{16})^{(3,3)}(G_{23,t}) - (b_{26})^{(4,4,4,4,4,4)}(G_{27,t}) - (b_{26})^{(4,4,4,4,4,4)}(G_{27,t}) - (b_{27})^{(5,5,5,5,5)}(G_{31,t}) - (b_{27})^{(5,5,5,5,5)}(G_{31,t}) - (b_{30})^{(6,6,6,6,6)}(G_{35,t}) - (b_{30})^{(6,6,6,6,6)}(G_{35,t})
\end{pmatrix} T_{15}
\end{align*}
\]

Where \(-(b_{13})^{(1)}(G_{14,t}), -(b_{14})^{(1)}(G_{14,t}), -(b_{15})^{(1)}(G_{14,t})\) are first detrition coefficients for category 1, 2 and 3

\(-(b_{16})^{(2,2)}(G_{19,t}), -(b_{17})^{(2,2)}(G_{19,t}), -(b_{18})^{(2,2)}(G_{19,t})\) are second detrition coefficients for category 1, 2 and 3

\(-(b_{26})^{(3,3)}(G_{23,t}), -(b_{27})^{(3,3)}(G_{23,t}), -(b_{28})^{(3,3)}(G_{23,t})\) are third detrition coefficients for category 1, 2 and 3

\(-(b_{24})^{(4,4,4,4,4)}(G_{27,t}), -(b_{25})^{(4,4,4,4,4)}(G_{27,t}), -(b_{26})^{(4,4,4,4,4,4)}(G_{27,t})\) are fourth detrition coefficients for category 1, 2 and 3

\(-(b_{28})^{(5,5,5,5,5)}(G_{31,t}), -(b_{29})^{(5,5,5,5,5)}(G_{31,t}), -(b_{30})^{(5,5,5,5,5)}(G_{31,t})\) are fifth detrition coefficients for category 1, 2 and 3

\(-(b_{32})^{(6,6,6,6,6)}(G_{35,t}), -(b_{33})^{(6,6,6,6,6)}(G_{35,t}), -(b_{34})^{(6,6,6,6,6)}(G_{35,t})\) are sixth detrition coefficients
for category 1, 2 and 3

\[
\frac{dg_{16}}{dt} = (a_{16})^{(2)} g_{17} - \frac{(a_{16})^{(2)} (T_{17}) + (a_{13})^{(1,1)} (T_{14}, t) + (a_{20})^{(3,3,3)} (T_{21}, t)}{(a_{20})^{(4,4,4,4)} (T_{25}, t) + (a_{29})^{(5,5,5,5)} (T_{29}, t) + (a_{32})^{(6,6,6,6,6)} (T_{33}, t)} g_{16}
\]

\[
\frac{dg_{17}}{dt} = (a_{17})^{(2)} g_{16} - \frac{(a_{17})^{(2)} (T_{17}) + (a_{14})^{(1,1)} (T_{14}, t) + (a_{21})^{(3,3,3)} (T_{21}, t)}{(a_{22})^{(4,4,4,4)} (T_{25}, t) + (a_{29})^{(5,5,5,5)} (T_{29}, t) + (a_{33})^{(6,6,6,6,6)} (T_{33}, t)} g_{17}
\]

\[
\frac{dg_{18}}{dt} = (a_{18})^{(2)} g_{17} - \frac{(a_{18})^{(2)} (T_{17}) + (a_{15})^{(1,1)} (T_{14}, t) + (a_{22})^{(3,3,3)} (T_{21}, t)}{(a_{20})^{(4,4,4,4)} (T_{25}, t) + (a_{29})^{(5,5,5,5)} (T_{29}, t) + (a_{34})^{(6,6,6,6,6)} (T_{33}, t)} g_{18}
\]

Where \(+ (a_{16})^{(2)} (T_{17}, t), + (a_{17})^{(2)} (T_{17}, t), + (a_{18})^{(2)} (T_{17}, t)\) are first augmentation coefficients for category 1, 2 and 3

\(+ (a_{13})^{(1,1)} (T_{14}, t), + (a_{14})^{(1,1)} (T_{14}, t), + (a_{15})^{(1,1)} (T_{14}, t)\) are second augmentation coefficient for category 1, 2 and 3

\(+ (a_{20})^{(3,3,3)} (T_{21}, t), + (a_{21})^{(3,3,3)} (T_{21}, t), + (a_{22})^{(3,3,3)} (T_{21}, t)\) are third augmentation coefficient for category 1, 2 and 3

\(+ (a_{24})^{(4,4,4,4)} (T_{25}, t), + (a_{25})^{(4,4,4,4)} (T_{25}, t), + (a_{26})^{(4,4,4,4,4)} (T_{25}, t)\) are fourth augmentation coefficient for category 1, 2 and 3

\(+ (a_{28})^{(5,5,5,5)} (T_{29}, t), + (a_{29})^{(5,5,5,5,5)} (T_{29}, t), + (a_{30})^{(5,5,5,5,5)} (T_{29}, t)\) are fifth augmentation coefficient for category 1, 2 and 3

\(+ (a_{32})^{(6,6,6,6,6)} (T_{33}, t), + (a_{33})^{(6,6,6,6,6,6)} (T_{33}, t)\) are sixth augmentation coefficient for category 1, 2 and 3

\[
\frac{dr_{16}}{dt} = (b_{16})^{(2)} r_{17} - \frac{(b_{16})^{(2)} (G_{19}, t) - (b_{13})^{(1,1)} (G, t) - (b_{20})^{(3,3,3)} (G_{23}, t)}{(a_{24})^{(4,4,4,4)} (G_{27}, t) - (a_{29})^{(5,5,5,5,5)} (G_{31}, t) - (a_{32})^{(6,6,6,6,6)} (G_{35}, t)} r_{16}
\]

\[
\frac{dr_{17}}{dt} = (b_{17})^{(2)} r_{16} - \frac{(b_{17})^{(2)} (G_{19}, t) - (b_{14})^{(1,1)} (G, t) - (b_{21})^{(3,3,3)} (G_{23}, t)}{(a_{25})^{(4,4,4,4)} (G_{27}, t) - (a_{29})^{(5,5,5,5,5)} (G_{31}, t) - (a_{33})^{(6,6,6,6,6)} (G_{35}, t)} r_{17}
\]

\[
\frac{dr_{18}}{dt} = (b_{18})^{(2)} r_{17} - \frac{(b_{18})^{(2)} (G_{19}, t) - (b_{15})^{(1,1)} (G, t) - (b_{22})^{(3,3,3)} (G_{23}, t)}{(a_{26})^{(4,4,4,4)} (G_{27}, t) - (a_{29})^{(5,5,5,5,5)} (G_{31}, t) - (a_{34})^{(6,6,6,6,6)} (G_{35}, t)} r_{18}
\]

where \(- (b_{16})^{(2)} (G_{19}, t), - (b_{17})^{(2)} (G_{19}, t), - (b_{18})^{(2)} (G_{19}, t)\) are first detritus coefficients for category 1, 2 and 3

\(- (b_{13})^{(1,1)} (G, t), - (b_{14})^{(1,1)} (G, t), - (b_{15})^{(1,1)} (G, t)\) are second detritus coefficients for category 1, 2 and 3
\[-(b_{30}^{(3,3,3)}G_{229}, t), -(b_{21}^{(3,3,3)}G_{23}, t), -(b_{22}^{(3,3,3)}G_{23}, t)\] are third detrition coefficients for category 1, 2 and 3

\[-(b_{24}^{(4,4,4,4)}G_{227}, t), -(b_{23}^{(4,4,4,4)}G_{227}, t), -(b_{26}^{(4,4,4,4)}G_{227}, t)\] are fourth detrition coefficients for category 1, 2 and 3

\[-(b_{28}^{(5,5,5,5,5)}G_{311}, t), -(b_{29}^{(5,5,5,5,5)}G_{311}, t), -(b_{30}^{(5,5,5,5,5)}G_{311}, t)\] are fifth detrition coefficients for category 1, 2 and 3

\[-(b_{33}^{(6,6,6,6,6)}G_{225}, t), -(b_{32}^{(6,6,6,6,6)}G_{225}, t), -(b_{34}^{(6,6,6,6,6)}G_{225}, t)\] are sixth detrition coefficients for category 1, 2 and 3

\[
\frac{dG_{20}}{dt} = (a_{20}^{(3)})G_{21} - \begin{bmatrix} (a_{20}^{(3)} + (a_{20}^{(3)}(T_{21}, t)) + (a_{16}^{(2,2,2)}(T_{17}, t)) + (a_{13}^{(1,1,1)}(T_{14}, t)) \\ + (a_{24}^{(4,4,4,4)}(T_{25}, t)) + (a_{28}^{(5,5,5,5,5)}(T_{29}, t))) + (a_{32}^{(6,6,6,6,6)}(T_{33}, t)) \end{bmatrix} G_{20}
\]

\[
\frac{dG_{21}}{dt} = (a_{21}^{(3)})G_{20} - \begin{bmatrix} (a_{21}^{(3)} + (a_{21}^{(3)}(T_{21}, t)) + (a_{17}^{(2,2,2)}(T_{17}, t)) + (a_{10}^{(1,1,1)}(T_{14}, t)) \\ + (a_{25}^{(4,4,4,4)}(T_{25}, t)) + (a_{29}^{(5,5,5,5,5)}(T_{29}, t))) + (a_{33}^{(6,6,6,6,6)}(T_{33}, t)) \end{bmatrix} G_{21}
\]

\[
\frac{dG_{22}}{dt} = (a_{22}^{(3)})G_{21} - \begin{bmatrix} (a_{22}^{(3)} + (a_{22}^{(3)}(T_{21}, t)) + (a_{19}^{(2,2,2)}(T_{17}, t)) + (a_{15}^{(1,1,1)}(T_{14}, t)) \\ + (a_{26}^{(4,4,4,4)}(T_{25}, t)) + (a_{30}^{(5,5,5,5,5)}(T_{29}, t))) + (a_{34}^{(6,6,6,6,6)}(T_{33}, t)) \end{bmatrix} G_{22}
\]

\[+(a_{20}^{(3)}(T_{21}, t)) + (a_{21}^{(3)}(T_{21}, t)) + (a_{22}^{(3)}(T_{21}, t))\] are first augmentation coefficients for category 1, 2 and 3

\[+(a_{16}^{(2,2,2)}(T_{17}, t)) + (a_{17}^{(2,2,2)}(T_{17}, t)) + (a_{18}^{(2,2,2)}(T_{17}, t))\] are second augmentation coefficients for category 1, 2 and 3

\[+(a_{13}^{(1,1,1)}(T_{14}, t)) + (a_{14}^{(1,1,1)}(T_{14}, t)) + (a_{15}^{(1,1,1)}(T_{14}, t))\] are third augmentation coefficients for category 1, 2 and 3

\[+(a_{24}^{(4,4,4,4)}(T_{25}, t)) + (a_{25}^{(4,4,4,4)}(T_{25}, t)) + (a_{26}^{(4,4,4,4)}(T_{25}, t))\] are fourth augmentation coefficients for category 1, 2 and 3

\[+(a_{29}^{(5,5,5,5,5)}(T_{29}, t)) + (a_{29}^{(5,5,5,5,5)}(T_{29}, t)) + (a_{30}^{(5,5,5,5,5)}(T_{29}, t))\] are fifth augmentation coefficients for category 1, 2 and 3

\[+(a_{33}^{(6,6,6,6,6)}(T_{29}, t)) + (a_{33}^{(6,6,6,6,6)}(T_{29}, t)) + (a_{33}^{(6,6,6,6,6)}(T_{29}, t))\] are sixth augmentation coefficients for category 1, 2 and 3
\[
\begin{align*}
\frac{d^2r_{23}}{dt^2} &= \begin{bmatrix}
(b_{20}^3)^{(3)} & -b_{20}^{(6)}(G_{23}, t) & -b_{16}^{(2,2,2)}(G_{19}, t) & -b_{13}^{(1,1,1)}(G, t) \\
-b_{21}^{(4,4,4,4,4)}(G_{27}, t) & -b_{20}^{(5,5,5,5,5,5)}(G_{31}, t) & -b_{23}^{(6,6,6,6,6,6)}(G_{35}, t)
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\frac{d^2r_{21}}{dt^2} &= \begin{bmatrix}
(b_{21}^3)^{(3)} & -b_{21}^{(6)}(G_{23}, t) & -b_{17}^{(2,2,2)}(G_{19}, t) & -b_{14}^{(1,1,1)}(G, t) \\
-b_{25}^{(4,4,4,4,4,4)}(G_{27}, t) & -b_{20}^{(5,5,5,5,5,5)}(G_{31}, t) & -b_{23}^{(6,6,6,6,6,6)}(G_{35}, t)
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\frac{d^2r_{22}}{dt^2} &= \begin{bmatrix}
(b_{22}^3)^{(3)} & -b_{22}^{(6)}(G_{23}, t) & -b_{18}^{(2,2,2)}(G_{19}, t) & -b_{15}^{(1,1,1)}(G, t) \\
-b_{26}^{(4,4,4,4,4,4)}(G_{27}, t) & -b_{20}^{(5,5,5,5,5,5)}(G_{31}, t) & -b_{24}^{(6,6,6,6,6,6)}(G_{35}, t)
\end{bmatrix}
\end{align*}
\]

\[
-\begin{bmatrix}
(b_{20}^3(G_{23}, t)) \\
(b_{21}^3(G_{23}, t)) \\
(b_{22}^3(G_{23}, t))
\end{bmatrix}
\]
are first detrition coefficients for category 1, 2 and 3

\[
-\begin{bmatrix}
(b_{16}^{(2,2,2)}(G_{19}, t)) \\
(b_{17}^{(2,2,2)}(G_{19}, t)) \\
(b_{18}^{(2,2,2)}(G_{19}, t))
\end{bmatrix}
\]
are second detrition coefficients for category 1, 2 and 3

\[
-\begin{bmatrix}
(b_{13}^{(1,1,1)}(G, t)) \\
(b_{14}^{(1,1,1)}(G, t)) \\
(b_{15}^{(1,1,1)}(G, t))
\end{bmatrix}
\]
are third detrition coefficients for category 1, 2 and 3

\[
-\begin{bmatrix}
(b_{24}^{(4,4,4,4,4,4)}(G_{27}, t)) \\
(b_{25}^{(4,4,4,4,4,4)}(G_{27}, t)) \\
(b_{26}^{(4,4,4,4,4,4)}(G_{27}, t))
\end{bmatrix}
\]
are fourth detrition coefficients for category 1, 2 and 3

\[
-\begin{bmatrix}
(b_{29}^{(6,6,6,6,6,6)}(G_{35}, t)) \\
(b_{26}^{(6,6,6,6,6,6)}(G_{35}, t)) \\
(b_{29}^{(5,5,5,5,5,5)}(G_{31}, t))
\end{bmatrix}
\]
are fifth detrition coefficients for category 1, 2 and 3

\[
-\begin{bmatrix}
(b_{26}^{(6,6,6,6,6,6)}(G_{35}, t)) \\
(b_{29}^{(6,6,6,6,6,6)}(G_{35}, t)) \\
(b_{29}^{(5,5,5,5,5,5)}(G_{31}, t))
\end{bmatrix}
\]
are sixth detrition coefficients for category 1, 2 and 3

\[
\begin{align*}
\frac{dG_{24}}{dt} &= (a_{24})^{(4)}G_{25} - \begin{bmatrix}
(a_{24}^{(4)} + a_{25}^{(4)})(T_{25}, t) + (a_{25}^{(4)})(T_{26}, t) + (a_{26}^{(5,5,5)})(T_{29}, t) + (a_{27}^{(6,6,6)})(T_{30}, t) \\
+ (a_{28}^{(1,1,1,1)})(T_{34}, t) + (a_{29}^{(2,2,2,2)})(T_{17}, t) + (a_{30}^{(3,3,3,3)})(T_{21}, t)
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\frac{dG_{25}}{dt} &= (a_{25})^{(4)}G_{24} - \begin{bmatrix}
(a_{25}^{(4)} + a_{26}^{(4)})(T_{25}, t) + (a_{26}^{(4)})(T_{26}, t) + (a_{27}^{(5,5,5,5)})(T_{29}, t) + (a_{28}^{(6,6,6)})(T_{30}, t) \\
+ (a_{29}^{(1,1,1,1)})(T_{34}, t) + (a_{30}^{(2,2,2,2)})(T_{17}, t) + (a_{31}^{(3,3,3,3)})(T_{21}, t)
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\frac{dG_{26}}{dt} &= (a_{26})^{(4)}G_{25} - \begin{bmatrix}
(a_{26}^{(4)} + a_{27}^{(4)})(T_{25}, t) + (a_{27}^{(4)})(T_{26}, t) + (a_{28}^{(5,5,5,5)})(T_{29}, t) + (a_{29}^{(6,6,6)})(T_{30}, t) \\
+ (a_{30}^{(1,1,1,1)})(T_{34}, t) + (a_{31}^{(2,2,2,2)})(T_{17}, t) + (a_{32}^{(3,3,3,3)})(T_{21}, t)
\end{bmatrix}
\end{align*}
\]

Where \((a_{24}^{(4)})(T_{25}, t) , (a_{25}^{(4)})(T_{25}, t) , (a_{26}^{(4)})(T_{25}, t) \) are first augmentation coefficients for category 1, 2 and 3
\[+ (a_{24})^{(6,6)}(T_{33}, t), + (a_{33})^{(6,6)}(T_{33}, t), + (a_{24})^{(6,6)}(T_{33}, t) \] are third augmentation coefficients for category 1, 2, and 3.

\[+ (a_{16}^{(2,2,2)}(T_{17}, t), + (a_{17}^{(2,2,2)}(T_{17}, t), + (a_{18}^{(2,2,2)}(T_{17}, t) \] are fifth augmentation coefficients for category 1, 2, and 3.

\[+ (a_{20}^{(3,3,3)}(T_{23}, t), + (a_{21}^{(3,3,3)}(T_{21}, t), + (a_{22}^{(3,3,3)}(T_{21}, t) \] are sixth augmentation coefficients for category 1, 2, and 3.

\[\frac{dT_{24}}{dt} = (b_{24})^{(4)}T_{25} - \frac{(b_{24})^{(4)}(G_{27}, t), - (b_{28})^{(5,5)}(G_{31}, t), - (b_{32})^{(6,6)}(G_{35}, t)}{(b_{15})^{(2,2,2)}(G_{19}, t), - (b_{15})^{(2,2,2)}(G_{19}, t)} T_{24} \]

\[\frac{dT_{25}}{dt} = (b_{25})^{(4)}T_{24} - \frac{(b_{25})^{(4)}(G_{27}, t), - (b_{29})^{(5,5)}(G_{31}, t), - (b_{33})^{(6,6)}(G_{35}, t)}{(b_{17})^{(2,2,2)}(G_{23}, t), - (b_{17})^{(2,2,2)}(G_{23}, t)} T_{25} \]

\[\frac{dT_{26}}{dt} = (b_{26})^{(4)}T_{25} - \frac{(b_{26})^{(4)}(G_{27}, t), - (b_{30})^{(5,5)}(G_{31}, t), - (b_{34})^{(6,6)}(G_{35}, t)}{(b_{19})^{(2,2,2)}(G_{29}, t), - (b_{19})^{(2,2,2)}(G_{29}, t)} T_{26} \]

Where \[- (b_{24})^{(4)}(G_{27}, t), - (b_{28})^{(5,5)}(G_{31}, t), - (b_{32})^{(6,6)}(G_{35}, t) \] are first detrition coefficients for category 1, 2, and 3.

\[- (b_{25})^{(5,5)}(G_{31}, t), - (b_{29})^{(5,5)}(G_{31}, t), - (b_{33})^{(6,6)}(G_{35}, t) \] are second detrition coefficients for category 1, 2, and 3.

\[- (b_{27})^{(6,6)}(G_{35}, t), - (b_{31})^{(6,6)}(G_{35}, t) \] are third detrition coefficients for category 1, 2, and 3.

\[- (b_{28})^{(1,1,1,1)}(G_{19}, t), - (b_{29})^{(1,1,1,1)}(G_{19}, t) \] are fourth detrition coefficients for category 1, 2, and 3.

\[- (b_{30})^{(2,2,2,2)}(G_{19}, t), - (b_{31})^{(2,2,2,2)}(G_{19}, t), - (b_{32})^{(2,2,2,2)}(G_{19}, t) \] are fifth detrition coefficients for category 1, 2, and 3.

\[- (b_{20})^{(3,3,3,3)}(G_{23}, t), - (b_{21})^{(3,3,3,3)}(G_{23}, t), - (b_{22})^{(3,3,3,3)}(G_{23}, t) \] are sixth detrition coefficients for category 1, 2, and 3.

\[\frac{dG_{28}}{dt} = (a_{28})^{(5)}G_{28} - \frac{(a_{18})^{(5)}(T_{29}, t), + (a_{29})^{(5)}(T_{29}, t), + (a_{32})^{(6,6,6)}(T_{33}, t)}{(a_{13})^{(1,1,1,1)}(T_{17}, t), + (a_{17})^{(2,2,2,2)}(T_{17}, t), + (a_{20})^{(3,3,3,3)}(T_{21}, t)} G_{28} \]

\[\frac{dG_{29}}{dt} = (a_{29})^{(5)}G_{29} - \frac{(a_{18})^{(5)}(T_{29}, t), + (a_{29})^{(5)}(T_{29}, t), + (a_{32})^{(6,6,6)}(T_{33}, t)}{(a_{14})^{(1,1,1,1)}(T_{17}, t), + (a_{17})^{(2,2,2,2)}(T_{17}, t), + (a_{20})^{(3,3,3,3)}(T_{21}, t)} G_{29} \]
\[
\frac{dG_{29}}{dt} = (a_{30})^{(5)}G_{29} - \left[\left(a'_{30} \right)^{(5)} + \left(a''_{28} \right)^{(5)}(T_{28}, t) + \left(a'_{29} \right)^{(4,4)}(T_{29}, t) + \left(a''_{26} \right)^{(6,6,6)}(T_{33}, t) \right] G_{30}
\]

Where \(+(a''_{28})^{(5)}(T_{29}, t), +\left(a''_{29} \right)^{(5)}(T_{29}, t), +\left(a''_{26} \right)^{(5)}(T_{29}, t)\) are first augmentation coefficients and 3

And \(+(a''_{24})^{(4,4)}(T_{25}, t), +\left(a''_{24} \right)^{(4,4)}(T_{25}, t), +\left(a''_{23} \right)^{(4,4)}(T_{25}, t)\) are second augmentation coefficients 2 and 3

\(+(a''_{32})^{(6,6,6)}(T_{33}, t), +\left(a''_{33} \right)^{(6,6,6)}(T_{33}, t), +\left(a''_{34} \right)^{(6,6,6)}(T_{33}, t)\) are third augmentation coefficients and 3

\(+(a''_{23})^{(1,1,1,1)}(T_{14}, t), +\left(a''_{23} \right)^{(1,1,1,1)}(T_{14}, t), +\left(a''_{12} \right)^{(1,1,1,1)}(T_{14}, t)\) are fourth augmentation coefficients for category 1, 2, and 3

\(+(a''_{17})^{(2,2,2,2)}(T_{17}, t), +\left(a''_{17} \right)^{(2,2,2,2)}(T_{17}, t), +\left(a''_{16} \right)^{(2,2,2,2)}(T_{17}, t)\) are fifth augmentation coefficients for category 1, 2, and 3

\(+(a''_{22})^{(3,3,3,3)}(T_{21}, t), +\left(a''_{22} \right)^{(3,3,3,3)}(T_{21}, t), +\left(a''_{22} \right)^{(3,3,3,3)}(T_{21}, t)\) are sixth augmentation coefficients for category 1, 2, and 3

\[
\frac{dT_{28}}{dt} = (b_{28})^{(5)}T_{29} - \left[\left(b'_{28} \right)^{(5)} - \left(b''_{29} \right)^{(5)}(G_{31}, t) - \left(b''_{24} \right)^{(4,4)}(G_{27}, t) - \left(b''_{22} \right)^{(6,6,6)}(G_{35}, t) \right] T_{28}
\]

\[
\frac{dT_{29}}{dt} = (b_{29})^{(5)}T_{28} - \left[\left(b'_{29} \right)^{(5)} - \left(b''_{29} \right)^{(5)}(G_{31}, t) - \left(b''_{25} \right)^{(4,4)}(G_{27}, t) - \left(b''_{23} \right)^{(6,6,6)}(G_{35}, t) \right] T_{29}
\]

\[
\frac{dT_{30}}{dt} = (b_{30})^{(5)}T_{29} - \left[\left(b'_{30} \right)^{(5)} - \left(b''_{30} \right)^{(5)}(G_{31}, t) - \left(b''_{26} \right)^{(4,4)}(G_{27}, t) - \left(b''_{24} \right)^{(6,6,6)}(G_{35}, t) \right] T_{30}
\]

where \(-\left(b''_{24} \right)^{(4,4)}(G_{27}, t), -\left(b''_{25} \right)^{(4,4)}(G_{27}, t), -\left(b''_{26} \right)^{(4,4)}(G_{27}, t)\) are second detrition coefficients for category 1, 2, and 3

\(-\left(b''_{24} \right)^{(6,6,6)}(G_{35}, t), -\left(b''_{25} \right)^{(6,6,6)}(G_{35}, t), -\left(b''_{26} \right)^{(6,6,6)}(G_{35}, t)\) are third detrition coefficients for category 1, 2, and 3

\(-\left(b''_{13} \right)^{(1,1,1,1)}(G_{t}), -\left(b''_{14} \right)^{(1,1,1,1)}(G_{t}), -\left(b''_{15} \right)^{(1,1,1,1)}(G_{t})\) are fourth detrition coefficients for category 1, 2, and 3

\(-\left(b''_{17} \right)^{(2,2,2,2)}(G_{19}, t), -\left(b''_{17} \right)^{(2,2,2,2)}(G_{19}, t), -\left(b''_{16} \right)^{(2,2,2,2)}(G_{19}, t)\) are fifth detrition coefficients for category 1, 2, and 3

\(-\left(b''_{22} \right)^{(3,3,3,3)}(G_{23}, t), -\left(b''_{22} \right)^{(3,3,3,3)}(G_{23}, t), -\left(b''_{22} \right)^{(3,3,3,3)}(G_{23}, t)\) are sixth detrition coefficients for category 1, 2, and 3
\[
\frac{dG_{32}}{dt} = (a_{32})^{(6)}G_{33} - \left((b'_{32})^{(6)} - (b''_{32})^{(6)}(G_{35}, t) \right) - \left((b''_{28})^{(5,5,5)}(G_{31}, t) \right) - \left((a''_{36})^{(4,4,4)}(G_{27}, t) \right) \]
\[
\frac{dG_{33}}{dt} = (a_{33})^{(6)}G_{32} - \left((a'_{33})^{(6)}(T_{33}, t) \right) + \left((b'_{29})^{(5,5,5)}(T_{29}, t) \right) + \left((b''_{25})^{(4,4,4)}(T_{25}, t) \right) + \left((a''_{22})^{(3,3,3,3,3)}(T_{21}, t) \right) \]
\[
\frac{dG_{34}}{dt} = (a_{34})^{(6)}G_{33} - \left((a'_{34})^{(6)}(T_{33}, t) \right) + \left((a''_{29})^{(5,5,5)}(T_{29}, t) \right) + \left((a''_{30})^{(5,5,5)}(T_{29}, t) \right) \]

are first augmentation coefficients for \(c, 1, 2, \) and \(3\)

\[
\frac{dT_{32}}{dt} = (b_{32})^{(6)}T_{33} - \left((b'_{32})^{(6)} - (b''_{32})^{(6)}(G_{35}, t) \right) - \left((b''_{28})^{(5,5,5)}(G_{31}, t) \right) - \left((a''_{36})^{(4,4,4)}(G_{27}, t) \right) \]
\[
\frac{dT_{33}}{dt} = (b_{33})^{(6)}T_{32} - \left((b'_{33})^{(6)} - (b''_{33})^{(6)}(G_{35}, t) \right) - \left((b''_{29})^{(5,5,5)}(G_{31}, t) \right) - \left((b''_{25})^{(4,4,4)}(G_{27}, t) \right) \]
\[
\frac{dT_{34}}{dt} = (b_{34})^{(6)}T_{33} - \left((b'_{34})^{(6)} - (b''_{34})^{(6)}(G_{35}, t) \right) - \left((b''_{29})^{(5,5,5)}(G_{31}, t) \right) - \left((b''_{26})^{(4,4,4)}(G_{27}, t) \right) \]

are first detritus coefficients for c

\[-(b''_{28})^{(5,5,5)}(G_{31}, t), -(b''_{29})^{(5,5,5)}(G_{31}, t), -(b''_{30})^{(5,5,5)}(G_{31}, t)\] are second detritus coefficients ;
coefficients for category 1, 2, and 3

coefficients for category 1, 2, and 3

coefficients for category 1, 2, and 3

Definition of

They satisfy Lipschitz condition:

Where we suppose

(A) \((a_i)^{(1)}, (a_i')^{(1)}, (a_i'')^{(1)}, (b_i)^{(1)}, (b_i')^{(1)}, (b_i'')^{(1)} > 0, \)

\(i,j = 13,14,15\)

(B) The functions \((a_i'')^{(1)}, (b_i'')^{(1)}\) are positive continuous increasing and bounded.

Definition of \((p_i)^{(1)} , (r_i)^{(1)} \):

\((a_i'')^{(1)}(T_{14}, t) \leq (p_i)^{(1)} \leq (A_{13})^{(1)}\)

\((b_i'')^{(1)}(G, t) \leq (r_i)^{(1)} \leq (b_i')^{(1)} \leq (B_{13})^{(1)}\)

(C) \(\lim_{T_{2} \to 0} (a_i'')^{(1)}(T_{14}, t) = (p_i)^{(1)}\)

\(\lim_{G \to 0} (b_i')^{(1)}(G, t) = (r_i)^{(1)}\)

Definition of \((A_{13})^{(1)}, (B_{13})^{(1)} :\)

Where \((A_{13})^{(1)}, (B_{13})^{(1)}, (p_i)^{(1)}, (r_i)^{(1)}\) are positive constants and \(i = 13,14,15\)

They satisfy Lipschitz condition:

\(|(a''_{i})^{(1)}(T_{14}, t) - (a''_{i})^{(1)}(T_{14}, t')| \leq (k_{13})^{(1)}|T_{14} - T_{14}'|e^{-\left(M_{13}\right)^{(1)}t}\)

\(|(b'_{i})^{(1)}(G', t) - (b'_{i})^{(1)}(G, t)| < (\tilde{k}_{13})^{(1)}||G - G'||e^{-\left(M_{13}\right)^{(1)}t}\)

With the Lipschitz condition, we place a restriction on the behavior of functions \((a''_{i})^{(1)}(T_{14}, t)\) and \((a''_{i})^{(1)}(T_{14}, t) \cdot (T_{14}' - T_{14}')\) and \((T_{14}, t)\) are points belonging to the interval \([k_{13}, (M_{13})^{1}] \). It is to be noted that \((a''_{i})^{(1)}(T_{14}, t)\) is uniformly continuous. In the eventuality of the fact, that if \((M_{13})^{(1)} = 1\) then the function \((a''_{i})^{(1)}(T_{14}, t)\), the first augmentation coefficient attributable to terrestrial organisms, would be absolutely continuous.

Definition of \((M_{13})^{(1)}, (\tilde{k}_{13})^{(1)} :\)

(D) \((M_{13})^{(1)}, (\tilde{k}_{13})^{(1)} \) are positive constants

\(\frac{(a_i)^{(1)}}{(M_{13})^{(1)}}, \frac{(b_i)^{(1)}}{(M_{13})^{(1)}} < 1\)

Definition of \((\tilde{Q}_{13})^{(1)}, (\tilde{Q}_{13})^{(1)} :\)

(E) There exists two constants \((\tilde{P}_{13})^{(1)}\) and \((\tilde{Q}_{13})^{(1)}\) which together

www.ijsrp.org
with \((\bar{M}_{13})^{(1)}, (\bar{k}_{13})^{(1)}, (\bar{A}_{13})^{(1)}\) and \((\bar{B}_{13})^{(1)}\) and the constants
\((a_i)^{(1)}, (a_j)^{(1)}, (b_i)^{(1)}, (b_j)^{(1)}, (p_i)^{(1)}, (r_j)^{(1)}\), \(i = 13, 14, 15\),
satisfy the inequalities
\[
\frac{1}{(M_{13})^{(1)}} [(a_i)^{(1)} + (a_j)^{(1)} + (\bar{A}_{13})^{(1)} + (\bar{P}_{13})^{(1)} (\bar{k}_{13})^{(1)}] < 1
\]
\[
\frac{1}{(M_{13})^{(1)}} [(b_i)^{(1)} + (b_j)^{(1)} + (\bar{B}_{13})^{(1)} + (\bar{Q}_{13})^{(1)} (\bar{k}_{13})^{(1)}] < 1
\]
Where we suppose

(F) \((a_i)^{(2)}, (a_j)^{(2)}, (a_i)^{(2)}, (b_i)^{(2)}, (b_j)^{(2)}, (b_i)^{(2)}, (b_j)^{(2)}, (p_i)^{(2)}, (r_j)^{(2)}, i, j = 16, 17, 18\)

(G) The functions \((a_i)^{(2)}, (b_i)^{(2)}\) are positive continuous increasing and bounded.

Definition of \((p_i)^{(2)}, (r_j)^{(2)}\):
\[
(a_i)^{(2)} (T_{17}, t) \leq (p_i)^{(2)} \leq (\bar{A}_{16})^{(2)}
\]
\[
(b_i)^{(2)} (G_{19}, t) \leq (r_j)^{(2)} \leq (b_j)^{(2)} \leq (\bar{B}_{16})^{(2)}
\]

(H) \(\lim_{T_{17} \to 0} (a_i)^{(2)} (T_{17}, t) = (p_i)^{(2)}\)
\(\lim_{G_{19} \to 0} (b_i)^{(2)} (G_{19}, t) = (r_j)^{(2)}\)

Definition of \((\bar{A}_{16})^{(2)}, (\bar{B}_{16})^{(2)}\):

Where \((\bar{A}_{16})^{(2)}, (\bar{B}_{16})^{(2)}, (p_i)^{(2)}, (r_j)^{(2)}\) are positive constants and \(i = 16, 17, 18\)

They satisfy Lipschitz condition:
\[
| (a_i)^{(2)} (T_{17}, t) - (a_j)^{(2)} (T_{17}, t) | \leq (\bar{k}_{16})^{(2)} |T_{17} - T_{17}'| e^{-(\bar{A}_{16})^{(2)} t}
\]
\[
| (b_i)^{(2)} (G_{19}, t) - (b_j)^{(2)} (G_{19}, t) | < (\bar{k}_{16})^{(2)} |G_{19} - (G_{19})'| e^{-(\bar{B}_{16})^{(2)} t}
\]

With the Lipschitz condition, we place a restriction on the behavior of functions \((a_i)^{(2)} (T_{17}, t)\) and \((a_i)^{(2)} (T_{17}, t)\) and \((T_{17}, t)\) and \((T_{17}, t)\) and points belonging to the interval \([\bar{k}_{16}^{(2)}, (\bar{M}_{16})^{(2)}]\). It is to be noted that \((a_i)^{(2)} (T_{17}, t)\) and \((a_i)^{(2)} (T_{17}, t)\) is uniformly continuous. In the eventuality of the fact, if \((\bar{M}_{16})^{(2)} = 1\) then the function \((a_i)^{(2)} (T_{17}, t)\), the first augmentation coefficient attributable to terrestrial organisms, would be absolutely continuous.

Definition of \((\bar{M}_{16})^{(2)}, (\bar{k}_{16})^{(2)}\):

(I) \((\bar{M}_{16})^{(2)}, (\bar{k}_{16})^{(2)}\) are positive constants
\[
\frac{(a_i)^{(2)}}{\bar{M}_{16}^{(2)}} + \frac{(b_i)^{(2)}}{\bar{M}_{16}^{(2)}} < 1
\]

Definition of \((\bar{P}_{13})^{(2)}, (\bar{Q}_{13})^{(2)}\):

There exists two constants \((\bar{P}_{16})^{(2)}\) and \((\bar{Q}_{16})^{(2)}\) which together with \((\bar{M}_{16})^{(2)}, (\bar{k}_{16})^{(2)}, (\bar{A}_{16})^{(2)}\) and \((\bar{B}_{16})^{(2)}\) and the constants
\((a_i)^{(2)}, (a_j)^{(2)}, (b_i)^{(2)}, (b_j)^{(2)}, (p_i)^{(2)}, (r_j)^{(2)}\), \(i = 16, 17, 18\),
satisfy the inequalities
\[
\frac{1}{(\bar{M}_{16})^{(2)}} [(a_i)^{(2)} + (a_j)^{(2)} + (\bar{A}_{16})^{(2)} + (\bar{P}_{16})^{(2)} (\bar{k}_{16})^{(2)}] < 1
\]
\frac{1}{(\tilde{M}_{16})^2}\{ (b_i)^{(2)} + (b'_i)^{(2)} + (\tilde{B}_{16})^{(2)} + (\tilde{Q}_{16})^{(2)} (\tilde{k}_{16})^{(2)} \} < 1

Where we suppose

\((a_i)^{(3)}, (a'_i)^{(3)}, (a''_i)^{(3)}, (b_i)^{(3)}, (b'_i)^{(3)}, (b''_i)^{(3)} > 0, \quad i, j = 20, 21, 22\)

The functions \((a''_i)^{(3)}, (b''_i)^{(3)}\) are positive continuous increasing and bounded.

Definition of \((p_i)^{(3)}, (r_i)^{(3)}\):

\[
(a''_i)^{(3)}(T_{21}, t) \leq (p_i)^{(3)} \leq (\tilde{A}_{20})^{(3)}
\]

\[
(b''_i)^{(3)}(G_{23}, t) \leq (r_i)^{(3)} \leq (\tilde{B}_{20})^{(3)}
\]

\[
\lim_{T_{2} \rightarrow 0}(a''_i)^{(3)}(T_{21}, t) = (p_i)^{(3)}
\]

\[
\lim_{G \rightarrow \infty}(b''_i)^{(3)}(G_{23}, t) = (r_i)^{(3)}
\]

Definition of \((\tilde{A}_{20})^{(3)}, (\tilde{B}_{20})^{(3)}\):

Where \([(\tilde{A}_{20})^{(3)}, (\tilde{B}_{20})^{(3)}, (p_i)^{(3)}, (r_i)^{(3)}\] are positive constants and \(i = 20, 21, 22\)

They satisfy Lipschitz condition:

\[
| (a''_i)^{(3)}(T_{21}', t) - (a''_i)^{(3)}(T_{21}, t) | \leq (\tilde{k}_{20})^{(3)}|T_{21} - T_{21}'|e^{-(\tilde{M}_{20})^{(3)}t}
\]

\[
| (b''_i)^{(3)}(G_{23}', t) - (b''_i)^{(3)}(G_{23}, t) | \leq (\tilde{G}_{23})^{(3)}|G_{23} - G_{23}'|e^{-(\tilde{M}_{20})^{(3)}t}
\]

With the Lipschitz condition, we place a restriction on the behavior of \((a''_i)^{(3)}(T_{21}, t)\) and \((b''_i)^{(3)}(G_{23}, t)\) . \((T_{21}, t)\) and \((T_{21}, t)\) are points belonging to the interval \([(\tilde{k}_{20})^{(3)}, (\tilde{M}_{20})^{(3)}]\). It is to be noted that \((a''_i)^{(3)}(T_{21}, t)\) is uniformly continuous. In the eventuality of the fact, that if \((\tilde{M}_{20})^{(3)} = 1\) then the function \((a''_i)^{(3)}(T_{21}, t)\), the second augmentation coefficient would be absolutely continuous.

Definition of \((\tilde{M}_{20})^{(3)}, (\tilde{k}_{20})^{(3)}\):

\((K)\)

\[
\frac{(a_i)^{(3)}}{M_{20}}^{(3)}, \frac{(b_i)^{(3)}}{M_{20}}^{(3)} < 1
\]

There exists two constants \(\tilde{P}_{20}^{(3)}\) and \(\tilde{Q}_{20}^{(3)}\) which together with \((\tilde{M}_{20})^{(3)}, (\tilde{k}_{20})^{(3)}, (\tilde{A}_{20})^{(3)}, (\tilde{B}_{20})^{(3)}\) and \((\tilde{A}_{20})^{(3)}\) and \((\tilde{B}_{20})^{(3)}\), \((a_i)^{(3)}, (a'_i)^{(3)}, (b_i)^{(3)}, (b'_i)^{(3)}, (p_i)^{(3)}, (r_i)^{(3)}, i = 20, 21, 22\), satisfy the inequalities

\[
\frac{1}{(\tilde{M}_{20})^{3}}\{ (a_i)^{(3)} + (a'_i)^{(3)} + (\tilde{A}_{20})^{(3)} + (\tilde{P}_{20})^{(3)} (\tilde{k}_{20})^{(3)} \} < 1
\]

\[
\frac{1}{(\tilde{M}_{20})^{3}}\{ (b_i)^{(3)} + (b'_i)^{(3)} + (\tilde{B}_{20})^{(3)} + (\tilde{Q}_{20})^{(3)} (\tilde{k}_{20})^{(3)} \} < 1
\]

Where we suppose

\((a_i)^{(4)}, (a'_i)^{(4)}, (a''_i)^{(4)}, (b_i)^{(4)}, (b'_i)^{(4)}, (b''_i)^{(4)} > 0, \quad i, j = 24, 25, 26\)

M

The functions \((a''_i)^{(4)}, (b''_i)^{(4)}\) are positive continuous increasing and bounded.
Definition of \((p_i)^{(4)}, (r_i)^{(4)}\):
\[
(a''_i)^{(4)}(T_{25}, t) \leq (p_i)^{(4)} \leq (\hat{A}_{24})^{(4)}
\]
\[
(b''_i)^{(4)}((G_{27}), t) \leq (r_i)^{(4)} \leq (\hat{B}_{24})^{(4)}
\]

\[N\] \[\begin{align*}
\lim_{t_{25} \to 0}(a''_i)^{(4)}(T_{25}, t) &= (p_i)^{(4)} \\
\lim_{t_{25} \to 0}(b''_i)^{(4)}((G_{27}), t) &= (r_i)^{(4)}
\end{align*}\]

Definition of \((\hat{A}_{24})^{(4)}, (\hat{B}_{24})^{(4)}\):

\[
\text{where } (\hat{A}_{24})^{(4)}, (\hat{B}_{24})^{(4)}, (p_i)^{(4)}, (r_i)^{(4)} \text{ are positive constants and } i = 24, 25, 26
\]

They satisfy Lipschitz condition:
\[
|\frac{(a''_i)^{(4)}(T_{25}', t) - (a''_i)^{(4)}(T_{25}, t)}{a''_i}| \leq (\hat{a}_{24})^{(4)}|T_{25} - T_{25}'|e^{-(\hat{a}_{24})^{(4)}t}
\]
\[
|\frac{(b''_i)^{(4)}((G_{27}'), t) - (b''_i)^{(4)}((G_{27}), t)}{b''_i}| < (\hat{b}_{24})^{(4)}|((G_{27}) - (G_{27}))|e^{-(\hat{b}_{24})^{(4)}t}
\]

With the Lipschitz condition, we place a restriction on the behavior of functions \((a''_i)^{(4)}(T_{25}, t)\) and \((b''_i)^{(4)}((G_{27}), t)\) in the interval \([T_{25}, T_{25}']\). It is to be noted that \((a''_i)^{(4)}(T_{25}, t)\) is uniformly continuous. In the eventuality of the fact, that if \((\hat{a}_{24})^{(4)} = 4\) then the function \((a''_i)^{(4)}(T_{25}, t)\), the second augmentation coefficient would be absolutely continuous.

Definition of \((\hat{M}_{24})^{(4)}, (\hat{K}_{24})^{(4)}\):

\[
(\hat{M}_{24})^{(4)}, (\hat{K}_{24})^{(4)}, \text{ are positive constants}
\]
\[
\frac{(a_i)^{(4)}}{(\hat{M}_{24})^{(4)}}, \frac{(b_i)^{(4)}}{(\hat{M}_{24})^{(4)}} < 1
\]

Definition of \((\hat{P}_{24})^{(4)}, (\hat{Q}_{24})^{(4)}\):

\[
\text{there exist two constants } (\hat{P}_{24})^{(4)} \text{ and } (\hat{Q}_{24})^{(4)} \text{ which together with}
\]
\[
(\hat{M}_{24})^{(4)}, (\hat{K}_{24})^{(4)}, (\hat{A}_{24})^{(4)} \text{ and } (\hat{B}_{24})^{(4)}
\]
\[
(\hat{a}_i)^{(4)}, (\hat{b}_i)^{(4)}(, (p_i)^{(4)}, (r_i)^{(4)}, i = 24, 25, 26,
\]

\[
\frac{1}{(\hat{M}_{24})^{(4)}}[(a_i)^{(4)} + (a'_i)^{(4)} + (\hat{A}_{24})^{(4)} + (\hat{P}_{24})^{(4)} (\hat{K}_{24})^{(4)}] < 1
\]
\[
\frac{1}{(\hat{M}_{24})^{(4)}}[(b_i)^{(4)} + (b'_i)^{(4)} + (\hat{B}_{24})^{(4)} + (\hat{Q}_{24})^{(4)} (\hat{K}_{24})^{(4)}] < 1
\]

Where we suppose
\[
(\hat{a}_i)^{(4)}, (b_i)^{(4)} > 0, \quad i = 28, 29, 30
\]

\[S\] The functions \((a''_i)^{(5)}, (b''_i)^{(5)}\) are positive continuous increasing and bounded.

Definition of \((p_i)^{(5)}, (r_i)^{(5)}\):
\[
(a''_i)^{(5)}(T_{29}, t) \leq (p_i)^{(5)} \leq (\hat{A}_{28})^{(5)}
\]
\[
(b''_i)^{(5)}((G_{31}, t) \leq (r_i)^{(5)} \leq (\hat{B}_{28})^{(5)}
\]

www.ijsrp.org
They satisfy Lipschitz condition:

\[
\lim_{t \to \infty} (a_i''(T_{29}, t)) = (p_i)(5)
\]
\[
\lim_{t \to \infty} (b_i''(G_{31}, t)) = (r_i)(5)
\]

Definition of \((\hat{\lambda}_{28})(5), (\hat{B}_{28})(5)\):

Where \((\hat{\lambda}_{28})(5), (\hat{B}_{28})(5), (p_i)(5), (r_i)(5)\) are positive constants and \(i = 28, 29, 30\)

They satisfy Lipschitz condition:

\[
|a_i''(T_{29}, t) - a_i''(T_{29}, t)| \leq (\hat{k}_{28})(5)|T_{29} - T_{29}'|e^{-\hat{\lambda}_{28}(5)t}
\]
\[
|(b_i''(G_{31}, t) - b_i''(G_{31}, t)| < (\hat{k}_{28})(5)|(G_{31} - (G_{31}'))|e^{-\hat{\lambda}_{28}(5)t}
\]

With the Lipschitz condition, we place a restriction on the behavior of functions \((a_i''(T_{29}, t)\) and \((a_i''(T_{29}, t))\). \((T_{29}, t)\) and \((T_{29}, t)\) are points belonging to the interval \([\hat{k}_{28}(5), \hat{\lambda}_{28}(5)]\). It is to be noted that \((a_i''(T_{29}, t))\) is uniformly continuous. In the eventuality of the fact, that if \((\hat{\lambda}_{28})(5) = 5\) then the function \((a_i''(T_{29}, t))\), the fifth augmentation coefficient would be absolutely continuous.

Definition of \((\bar{\lambda}_{28})(5), (\bar{k}_{28})(5)\):

1) \((\bar{\lambda}_{28})(5), (\bar{k}_{28})(5)\), are positive constants \(\frac{(a_i)(5)}{(M_{28})(5)}, \frac{(b_i)(5)}{(M_{28})(5)} < 1\)

Definition of \((\bar{\lambda}_{28})(5), (\bar{k}_{28})(5)\):

1) There exists two constants \((\bar{\lambda}_{28})(5)\) and \((\bar{k}_{28})(5)\) which together with \((\bar{\lambda}_{28})(5), (\bar{k}_{28})(5), (\hat{\lambda}_{28})(5)\) and \((\hat{k}_{28})(5)\) and the constants \((a_i)(5), (\bar{a}_i)(5), (\bar{b}_i)(5), (\bar{b}_i')(5), (p_i)(5), (r_i)(5)\), \(i = 28, 29, 30\), satisfy the inequalities

\[
\frac{1}{(\bar{\lambda}_{28})(5)}[a_i(5) + (a_i')(5) + (\bar{\lambda}_{28})(5) + (\bar{\lambda}_{28})(5)] < 1
\]
\[
\frac{1}{(\bar{\lambda}_{28})(5)}[b_i(5) + (b_i')(5) + (\bar{\lambda}_{28})(5) + (\bar{\lambda}_{28})(5)] < 1
\]

Where we suppose

\((a_i)(6), (a_i')(6), (b_i)(6), (b_i')(6), (\bar{b}_i)(6) > 0, \quad i, j = 32, 33, 34\)

W) The functions \((a_i''')(6), (b_i''')(6)\) are positive continuous increasing and bounded.

Definition of \((p_3)(6), (r_3)(6)\):

\[(a_i''')(6)(T_{33}, t) \leq (p_3)(6) \leq (\bar{\lambda}_{32})(6) \]
\[(b_i''')(6)(G_{35}, t) \leq (r_3)(6) \leq (\bar{b}_i)(6) \leq (\bar{b}_i')(6) \leq (\bar{\lambda}_{32})(6)\]

\((X)\)
\[
\lim_{t \to \infty} (a_i''')(6)(T_{33}, t) = (p_3)(6)
\]
\[
\lim_{t \to \infty} (b_i''')(6)(G_{35}, t) = (r_3)(6)
\]

Definition of \((\bar{\lambda}_{32})(6), (\bar{b}_3)(6)\):

www.ijsrp.org
There exist two constants \(\alpha \) and \(\beta \). They satisfy the Lipschitz condition:

\[
|a_i^{(6)}(T_{33}, t) - a_i^{(6)}(T_{33}', t)| \leq (\hat{\kappa}_{32})^{(6)}|T_{33} - T_{33}'|e^{-((\hat{\kappa}_{32})^{(6)})t}
\]

\[
|b_i^{(6)}((G_{33})', t) - (b_i^{(6)}((G_{33}), t)| \leq (\hat{\kappa}_{32})^{(6)}||(G_{33}) - (G_{33}'||e^{-((\hat{\kappa}_{32})^{(6)})t}
\]

With the Lipschitz condition, we place a restriction on the behavior of functions \((a_i^{(6)}(T_{33}, t), (a_i^{(6)}(T_{33}, t)) \). It is to be noted that \((a_i^{(6)}(T_{33}, t)) \) is uniformly continuous. In the eventuality of the fact, that if \(\dot{M}_{32} \) is such that the sixth augmentation coefficient would be absolutely continuous.

Definition of \(\dot{M}_{32}, \dot{\kappa}_{32} \):

\(\dot{M}_{32}, \dot{\kappa}_{32} \) are positive constants

\[
\frac{(a_i^{(6)})}{(\dot{M}_{32})^{(6)}}, \frac{(b_i^{(6)})}{(\dot{M}_{32})^{(6)}} < 1
\]

Definition of \(\dot{P}_{32}, \dot{Q}_{32} \):

There exist two constants \(\dot{P}_{32} \) and \(\dot{Q}_{32} \) which together with \(\dot{M}_{32} \), \(\dot{\kappa}_{32} \), \(\dot{A}_{32} \) and \(\dot{B}_{32} \), and the constants \(a_i^{(6)}(a_i^{(6)}, b_i^{(6)}, b_i^{(6)}, (p_i)^{(6)}, (r_i)^{(6)}, i = 32, 33, \) satisfy the inequalities

\[
\frac{1}{(\dot{M}_{32})^{(6)}}[a_i^{(6)} + (a_i^{(6)}) < 1
\]

\[
\frac{1}{(\dot{M}_{32})^{(6)}}[b_i^{(6)} + (b_i^{(6)}) < 1
\]

Theorem 1: if the conditions above are fulfilled, there exists a solution satisfying the conditions

Definition of \(G_i(0), T_i(0) \):

\[
G_i(0) \leq (\dot{P}_{13})^{(1)}e^{(\dot{\kappa}_{13})^{(1)t}}, \quad G_i(0) = G_i^0 > 0
\]

\[
T_i(0) \leq (\dot{Q}_{13})^{(1)}e^{(\dot{\kappa}_{13})^{(1)t}}, \quad T_i(0) = T_i^0 > 0
\]

if the conditions above are fulfilled, there exists a solution satisfying the conditions

Definition of \(G_i(0), T_i(0) \):

\[
G_i(0) \leq (\dot{P}_{16})^{(2)}e^{(\dot{\kappa}_{16})^{(2)t}}, \quad G_i(0) = G_i^0 > 0
\]

\[
T_i(0) \leq (\dot{Q}_{16})^{(2)}e^{(\dot{\kappa}_{16})^{(2)t}}, \quad T_i(0) = T_i^0 > 0
\]

if the conditions above are fulfilled, there exists a solution satisfying the conditions

\[
G_i(0) \leq (\dot{P}_{20})^{(3)}e^{(\dot{\kappa}_{20})^{(3)t}}, \quad G_i(0) = G_i^0 > 0
\]

www.ijsrp.org
\[
T_i(t) \leq (\hat{Q}_{20})^{(3)} e^{(\hat{G}^{20})^{(3)t}}, \quad T_i(0) = T_i^0 > 0
\]

if the conditions above are fulfilled, there exists a solution satisfying the conditions

Definition of \(G_i(0), T_i(0) \):

\[
G_i(t) \leq (\hat{P}_{24})^{(4)} e^{(\hat{G}^{24})^{(4)t}}, \quad G_i(0) = G_i^0 > 0
\]

\[
T_i(t) \leq (\hat{Q}_{24})^{(4)} e^{(\hat{G}^{24})^{(4)t}}, \quad T_i(0) = T_i^0 > 0
\]

if the conditions above are fulfilled, there exists a solution satisfying the conditions

Definition of \(G_i(0), T_i(0) \):

\[
G_i(t) \leq (\hat{P}_{32})^{(5)} e^{(\hat{G}^{32})^{(5)t}}, \quad G_i(0) = G_i^0 > 0
\]

\[
T_i(t) \leq (\hat{Q}_{32})^{(5)} e^{(\hat{G}^{32})^{(5)t}}, \quad T_i(0) = T_i^0 > 0
\]

if the conditions above are fulfilled, there exists a solution satisfying the conditions

Definition of \(G_i(0), T_i(0) \):

\[
G_i(t) \leq (\hat{P}_{32})^{(6)} e^{(\hat{G}^{32})^{(6)t}}, \quad G_i(0) = G_i^0 > 0
\]

\[
T_i(t) \leq (\hat{Q}_{32})^{(6)} e^{(\hat{G}^{32})^{(6)t}}, \quad T_i(0) = T_i^0 > 0
\]

Proof: Consider operator \(\mathcal{A}^{(1)} \) defined on the space of sextuples of continuous functions \(G_i, T_i : \mathbb{R}_+ \to \mathbb{R}_+ \) which satisfy

\[
G_i(0) = G_i^0, \quad T_i(0) = T_i^0, \quad G_i^0 \leq (\hat{P}_{13})^{(1)}, T_i^0 \leq (\hat{Q}_{13})^{(1)},
\]

\[
0 \leq G_i(t) - G_i^0 \leq (\hat{P}_{13})^{(1)t}, T_i(t) - T_i^0 \leq (\hat{Q}_{13})^{(1)t}
\]

By

\[
\tilde{G}_{13}(t) = G_{13}^0 + \int_0^t \left[(a_{13})^{(1)} G_{14}^0(s) - \left((a'_{13})^{(1)} + (a''_{13})^{(1)} (T_{14}(s),s) \right) G_{13}^0(s) \right] ds
\]

\[
\tilde{G}_{14}(t) = G_{14}^0 + \int_0^t \left[(a_{14})^{(1)} G_{13}^0(s) - \left((a'_{14})^{(1)} + (a''_{14})^{(1)} (T_{14}(s),s) \right) G_{14}^0(s) \right] ds
\]

\[
\tilde{G}_{15}(t) = G_{15}^0 + \int_0^t \left[(a_{15})^{(1)} G_{14}^0(s) - \left((a'_{15})^{(1)} + (a''_{15})^{(1)} (T_{14}(s),s) \right) G_{15}^0(s) \right] ds
\]

\[
\tilde{T}_{13}(t) = T_{13}^0 + \int_0^t \left[(b_{13})^{(1)} T_{14}^0(s) - \left((b'_{13})^{(1)} - (b''_{13})^{(1)} G(s),s \right) T_{13}^0(s) \right] ds
\]

\[
\tilde{T}_{14}(t) = T_{14}^0 + \int_0^t \left[(b_{14})^{(1)} T_{13}^0(s) - \left((b'_{14})^{(1)} - (b''_{14})^{(1)} G(s),s \right) T_{14}^0(s) \right] ds
\]

\[
\tilde{T}_{15}(t) = T_{15}^0 + \int_0^t \left[(b_{15})^{(1)} T_{14}^0(s) - \left((b'_{15})^{(1)} - (b''_{15})^{(1)} G(s),s \right) T_{15}^0(s) \right] ds
\]

Where \(s_{(13)} \) is the integrand that is integrated over an interval \((0,t) \)
Proof:

Consider operator $\mathcal{A}^{(2)}$ defined on the space of sextuples of continuous functions $G_i, T_i: \mathbb{R}_+ \to \mathbb{R}_+$ which satisfy

\[G_i(0) = G_i^0, \quad T_i(0) = T_i^0, \quad G_i^0 \leq (\tilde{P}_{16})^{(2)}, \quad T_i^0 \leq (\tilde{Q}_{16})^{(2)}, \]
\[0 \leq G_i(t) - G_i^0 \leq (\tilde{P}_{16})^{(2)} e^{(\tilde{\theta}_{16})^{(2)} t}, \]
\[0 \leq T_i(t) - T_i^0 \leq (\tilde{Q}_{16})^{(2)} e^{(\tilde{\theta}_{16})^{(2)} t}. \]

By

\[\tilde{g}_{16}(t) = G_{16}^0 + \int_0^t \left[(a_{16})^{(2)} G_{17}(s_{(16)}) - \left((a_{16}')^{(2)} + (a_{16}'')^{(2)} (T_{17}(s_{(16)}), s_{(16)}) \right) G_{16}(s_{(16)}) \right] ds_{(16)} \]
\[\tilde{g}_{17}(t) = G_{17}^0 + \int_0^t \left[(a_{17})^{(2)} G_{16}(s_{(16)}) - \left((a_{17}')^{(2)} + (a_{17}'')^{(2)} (T_{17}(s_{(16)}), s_{(17)}) \right) G_{17}(s_{(16)}) \right] ds_{(16)} \]
\[\tilde{g}_{18}(t) = G_{18}^0 + \int_0^t \left[(a_{18})^{(2)} G_{17}(s_{(16)}) - \left((a_{18}')^{(2)} + (a_{18}'')^{(2)} (T_{17}(s_{(16)}), s_{(16)}) \right) G_{18}(s_{(16)}) \right] ds_{(16)} \]
\[\tilde{t}_{16}(t) = T_{16}^0 + \int_0^t \left[(b_{16})^{(2)} T_{17}(s_{(16)}) - \left((b_{16}')^{(2)} - (b_{16}'')^{(2)} (G(s_{(16)}), s_{(16)}) \right) T_{16}(s_{(16)}) \right] ds_{(16)} \]
\[\tilde{t}_{17}(t) = T_{17}^0 + \int_0^t \left[(b_{17})^{(2)} T_{16}(s_{(16)}) - \left((b_{17}')^{(2)} - (b_{17}'')^{(2)} (G(s_{(16)}), s_{(16)}) \right) T_{17}(s_{(16)}) \right] ds_{(16)} \]
\[\tilde{t}_{18}(t) = T_{18}^0 + \int_0^t \left[(b_{18})^{(2)} T_{17}(s_{(16)}) - \left((b_{18}')^{(2)} - (b_{18}'')^{(2)} (G(s_{(16)}), s_{(16)}) \right) T_{18}(s_{(16)}) \right] ds_{(16)} \]

Where $s_{(16)}$ is the integrand that is integrated over an interval $(0, t)$

Proof:

Consider operator $\mathcal{A}^{(3)}$ defined on the space of sextuples of continuous functions $G_i, T_i: \mathbb{R}_+ \to \mathbb{R}_+$ which satisfy

\[G_i(0) = G_i^0, \quad T_i(0) = T_i^0, \quad G_i^0 \leq (\tilde{P}_{20})^{(3)}, \quad T_i^0 \leq (\tilde{Q}_{20})^{(3)}, \]
\[0 \leq G_i(t) - G_i^0 \leq (\tilde{P}_{20})^{(3)} e^{(\tilde{\theta}_{20})^{(3)} t}, \]
\[0 \leq T_i(t) - T_i^0 \leq (\tilde{Q}_{20})^{(3)} e^{(\tilde{\theta}_{20})^{(3)} t}. \]

By

\[\tilde{g}_{20}(t) = G_{20}^0 + \int_0^t \left[(a_{20})^{(3)} G_{21}(s_{(20)}) - \left((a_{20}')^{(3)} + (a_{20}'')^{(3)} (T_{21}(s_{(20)}), s_{(20)}) \right) G_{20}(s_{(20)}) \right] ds_{(20)} \]
\[\tilde{g}_{21}(t) = G_{21}^0 + \int_0^t \left[(a_{21})^{(3)} G_{20}(s_{(20)}) - \left((a_{21}')^{(3)} + (a_{21}'')^{(3)} (T_{21}(s_{(20)}), s_{(20)}) \right) G_{21}(s_{(20)}) \right] ds_{(20)} \]
\[\tilde{g}_{22}(t) = G_{22}^0 + \int_0^t \left[(a_{22})^{(3)} G_{21}(s_{(20)}) - \left((a_{22}')^{(3)} + (a_{22}'')^{(3)} (T_{21}(s_{(20)}), s_{(20)}) \right) G_{22}(s_{(20)}) \right] ds_{(20)} \]
\[\tilde{t}_{20}(t) = T_{20}^0 + \int_0^t \left[(b_{20})^{(3)} T_{21}(s_{(20)}) - \left((b_{20}')^{(3)} - (b_{20}'')^{(3)} (G(s_{(20)}), s_{(20)}) \right) T_{20}(s_{(20)}) \right] ds_{(20)} \]
\[\tilde{t}_{21}(t) = T_{21}^0 + \int_0^t \left[(b_{21})^{(3)} T_{20}(s_{(20)}) - \left((b_{21}')^{(3)} - (b_{21}'')^{(3)} (G(s_{(20)}), s_{(20)}) \right) T_{21}(s_{(20)}) \right] ds_{(20)} \]
\[\tilde{t}_{22}(t) = T_{22}^0 + \int_0^t \left[(b_{22})^{(3)} T_{21}(s_{(20)}) - \left((b_{22}')^{(3)} - (b_{22}'')^{(3)} (G(s_{(20)}), s_{(20)}) \right) T_{22}(s_{(20)}) \right] ds_{(20)} \]
Where $s_{(20)}$ is the integrand that is integrated over an interval $(0,t)$

Proof: Consider operator $\mathcal{A}^{(4)}$ defined on the space of sextuples of continuous functions G_i, $T_i: \mathbb{R}_+ \to \mathbb{R}_+$ which satisfy

$$G_i(0) = G_i^0, \quad T_i(0) = T_i^0, \quad G_i^0 \leq (P_{24})^{(4)}T_i^0 \leq (Q_{24})^{(4)}.$$

0 $\leq G_i(t) - G_i^0 \leq (P_{24})^{(4)}e^{(\theta_{24})^{(4)}t}$$

0 $\leq T_i(t) - T_i^0 \leq (Q_{24})^{(4)}e^{(\theta_{24})^{(4)}t}$

By

$$\tilde{G}_{24}(t) = G_{24}^0 + \int_0^t \left((a_{24})^{(4)}G_{23}(s_{(24)}) - \left((a_{24}')^{(4)} + a_{24}''^{(4)}T_{25}(s_{(24)}), s_{(24)} \right) \right) G_{24}(s_{(24)}) \, ds_{(24)}$$

$$\tilde{T}_{24}(t) = T_{24}^0 + \int_0^t \left((b_{24})^{(4)}T_{25}(s_{(24)}) - \left((b_{24}')^{(4)} - (b_{24}'')^{(4)}(G(s_{(24)}), s_{(24)}) \right) \right) T_{24}(s_{(24)}) \, ds_{(24)}$$

Where $s_{(24)}$ is the integrand that is integrated over an interval $(0,t)$

Proof: Consider operator $\mathcal{A}^{(5)}$ defined on the space of sextuples of continuous functions G_i, $T_i: \mathbb{R}_+ \to \mathbb{R}_+$ which satisfy

$$G_i(0) = G_i^0, \quad T_i(0) = T_i^0, \quad G_i^0 \leq (P_{28})^{(5)}T_i^0 \leq (Q_{28})^{(5)}.$$

0 $\leq G_i(t) - G_i^0 \leq (P_{28})^{(5)}e^{(\theta_{28})^{(5)}t}$$

0 $\leq T_i(t) - T_i^0 \leq (Q_{28})^{(5)}e^{(\theta_{28})^{(5)}t}$

By

$$\tilde{G}_{28}(t) = G_{28}^0 + \int_0^t \left((a_{28})^{(5)}G_{29}(s_{(28)}) - \left((a_{28}')^{(5)} + a_{28}''^{(5)}(T_{29}(s_{(28)}), s_{(28)})) \right) G_{28}(s_{(28)}) \, ds_{(28)}$$

$$\tilde{T}_{28}(t) = T_{28}^0 + \int_0^t \left((b_{28})^{(5)}T_{29}(s_{(28)}) - \left((b_{28}')^{(5)} - (b_{28}'')^{(5)}(G(s_{(28)}), s_{(28)})) \right) T_{28}(s_{(28)}) \, ds_{(28)}$$

www.ijsrp.org
Where $s_{(28)}$ is the integrand that is integrated over an interval $(0,t)$

Proof:

Consider operator $\mathcal{A}^{(6)}$ defined on the space of sextuples of continuous functions $G_i, T_i: \mathbb{R}_+ \to \mathbb{R}_+$ which satisfy

$$G_i(0) = G_i^0, T_i(0) = T_i^0, G_i^0 \leq (\hat{P}_{32})^{(6)}, T_i^0 \leq (\tilde{Q}_{32})^{(6)}.$$

$$0 \leq G_i(t) - G_i^0 \leq (\hat{P}_{32})^{(6)}e^{(\mathcal{M}_{32})^{(6)}t}$$

$$0 \leq T_i(t) - T_i^0 \leq (\tilde{Q}_{32})^{(6)}e^{(\mathcal{R}_{32})^{(6)}t}$$

By

$$\tilde{G}_{32}(t) = G_{32}^0 + \int_0^t [(a_{32})^{(6)}G_{32}(s_{(32)}) - ((\alpha'_{32})^{(6)} + (\alpha''_{32})^{(6)}(T_{33}(s_{(32)}), s_{(32)}))G_{32}(s_{(32)})] \, ds_{(32)}$$

$$\tilde{G}_{33}(t) = G_{33}^0 + \int_0^t [(a_{33})^{(6)}G_{32}(s_{(32)}) - ((\alpha'_{33})^{(6)} + (\alpha''_{33})^{(6)}(T_{33}(s_{(32)}), s_{(32)}))G_{33}(s_{(32)})] \, ds_{(32)}$$

$$\tilde{G}_{34}(t) = G_{34}^0 + \int_0^t [(a_{34})^{(6)}G_{33}(s_{(32)}) - ((\alpha'_{34})^{(6)} + (\alpha''_{34})^{(6)}(T_{33}(s_{(32)}), s_{(32)}))G_{34}(s_{(32)})] \, ds_{(32)}$$

$$\tilde{T}_{32}(t) = T_{32}^0 + \int_0^t [(b_{32})^{(6)}T_{33}(s_{(32)}) - ((\beta'_{32})^{(6)} - (b_{32})^{(6)}G(s_{(32)}), s_{(32)}))T_{32}(s_{(32)})] \, ds_{(32)}$$

$$\tilde{T}_{33}(t) = T_{33}^0 + \int_0^t [(b_{33})^{(6)}T_{33}(s_{(32)}) - ((\beta'_{33})^{(6)} - (b_{33})^{(6)}G(s_{(32)}), s_{(32)}))T_{33}(s_{(32)})] \, ds_{(32)}$$

$$\tilde{T}_{34}(t) = T_{34}^0 + \int_0^t [(b_{34})^{(6)}T_{33}(s_{(32)}) - ((\beta'_{34})^{(6)} - (b_{34})^{(6)}G(s_{(32)}), s_{(32)}))T_{34}(s_{(32)})] \, ds_{(32)}$$

Where $s_{(32)}$ is the integrand that is integrated over an interval $(0,t)$

(a) The operator $\mathcal{A}^{(1)}$ maps the space of functions satisfying global equations into itself. Indeed it is obvious that

$$G_{13}(t) \leq G_{13}^0 + \int_0^t [(a_{13})^{(1)}(G_{13}^0 + (\hat{P}_{13})^{(1)}e^{(\mathcal{M}_{13})^{(1)}s_{(13)})}] \, ds_{(13)} = \left(1 + (a_{13})^{(1)}t\right)G_{13}^0 + \left(\frac{(a_{13})^{(1)}(\hat{P}_{13})^{(1)}}{(\mathcal{M}_{13})^{(1)}}\right)e^{(\mathcal{M}_{13})^{(1)}t} - 1.$$

From which it follows that

$$(G_{13}(t) - G_{13}^0)e^{-(\mathcal{M}_{13})^{(1)}t} \leq \left(\frac{(a_{13})^{(1)}}{(\mathcal{M}_{13})^{(1)}}\right)\left((\hat{P}_{13})^{(1)} + G_{14}^0e^{\left(-\frac{(\hat{P}_{13})^{(1)}s_{(13)}}{G_{14}^0}\right)} + (\hat{P}_{13})^{(1)}\right)$$

$$(G_i^0)$$ is as defined in the statement of theorem 1

Analogous inequalities hold also for $G_{14}, G_{15}, T_{13}, T_{14}, T_{15}$

(b) The operator $\mathcal{A}^{(2)}$ maps the space of functions satisfying global equations into itself. Indeed it is obvious that

$$G_{16}(t) \leq G_{16}^0 + \int_0^t [(a_{16})^{(2)}(G_{16}^0 + (\hat{P}_{16})^{(6)}e^{(\mathcal{M}_{16})^{(2)}s_{(16)}})] \, ds_{(16)} = \left(1 + (a_{16})^{(2)}t\right)G_{16}^0 + \left(\frac{(a_{16})^{(2)}(\hat{P}_{16})^{(2)}}{(\mathcal{M}_{16})^{(2)}}\right)e^{(\mathcal{M}_{16})^{(2)}t} - 1.$$
From which it follows that

\[
(G_1e(t) - G_1\theta(2)e^{-\theta(2)t}) \leq \frac{(a_{1e})}{(1+b_{1e})} \left((\theta_{1e}) + (\theta_{1e})^2 \right) + \frac{(a_{1e})}{(1+b_{1e})} \left((\theta_{1e}) + (\theta_{1e})^2 \right)
\]

Analogous inequalities hold also for \(G_{17}, G_{18}, T_{16}, T_{17}, T_{18} \)

(a) The operator \(\mathcal{A}(3) \) maps the space of functions satisfying global equations into itself. Indeed it is obvious that

\[
G_{20}(t) \leq G_{20} + \int_0^t \left((a_{20}) \left(G_{20}^2 + (\theta_{20}) \right) + (\theta_{20}) \right) \, ds_{(20)} = \left(1 + (a_{20})^2 \right) G_{20}^2 + \frac{(a_{20})}{(M_{20})^2} \left((\theta_{20})^2 - 1 \right)
\]

From which it follows that

\[
(G_{20}(t) - G_{20}) e^{-\theta(3)t} \leq \frac{(a_{20})}{(M_{20})^2} \left((\theta_{20}) + (\theta_{20})^2 \right) + (\theta_{20})
\]

Analogous inequalities hold also for \(G_{21}, G_{22}, T_{20}, T_{21}, T_{22} \)

(b) The operator \(\mathcal{A}(4) \) maps the space of functions satisfying global equations into itself. Indeed it is obvious that

\[
G_{24}(t) \leq G_{24} + \int_0^t \left((a_{24}) \left(G_{24}^2 + (\theta_{24}) \right) + (\theta_{24}) \right) \, ds_{(24)} = \left(1 + (a_{24})^2 \right) G_{24}^2 + \frac{(a_{24})}{(M_{24})^2} \left((\theta_{24})^2 - 1 \right)
\]

From which it follows that

\[
(G_{24}(t) - G_{24}) e^{-\theta(4)t} \leq \frac{(a_{24})}{(M_{24})^2} \left((\theta_{24}) + (\theta_{24})^2 \right) + (\theta_{24})
\]

(c) The operator \(\mathcal{A}(5) \) maps the space of functions satisfying global equations into itself. Indeed it is obvious that

\[
G_{28}(t) \leq G_{28} + \int_0^t \left((a_{28}) \left(G_{28}^2 + (\theta_{28}) \right) + (\theta_{28}) \right) \, ds_{(28)} = \left(1 + (a_{28})^2 \right) G_{28}^2 + \frac{(a_{28})}{(M_{28})^2} \left((\theta_{28})^2 - 1 \right)
\]

From which it follows that

\[
(G_{28}(t) - G_{28}) e^{-\theta(5)t} \leq \frac{(a_{28})}{(M_{28})^2} \left((\theta_{28}) + (\theta_{28})^2 \right) + (\theta_{28})
\]

(d) The operator \(\mathcal{A}(6) \) maps the space of functions satisfying global equations into itself. Indeed it is obvious that

\[
G_{32}(t) \leq G_{32} + \int_0^t \left((a_{32}) \left(G_{32}^2 + (\theta_{32}) \right) + (\theta_{32}) \right) \, ds_{(32)} = \left(1 + (a_{32})^2 \right) G_{32}^2 + \frac{(a_{32})}{(M_{32})^2} \left((\theta_{32})^2 - 1 \right)
\]

\(G_i(0) \) is as defined in the statement of theorem 4

www.ijsrp.org
\[
(1 + (a_{32}^{(6)}) e^{G_{32}^0}) e^{(\bar{a}_{32}^{(6)} R_{32}^{(6)}) (e^{(\bar{a}_{32}^{(6)})_1} - 1)}
\]

From which it follows that
\[
(G_{32} - G_{32}^0) e^{(\bar{a}_{32}^{(6)})} \leq \frac{(a_{32}^{(6)})}{(M_{32}^{(6)})} \left((\bar{P}_{32})^{(6)} + G_{32}^0 \right) \left((\bar{P}_{32})^{(6)} + \frac{(\bar{P}_{32})^{(6)} e^{G_{32}^0}}{\bar{G}_{32}^0} \right) + (\bar{P}_{32})^{(6)}
\]

\((G_{32}^0)\) is as defined in the statement of theorem 6

Analogous inequalities hold also for \(G_{25}, G_{26}, T_{24}, T_{25}, T_{26}\)

It is now sufficient to take \(\frac{(a_{13}^{(1)})}{(M_{13}^{(1)})}, \frac{(b_{13}^{(1)})}{(M_{13}^{(1)})} < 1\) and to choose \((\bar{P}_{13})^{(1)}\) and \((\bar{Q}_{13})^{(1)}\) large to have
\[
\frac{(a_{13}^{(1)})}{(M_{13}^{(1)})} \left((\bar{P}_{13})^{(1)} + G_{13}^{(1)} \right) e^{(\bar{P}_{13})^{(1)}} \leq (\bar{P}_{13})^{(1)}
\]
\[
\frac{(b_{13}^{(1)})}{(M_{13}^{(1)})} \left((\bar{Q}_{13})^{(1)} + T_{13}^{(1)} \right) e^{(\bar{Q}_{13})^{(1)}} \leq (\bar{Q}_{13})^{(1)}
\]

In order that the operator \(A^{(1)}\) transforms the space of sextuples of functions \(G_i, T_i\) satisfying global equations into itself

The operator \(A^{(1)}\) is a contraction with respect to the metric
\[
d \left((G^{(1)}, T^{(1)}), (G^{(2)}, T^{(2)}) \right) =
\]
\[\sup \max_{t \in \mathbb{R}} \left(G_i^{(1)}(t) - G_i^{(2)}(t) \right) e^{-(\bar{a}_{13})^{(1)} t} \max_{t \in \mathbb{R}} \left(T_i^{(1)}(t) - T_i^{(2)}(t) \right) e^{-(\bar{a}_{13})^{(1)} t}\]

Indeed if we denote
\[
\text{Definition of } \bar{G}, \bar{T} :
\]
\[
(\bar{G}, \bar{T}) = A^{(1)}(G, T)
\]

It results
\[
|\bar{G}_{13}^{(1)} - \bar{G}_{13}^{(2)}| \leq \int_{0}^{t} (a_{13})^{(1)} |G_{14}^{(1)} - G_{14}^{(2)}| e^{-(\bar{a}_{13})^{(1)} t} e^{(\bar{a}_{13})^{(1)} x_{13}} dS_{13} +
\]
\[
\int_{0}^{t} \left((a_{13})^{(1)} G_{13}^{(1)} - G_{13}^{(2)} \right) e^{-(\bar{a}_{13})^{(1)} x_{13}} e^{-(\bar{a}_{13})^{(1)} x_{13}} dS_{13} +
\]
\[
G_{13}^{(2)} \left((a_{13})^{(1)} (T_{14}^{(1)} + S_{13}) - (a_{13})^{(1)} (T_{14}^{(2)} + S_{13}) \right) e^{-(\bar{a}_{13})^{(1)} x_{13}} e^{-(\bar{a}_{13})^{(1)} x_{13}} dS_{13}
\]

Where \(S_{13}\) represents integrand that is integrated over the interval \([0, t]\)
From the hypotheses it follows:

\[
|G^{(1)} - G^{(2)}|e^{-\mathcal{R}(t)} \leq \frac{1}{(\mathcal{R}(t))^{1/2}} \left((s_1(t)) + (a_{13}^{(1)}(t) + \mathcal{R}(t)) d \left(G^{(1)}, T^{(1)}; G^{(2)}, T^{(2)} \right) \right)
\]

And analogous inequalities for \(G_i \) and \(T_i \). Taking into account the hypothesis the result follows.

Remark 1: The fact that we supposed \((a_{13}^{(1)}(t))\) and \((b_{13}^{(1)}(t))\) depending also on \(t \) can be considered as not conformal with the reality, however we have put this hypothesis in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by \(\mathcal{P}(t) e^{\mathcal{R}(t)} \) and \(\mathcal{Q}(t) e^{\mathcal{R}(t)} \) respectively on \(\mathbb{R}_+ \).

If instead of proving the existence of the solution on \(\mathbb{R}_+ \), we have to prove it only on a compact then it suffices to consider that \((a_{13}^{(1)}(t))\) and \((b_{13}^{(1)}(t))\), \(i = 13, 14, 15 \) depend only on \(T_{14} \) and respectively on \(G(\text{not on } t) \) and hypothesis can be replaced by a usual Lipschitz condition.

Remark 2: There does not exist any \(t \) where \(G_i(t) = 0 \) and \(T_i(t) = 0 \)

From 19 to 24 it results:

\[
G_i(t) \geq \mathcal{G}_0 e^{-\int_0^t [(a_i^{(1)}(t) - (a_{14}^{(1)}(t)) dt} \geq 0
\]

\[
T_i(t) \geq \mathcal{G}_0 e^{-\int_0^t [(b_i^{(1)}(t)] dt > 0 \quad \text{for } t > 0
\]

Definition of \((M_i^{(1)})_1, (M_i^{(1)})_2, \) and \((M_i^{(1)})_3\):

Remark 3: if \(G_{13} \) is bounded, the same property have also \(G_{14} \) and \(G_{15} \). Indeed if \(G_{13} \in (M_{13}^{(1)})_1 \) it follows \(dG_{14} \leq \int_0^t (M_{13}^{(1)})_2 - (a_{14}^{(1)}(t) G_{14} \) and by integrating

\[
G_{14} \leq (M_{13}^{(1)})_2 = \mathcal{G}_0 + 2(a_{14}^{(1)}(t)) (M_{13}^{(1)})_2 / (a_{14}^{(1)})
\]

In the same way, one can obtain:

\[
G_{15} \leq (M_{13}^{(1)})_3 = \mathcal{G}_0 + 2(a_{15}^{(1)}(t)) (M_{13}^{(1)})_3 / (a_{15}^{(1)})
\]

If \(G_{14} \) or \(G_{15} \) is bounded, the same property follows for \(G_{13}, G_{15} \) and \(G_{13}, G_{14} \) respectively.

Remark 4: If \(G_{13} \) is bounded, from below, the same property holds for \(G_{14} \) and \(G_{15} \). The proof is analogous with the preceding one. An analogous property is true if \(G_{14} \) is bounded from below.

Remark 5: If \(T_{13} \) is bounded from below and \(\lim_{t \to \infty} (b_{13}^{(1)}(t) G(t, t)) = (b_{14}^{(1)}(t) \) then \(T_{14} \to \infty \).

Definition of \((m)^{(1)}\) and \(\epsilon_1 \):

Indeed let \(t_1 \) be so that for \(t > t_1 \)

\[
(b_{14}^{(1)}(t) - (b_{13}^{(1)}(t) G(t, t)) < \epsilon_1, T_{13}(t) > (m)^{(1)}
\]

Then \(\frac{d\mathcal{T}_{14}}{dt} \geq (a_{14}^{(1)}(t)) (m)^{(1)} - \epsilon_1 T_{14} \) which leads to

\[
T_{14} \geq \left((a_{14}^{(1)}(m)^{(1)}(t_1) \right) (1 - e^{-\epsilon_1 t}) + T_{14}^0 e^{-\epsilon_1 t}
\]

If we take \(t \) such that \(e^{-\epsilon_1 t} = \frac{1}{2} \) it results

\[
T_{14} \geq \left((a_{14}^{(1)}(m)^{(1)}(t_1) \right) \frac{1}{2}
\]

By taking now \(\epsilon_1 \) sufficiently small one sees that \(T_{14} \) is unbounded.

The same property holds for \(T_{15} \) if \(\lim_{t \to \infty} (b_{15}^{(1)}(t) G(t, t)) = (b_{13}^{(1)}(t) \)
We now state a more precise theorem about the behaviors at infinity of the solutions

It is now sufficient to take \(\frac{(a_j)^{(2)}}{(M_{16})^{(2)}} \), \(\frac{(b_j)^{(2)}}{(M_{16})^{(2)}} \) < 1 and to choose

\[
(P_{16})^{(2)} \text{ and } (Q_{16})^{(2)} \text{ large to have}
\]

\[
\frac{(a_j)^{(2)}}{(M_{16})^{(2)}} \left[(P_{16})^{(2)} + \left((P_{16})^{(2)} + G_j^0 \right) e^{-\frac{(P_{16})^{(2)} + G_j^0}{t_j}} \right] \leq (P_{16})^{(2)}
\]

\[
\frac{(b_j)^{(2)}}{(M_{16})^{(2)}} \left[(Q_{16})^{(2)} + T_j^0 e^{-\frac{(Q_{16})^{(2)} + T_j^0}{t_j}} \right] \leq (Q_{16})^{(2)}
\]

In order that the operator \(\mathcal{A}^{(2)} \) transforms the space of sextuples of functions \(G_i, T_i \) satisfying into itself

The operator \(\mathcal{A}^{(2)} \) is a contraction with respect to the metric

\[
d \left(((G_{19})^{(1)}, (T_{19})^{(1)}), ((G_{19})^{(2)}, (T_{19})^{(2)}) \right) =
\]

\[
\sup \{ \max_{t \in \mathbb{R}_+} |G_i^{(1)}(t) - G_i^{(2)}(t)| e^{-\langle t_i e^{(2)}, t \rangle \max_{t \in \mathbb{R}_+} |T_i^{(1)}(t) - T_i^{(2)}(t)| e^{-\langle t_i e^{(2)}, t \rangle } \}.
\]

Indeed if we denote

Definition of \(\tilde{G}_{19}, \tilde{T}_{19} : (\tilde{G}_{19}, \tilde{T}_{19}) = \mathcal{A}^{(2)}(G_{19}, T_{19}) \)

It results

\[
|G_{16}^{(1)} - \tilde{G}_{16}^{(2)}| \leq \int_0^t (a_{16})^{(2)} |G_i^{(1)} - G_i^{(2)}| e^{-\langle \tilde{R}_{16}^{(2)}, \tilde{x}_{16} \rangle} e^{\langle \tilde{R}_{16}^{(2)}, \tilde{x}_{16} \rangle} dS_{16} +
\]

\[
\int_t^\tau (a_{16})^{(2)} |G_{16}^{(1)} - G_{16}^{(2)}| e^{-\langle \tilde{R}_{16}^{(2)}, \tilde{x}_{16} \rangle} e^{\langle \tilde{R}_{16}^{(2)}, \tilde{x}_{16} \rangle} +
\]

\[
(a_{16}''')^{(2)} (T_{17}^{(1)}, S_{16}(k)) |G_{16}^{(1)} - G_{16}^{(2)}| e^{-\langle \tilde{R}_{16}^{(2)}, \tilde{x}_{16} \rangle} e^{\langle \tilde{R}_{16}^{(2)}, \tilde{x}_{16} \rangle} +
\]

\[
G_{16}^{(2)} (a_{16}''')^{(2)} (T_{17}^{(1)}, S_{16}(k)) (a_{16}''')^{(2)} (T_{17}^{(2)}, S_{16}(k)) e^{-\langle \tilde{R}_{16}^{(2)}, \tilde{x}_{16} \rangle} e^{\langle \tilde{R}_{16}^{(2)}, \tilde{x}_{16} \rangle} dS_{16}
\]

Where \(S_{16} \) represents integrand that is integrated over the interval \([0, t]\)

From the hypotheses it follows

\[
\left| (G_{16})^{(1)} - (G_{16})^{(2)} \right| e^{-\langle \tilde{R}_{16}^{(2)}, t \rangle} \leq \frac{1}{(M_{16})^{(2)}} ((a_{16})^{(2)} + (a_{16})^{(2)} + (\tilde{A}_{16})^{(2)} + (\tilde{P}_{16})^{(2)} (\tilde{Q}_{16})^{(2)}) d \left(((G_{19})^{(1)}, (T_{19})^{(1)}), ((G_{19})^{(2)}, (T_{19})^{(2)}) \right)
\]

And analogous inequalities for \(G_i \) and \(T_i \). Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed \((a_{16}''')^{(2)} \) and \((b_{16}''')^{(2)} \) depending also on \(t \) can be considered as not conformal with the reality, however we have put this hypothesis in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by \(\tilde{P}_{16}^{(2)} e^{\langle \tilde{R}_{16}^{(2)}, t \rangle} \) and \(\tilde{Q}_{16}^{(2)} e^{\langle \tilde{R}_{16}^{(2)}, t \rangle} \) respectively of \(\mathbb{R}_+ \).

If instead of proving the existence of the solution on \(\mathbb{R}_+ \), we have to prove it only on a compact then it suffices to consider that \((a_{i}''')^{(2)} \) and \((b_{i}''')^{(2)} \), \(i = 16, 17, 18 \) depend only on \(T_{17} \) and respectively on

www.ijsrp.org
(G_{19})(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G_{1}(t) = 0 and T_{1}(t) = 0

From 19 to 24 it results

\[G_{1}(t) \geq G_{0}^{2}e^{-\int_{0}^{t}(a_{1}(t) - a_{2}(t))dt} \geq 0 \]

\[T_{1}(t) \geq T_{0}^{2}e^{(-k_{1}(t))t} > 0 \quad \text{for } t > 0 \]

Definition of \((\mathcal{M}_{16})^{(2)}\), \((\mathcal{M}_{16})^{(2)}\), and \((\mathcal{M}_{16})^{(2)}\):

Remark 3: if \(G_{16}\) is bounded, the same property have also \(G_{17}\) and \(G_{18}\) - indeed if

\[G_{16} < (\mathcal{M}_{16})^{(2)} \text{ it follows } \frac{dG_{16}}{dt} < (\mathcal{M}_{16})^{(2)} - (a_{16})^{(2)}G_{16} \text{ and by integrating} \]

\[G_{17} = (\mathcal{M}_{16})^{(2)} = G_{0}^{2} + 2(a_{17})^{(2)}(\mathcal{M}_{16})^{(2)}/a_{17}^{(2)} \]

In the same way, one can obtain

\[G_{18} = (\mathcal{M}_{16})^{(2)} = G_{0}^{2} + 2(a_{18})^{(2)}(\mathcal{M}_{16})^{(2)}/a_{18}^{(2)} \]

If \(G_{17}\) or \(G_{18}\) is bounded, the same property follows for \(G_{16}\), \(G_{16}\), and \(G_{16}\), \(G_{17}\) respectively.

Remark 4: If \(G_{16}\) is bounded, from below, the same property holds for \(G_{17}\) and \(G_{18}\). The proof is analogous with the preceding one. An analogous property is true if \(G_{17}\) is bounded from below.

Remark 5: If \(T_{16}\) is bounded from below and \(\lim_{t \to \infty}((b'_{17})^{(2)}((G_{19})(t), t)) = (b'_{17})^{(2)}\) then \(T_{17} \to \infty\).

Definition of \((m)^{(2)}\) and \(\varepsilon_{2}\):

Indeed let \(t_{2}\) be so that for \(t > t_{2}\)

\[(b_{17})^{(2)} - (b_{17})^{(2)}((G_{19})(t), t) < \varepsilon_{2}, T_{16}(t) > (m)^{(2)} \]

Then \(\frac{dT_{17}}{dt} > (a_{17})^{(2)}(m)^{(2)} - \varepsilon_{17}T_{17}\) which leads to

\[T_{17} \geq \frac{(a_{17})^{(2)}(m)^{(2)}}{\varepsilon_{2}} (1 - e^{-\varepsilon_{2}t}) + T_{17}^{2}e^{-\varepsilon_{2}t} \quad \text{If we take } t \text{ such that } e^{-\varepsilon_{2}t} = \frac{1}{2} \text{ it results} \]

\[T_{17} \geq \frac{(a_{17})^{(2)}(m)^{(2)}}{\varepsilon_{2}^{2}} \quad t = \log \frac{2}{\varepsilon_{2}} \text{ By taking now } \varepsilon_{2} \text{ sufficiently small one sees that } T_{17} \text{ is unbounded.} \]

The same property holds for \(T_{19}\) if \(\lim_{t \to \infty}((b'_{19})^{(2)}((G_{19})(t), t)) = (b'_{19})^{(2)}\)

We now state a more precise theorem about the behaviors at infinity of the solutions of equations 37 to 42

It is now sufficient to take \(\frac{(a_{2})^{(3)}}{(M_{20})^{(3)}} < \frac{(b_{1})^{(3)}}{(M_{20})^{(3)}} < 1\) and to choose

\((\bar{P}_{20})^{(3)}\) and \((\bar{Q}_{20})^{(3)}\) large to have

\[\frac{(a_{2})^{(3)}}{(M_{20})^{(3)}} \left[(\bar{P}_{20})^{(3)} + ((\bar{P}_{20})^{(3)} + G_{j}^{(3)})e^{-(P_{20})^{(3)+e_{j}^{(3)}}} \right] \leq (\bar{P}_{20})^{(3)} \]

www.ijsrp.org
\[
\frac{(b_1^{(3)})}{(M_1^{(3)})} \left[\left(\hat{Q}_{20}^{(3)} + T^3 \right) - \frac{1}{2} \left(\frac{(Q_{20}^{(3)})^2 + \dot{Q}_{20}^{(3)}}{2} \right) \right] \leq \left(\hat{Q}_{20}^{(3)} \right)
\]

In order that the operator \(\mathcal{A}^{(3)} \) transforms the space of sextuples of functions \(G_i, T_i \) satisfying into itself

The operator \(\mathcal{A}^{(3)} \) is a contraction with respect to the metric

\[
d \left(\left((G_{23}^{(1)}, (T_{23}^{(1)})), (G_{23}^{(2)}, (T_{23}^{(2)})) \right) \right) = \sup \left[\max_{t \in \mathbb{R}_+} \left| G_1^{(1)}(t) - G_1^{(2)}(t) \right| e^{-\alpha \left((Q_{20}^{(3)})^2 + \dot{Q}_{20}^{(3)} \right)} \right] + \max_{t \in \mathbb{R}_+} \left| T_1^{(1)}(t) - T_1^{(2)}(t) \right| e^{-\alpha \left((Q_{20}^{(3)})^2 + \dot{Q}_{20}^{(3)} \right)}
\]

Indeed if we denote

Definition of \(\mathcal{G}_{23}^{\alpha}, \mathcal{T}_{23}^{\alpha} : (\mathcal{G}_{23}^{(1)}, (T_{23}^{(1)})) = \mathcal{A}^{(3)}((G_{23}^{(1)}, (T_{23}^{(1)})) \)

It results

\[
\left| G_1^{(1)}(a_{20}^{(2)}) - G_1^{(2)}(a_{20}^{(2)}) \right| \leq \int_0^t \left| G_2^{(1)}(a_{20}^{(2)}) - G_2^{(2)}(a_{20}^{(2)}) \right| e^{-\alpha \left((Q_{20}^{(3)})^2 + \dot{Q}_{20}^{(3)} \right)} ds_{(20)} + \int_0^t \left| a_{20}^{(1)}(T_{21}^{(1)}, s_{(20)}) - a_{20}^{(2)}(T_{21}^{(2)}, s_{(20)}) \right| e^{-\alpha \left((Q_{20}^{(3)})^2 + \dot{Q}_{20}^{(3)} \right)} ds_{(20)}
\]

Where \(s_{(20)} \) represents integrand that is integrated over the interval \([0, t]\)

From the hypotheses it follows

\[
\left| G_1^{(1)} - G_1^{(2)} \right| e^{-\alpha \left((Q_{20}^{(3)})^2 + \dot{Q}_{20}^{(3)} \right)} \leq \frac{1}{(M_{20}^{(3)})} \left((a_{20}^{(3)} + a_{20}^{(3)}) + (A_{20}^{(3)} + P_{20}^{(3)} + k_{20}^{(3)}) \right) d \left((G_{23}^{(1)}, (T_{23}^{(1)}), (G_{23}^{(2)}, (T_{23}^{(2)})) \right)
\]

And analogous inequalities for \(G_i \) and \(T_i \). Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed \((a_{ii}^{(3)}) \) and \((b_{ii}^{(3)}) \) depending also on \(t \) can be considered as not conformal with the reality, however we have put this hypothesis in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by \((\hat{P}_{20}^{(3)}) e^{-\alpha (Q_{20}^{(3)})^2} \) and \((\hat{Q}_{20}^{(3)}) e^{-\alpha (Q_{20}^{(3)})^2} \) respectively of \(\mathbb{R}_+ \).

If instead of proving the existence of the solution on \(\mathbb{R}_+ \), we have to prove it only on a compact then it suffices to consider that \((a_{ii}^{(3)}) \) and \((b_{ii}^{(3)}) \), \(i = 20, 21, 22 \) depend only on \(T_{21} \) and respectively on \(G_{23} \) (and not on \(t \)) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any \(t \) where \(G_i(t) = 0 \) and \(T_i(t) = 0 \)

From 19 to 24 it results

\[
G_i(t) \geq \frac{\alpha}{(M_{20}^{(3)})} \left[\int_0^t (a_{20}^{(3)} - a_{20}^{(3)}) (T_{21}(s_{(20)}), s_{(20)}) ds_{(20)} \right] \geq 0
\]

\[
T_i(t) \geq \frac{\alpha}{(M_{20}^{(3)})} (b_{20}^{(3)}) > 0 \quad \text{for} \ t > 0
\]

Definition of \((M_{20}^{(3)}) \) : \((M_{20}^{(3)})_1, (M_{20}^{(3)})_2 \) and \((M_{20}^{(3)})_3 \) :

Remark 3: if \(G_{20} \) is bounded, the same property have also \(G_{21} \) and \(G_{22} \). Indeed if
\[G_{20} < (M_{20})^{(3)} \] it follows \[\frac{dG_{21}}{dt} \leq ((M_{20})^{(3)} - (a_{21})^{(3)})G_{21} \] and by integrating
\[G_{21} \leq ((M_{20})^{(3)})_{1}^{2} = G_{21}^{0} + 2(a_{21})^{(3)}((M_{20})^{(3)})_{1}^{2}/(a_{21})^{(3)} \]

In the same way, one can obtain
\[G_{22} \leq ((M_{20})^{(3)})_{1}^{3} = G_{22}^{0} + 2(a_{22})^{(3)}((M_{20})^{(3)})_{1}^{3}/(a_{22})^{(3)} \]

If \(G_{21} \) or \(G_{22} \) is bounded, the same property follows for \(G_{20} \), \(G_{22} \) and \(G_{20} \), \(G_{21} \) respectively.

Remark 4: If \(G_{20} \) is bounded, from below, the same property holds for \(G_{21} \) and \(G_{22} \). The proof is analogous with the preceding one. An analogous property is true if \(G_{21} \) is bounded from below.

Remark 5: If \(T_{20} \) is bounded from below and \(\lim_{t \to \infty}((b_{21}^{(3)}((G_{23}(t), t)) = (b_{21}^{(3)}) \) then \(T_{21} \to \infty \).

Definition of \((m)^{(3)} \) and \(\varepsilon_{3} \):

Indeed let \(t_{3} \) be so that for \(t > t_{3} \)
\[(b_{21}^{(3)}(t)) < \varepsilon_{3}, T_{20}(t) > (m)^{(3)} \]

Then \[\frac{dT_{21}}{dt} > (a_{21})^{(3)}(m)^{(3)} - \varepsilon_{3}T_{21} \] which leads to
\[T_{21} \geq \frac{(a_{21})^{(3)}(m)^{(3)}}{\varepsilon_{3}}(1 - e^{-\varepsilon_{3}t}) + T_{21}^{0}e^{-\varepsilon_{3}t} \] If we take \(t \) such that \(e^{-\varepsilon_{3}t} = \frac{1}{2} \) it results
\[T_{21} \geq \frac{(a_{21})^{(3)}(m)^{(3)}}{2} \]

By taking now \(\varepsilon_{3} \) sufficiently small one sees that \(T_{21} \) is unbounded.
The same property holds for \(T_{22} \) if \(\lim_{t \to \infty}((b_{22}^{(3)}((G_{23}(t), t) = (b_{22}^{(3)}) \)

We now state a more precise theorem about the behaviors at infinity of the solutions of equations 37 to 42

It is now sufficient to take \[\frac{(a_{1}^{(4)})(b_{1}^{(4)})}{(M_{24})^{(4)}} \leq 1 \] and to choose
\[(\tilde{P}_{24})^{(4)} \text{ and } (\bar{Q}_{24})^{(4)} \text{ large to have} \]
\[
\frac{(a_{1}^{(4)})}{(M_{24})^{(4)}} \left[\left(P_{24}^{(4)} \right) + \left(\tilde{P}_{24}^{(4)} + G_{j}^{(4)} \right) e^{-\left(\frac{(Q_{24}^{(4)})^{+}}{r_{j}^{4}} \right)} \right] \leq (\tilde{P}_{24})^{(4)}
\]
\[
\frac{(b_{1}^{(4)})}{(M_{24})^{(4)}} \left[\left(Q_{24}^{(4)} + T_{j}^{0} \right) e^{-\left(\frac{(Q_{24}^{(4)})^{+}}{r_{j}^{4}} \right)} + (\bar{Q}_{24}^{(4)}) \right] \leq (\bar{Q}_{24})^{(4)}
\]

In order that the operator \(A^{(4)} \) transforms the space of sextuples of functions \(G_{i}, T_{i} \) satisfying into itself

The operator \(A^{(4)} \) is a contraction with respect to the metric
\[d \left(((G_{22})^{(1)}, (T_{22})^{(1)}), ((G_{22})^{(2)}, (T_{22})^{(2)}) \right) =
\[\sup_{t \in \mathbb{R}^{+}} \max \left| G_{i}^{(1)}(t) - G_{i}^{(2)}(t) \right| e^{-\left(\frac{(Q_{24}^{(4)} + T_{j}^{0})}{r_{j}^{4}} \right)} + \max \left| T_{i}^{(1)}(t) - T_{i}^{(2)}(t) \right| e^{-\left(\frac{(Q_{24}^{(4)} + T_{j}^{0})}{r_{j}^{4}} \right)} \]

Indeed if we denote

www.ijsrp.org
Definition of (\bar{G}_{27}, T_{27}) :

$(\bar{G}_{27}, T_{27}) = \mathcal{A}^{(4)}((G_{27}, T_{27}))$

It results

\[
\left| \bar{G}^{(1)}_{24} - \bar{G}^{(2)}_{24} \right| \leq \int_{0}^{t} (a_{24})^{(4)} \left| \bar{G}^{(1)}_{25} - \bar{G}^{(2)}_{25} \right| e^{-((\bar{M}_{24})^{(4)}(s_{24}))} e^{((\bar{M}_{24})^{(4)}(s_{24}))} ds_{24} + \\
\int_{0}^{t} (a_{24})^{(4)} \left| \bar{G}^{(1)}_{24} - \bar{G}^{(2)}_{24} \right| e^{-((\bar{M}_{24})^{(4)}(s_{24}))} e^{((\bar{M}_{24})^{(4)}(s_{24}))} + \\
(a_{24})^{(4)} \left| T_{25}^{(1)}, s_{24} \right| \left| \bar{G}^{(1)}_{25} - \bar{G}^{(2)}_{25} \right| e^{-((\bar{M}_{24})^{(4)}(s_{24}))} e^{((\bar{M}_{24})^{(4)}(s_{24}))} + \\
\left| (a_{24})^{(4)}(T_{25}^{(1)}, s_{24}) \right| \bar{G}^{(1)}_{25} - \bar{G}^{(2)}_{25} \right| e^{-((\bar{M}_{24})^{(4)}(s_{24}))} e^{((\bar{M}_{24})^{(4)}(s_{24}))} ds_{24}
\]

Where s_{24} represents integrand that is integrated over the interval $[0, t]$

From the hypotheses it follows

\[
\left| (G_{27})^{(1)} - (G_{27})^{(2)} \right| e^{-((\bar{M}_{24})^{(4)}(t))} \leq \\
\frac{1}{(\bar{M}_{24})^{(4)}} ((a_{24})^{(4)} + (a_{24})^{(4)} + (\bar{A}_{24})^{(4)} + (\bar{P}_{24})^{(4)}(\bar{k}_{24})^{(4)} d \left((G_{27})^{(1)}, (T_{27})^{(1)}; (G_{27})^{(2)}, (T_{27})^{(2)} \right))
\]

And analogous inequalities for G_{i} and T_{i}. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed $(a_{24})^{(4)}$ and $(b_{24})^{(4)}$ depending also on t can be considered as not conformal with the reality, however we have put this hypothesis, in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by $(\bar{P}_{24})^{(4)}e^{(\bar{M}_{24})^{(4)}(t)}$ and $(\bar{Q}_{24})^{(4)}e^{(\bar{M}_{24})^{(4)}(t)}$ respectively of \mathbb{R}_{+}.

If instead of proving the existence of the solution on \mathbb{R}_{+}, we have to prove it only on a compact then it suffices to consider that $(a_{i})^{(4)}(t)$ and $(b_{i})^{(4)}(t), i = 24, 25, 26$ depend only on T_{25} and respectively on $(G_{27})(and not on t)$ and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where $G_{i}(t) = 0$ and $T_{i}(t) = 0$

From 19 to 24 it results

\[
G_{i}(t) \geq G_{0_{i}} e^{-\int_{0}^{t} (a_{24})^{(4)}(r_{25}(s_{24}), s_{24})(ds_{24})} \geq 0
\]

\[
T_{i}(t) \geq T_{0_{i}} e^{-((b_{i})^{(4)}(t))} > 0 \quad \text{for } t > 0
\]

Definition of $(\bar{M}_{24})^{(4)}_{1}, (\bar{M}_{24})^{(4)}_{2}$ and $(\bar{M}_{24})^{(4)}_{3}$:

Remark 3: if G_{24} is bounded, the same property have also G_{25} and G_{26} . indeed if

\[
G_{24} < (\bar{M}_{24})^{(4)} \text{ it follows } \frac{dG_{25}}{dt} \leq (\bar{M}_{24})^{(4)}_{i} - ((a_{24})^{(4)}(t_{25}(s_{24}), s_{24}))(ds_{24}) + \\
G_{25} \leq ((\bar{M}_{24})^{(4)}_{2})_{i} = G_{25}^{0} + 2(a_{25}^{(4)}((\bar{M}_{24})^{(4)}_{1})_{i} / (a_{25})^{(4)}
\]

In the same way, one can obtain

\[
G_{26} \leq ((\bar{M}_{24})^{(4)}_{3})_{i} = G_{26}^{0} + 2(a_{26}^{(4)}((\bar{M}_{24})^{(4)}_{2})_{i} / (a_{26})^{(4)}
\]

If G_{25} or G_{26} is bounded, the same property follows for G_{24}, G_{26} and G_{24}, G_{25} respectively.
Remark 4: If \(G_{25} \) is bounded, from below, the same property holds for \(G_{25} \) and \(G_{26} \). The proof is analogous with the preceding one. An analogous property is true if \(G_{25} \) is bounded from below.

Remark 5: If \(T_{24} \) is bounded from below and \(\lim_{t \to \infty} ((b''_{26})(t), t) = (b''_{25})(t) \) then \(T_{25} \to \infty \).

Definition of \((m)^{(4)}\) and \(\varepsilon_4 \):

Indeed let \(t_4 \) be so that for \(t > t_4 \)

\[
(b_{25})^{(4)} - (b''_{25})(t) < \varepsilon_4, T_{24} > (m)^{(4)}
\]

Then \(\frac{dT_{25}}{dt} \geq (a_{25})^{(4)}(m)^{(4)} - \varepsilon_4 T_{25} \) which leads to

\[
T_{25} \geq \left(\frac{(a_{25})^{(4)}(m)^{(4)}}{\varepsilon_4} \right) (1 - e^{-\varepsilon_4 t}) + T_{25}^0 e^{-\varepsilon_4 t}
\]

If we take \(t \) such that \(e^{-\varepsilon_4 t} = \frac{1}{2} \) it results

\[
T_{25} \geq \left(\frac{(a_{25})^{(4)}(m)^{(4)}}{\varepsilon_4} \right), \quad t = \log \frac{2}{\varepsilon_4}
\]

By taking now \(\varepsilon_4 \) sufficiently small one sees that \(T_{25} \) is unbounded.

The same property holds for \(T_{26} \) if \(\lim_{t \to \infty} (b''_{26})(t) = (b''_{25})(t) \).

We now state a more precise theorem about the behaviors at infinity of the solutions.

Analogous inequalities hold also for \(G_{29}, G_{30}, T_{28}, T_{29}, T_{30} \)

It is now sufficient to take \(\frac{(a_{26})^{(5)}}{(G_{28})^{(5)}} < 1 \) and to choose

\((\bar{P}_{28})^{(5)} \) and \((\bar{Q}_{28})^{(5)} \) large to have

\[
\frac{(a_{21})^{(5)}}{(G_{28})^{(5)}} \left[(\bar{P}_{28})^{(5)} + ((\bar{P}_{28})^{(5)} + G_{j}^{(5)}) e^{-\frac{(P_{28})^{(5)}}{G_{j}^{(5)}}} \right] \leq (\bar{P}_{28})^{(5)}
\]

\[
\frac{(b_{21})^{(5)}}{(G_{28})^{(5)}} \left[((\bar{Q}_{28})^{(5)} + T_{j}^{(5)} e^{-\frac{(Q_{28})^{(5)}}{T_{j}^{(5)}}} \right] \leq (\bar{Q}_{28})^{(5)}
\]

In order that the operator \(\mathcal{A}^{(5)} \) transforms the space of sextuples of functions \(G_i, T_j \) into itself.

The operator \(\mathcal{A}^{(5)} \) is a contraction with respect to the metric

\[
d\left(((G_{31})^{(1)}, (T_{31})^{(1)}), ((G_{32})^{(2)}, (T_{31})^{(2)}) \right) =
\]

\[
sup_{\text{max} \left[G_{i}^{(1)}(t) - G_{i}^{(2)}(t) \right]} e^{-\frac{(G_{28})^{(5)}}{(T_{28})^{(5)}}} \max_{\text{max} \left[T_{i}^{(1)}(t) - T_{i}^{(2)}(t) \right]} e^{-\frac{(G_{28})^{(5)}}{(T_{28})^{(5)}}}
\]

Indeed if we denote

Definition of \((\bar{G}_{33}, \bar{T}_{31}) : (\bar{G}_{33}, \bar{T}_{31}) \) is \(\mathcal{A}^{(5)}((G_{33}, T_{31})) \)

It results
From 19 to 28 it results conformal with the reality, however we have put this hypothesis, in order that we can postulate condition respectively of

\[G_{29}^{(1)} - G_{29}^{(2)} \leq \int_0^t (a_{28}^{(5)}) [G_{29}^{(1)} - G_{29}^{(2)}] e^{-(\mathcal{M}_{28})^{(5)}(s_{28})} e^{(\mathcal{M}_{28})^{(5)}s_{28}} ds_{28} + \]

\[\int_0^t (a_{28}^{(5)}) [G_{29}^{(1)} - G_{29}^{(2)}] e^{-(\mathcal{M}_{28})^{(5)}(s_{28})} e^{-(\mathcal{M}_{28})^{(5)}s_{28}} + \]

\[(a_{28}^{(5)})(T_{29}^{(1)}, s_{28})) \int_{29}^{(1)} - G_{29}^{(2)}] e^{-(\mathcal{M}_{28})^{(5)}s_{28}) d\mathcal{M}_{28}(s_{28}) \]

\[G_{28}^{(2)} (a_{28}^{(5)}(T_{29}^{(1)}, s_{28})) - (a_{28}^{(5)}(T_{29}^{(1)}, s_{28})) e^{-(\mathcal{M}_{28})^{(5)}s_{28}) e^{(\mathcal{M}_{28})^{(5)}s_{28}} dS_{28} \]

Where \(s_{28} \) represents integrand that is integrated over the interval \([0, t]\)

From the hypotheses it follows

\[\left| (G_{31})^{(1)} - (G_{31})^{(2)} \right| e^{-(\mathcal{M}_{28})^{(5)}t} \leq \]

\[\frac{1}{(\mathcal{M}_{28})^{(5)}} [(a_{28}^{(5))} + (a_{28}^{(5)}) + (\mathcal{M}_{28})^{(5)} + (P_{28})^{(5)}(\mathcal{M}_{28})^{(5)}] d \left((G_{31})^{(1)}, (T_{31})^{(1)}; (G_{31})^{(2)}, (T_{31})^{(2)} \right) \]

And analogous inequalities for \(G_i \) and \(T_i \). Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed \((a_{28}^{(5)}) \) and \((b_{28}^{(5)}) \) depending also on \(t \) can be considered as not conformal with the reality, however we have put this hypothesis, in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by \((P_{28})^{(5)} e^{(\mathcal{M}_{28})^{(5)}t} \) and \((G_{28})^{(5)} e^{(\mathcal{M}_{28})^{(5)}t} \) respectively of \(\mathbb{R}^+ \).

If instead of proving the existence of the solution on \(\mathbb{R}^+ \), we have to prove it only on a compact then it suffices to consider that \((a_{i}^{(5)}(s_{28})) = 0 \), \(i = 28, 29, 30 \) depend only on \(T_{28} \) and respectively on \((G_{31})(not\,\,\,on\,\,\,t) \) and hypothesis can be replaced by a usual Lipschitz condition.

Remark 2: There does not exist any \(t \) where \(G_i(t) = 0 \) and \(T_i(t) = 0 \)

From 19 to 28 it results

\[G_i(t) \geq G_{i0} e^{-\int_0^t (a_i^{(5)}(s_{28})) ds_{28}} \geq 0 \]

\[T_i(t) \geq T_{i0} e^{-(\mathcal{M}_{i})^{(5)}} > 0 \quad \text{for} \quad t > 0 \]

Definition of \((\mathcal{M}_{28})^{(5)}\) : \((\mathcal{M}_{28})^{(5)}_2 \) and \((\mathcal{M}_{28})^{(5)}_3 \):

Remark 3: If \(G_{28} \) is bounded, the same property have also \(G_{29} \) and \(G_{30} \). Indeed if

\[G_{28} \leq (\mathcal{M}_{28})^{(5)} \text{ it follows } \frac{dG_{28}}{dt} \leq (\mathcal{M}_{28})^{(5)}_1 - (a_{28})^{(5)}G_{28} \text{ and by integrating } \]

\[G_{29} \leq (\mathcal{M}_{29})^{(5)}_1 = G_{290} + 2(a_{28})^{(5)}((\mathcal{M}_{28})^{(5)}_1 / (a_{28}))^{(5)} \]

In the same way, one can obtain

\[G_{30} \leq (\mathcal{M}_{30})^{(5)}_3 \]

If \(G_{29} \) or \(G_{30} \) is bounded, the same property follows for \(G_{28} \), \(G_{30} \) and \(G_{28} \), \(G_{29} \) respectively.

Remark 4: If \(G_{28} \) is bounded, from below, the same property holds for \(G_{29} \) and \(G_{30} \). The proof is analogous with the preceding one. An analogous property is true if \(G_{29} \) is bounded from below.

Remark 5: If \(T_{28} \) is bounded from below and \(\lim_{t \to \infty} ((b_{29})^{(5)}((G_{31})(t), t)) = (b_{29})^{(5)} \) then \(T_{29} \to \infty \).

www.ijsrp.org
Definition of \((m)^{(5)}\) and \(\varepsilon_5\) :

Indeed let \(t_5\) be so that for \(t > t_5\)

\[
(b_{29})^{(5)} - (b''_{29})^{(5)}((G_{31})(t), t) < \varepsilon_5, T_{29}(t) > (m)^{(5)}
\]

Then \(\frac{dT_{29}}{dt} \geq (a_{29})^{(5)}(m)^{(5)} - \varepsilon_5 T_{29}\) which leads to

\[
T_{29} \geq \left(\frac{(a_{29})^{(5)}(m)^{(5)}}{\varepsilon_5}\right)(1 - e^{-\varepsilon_5 t}) + T_{29}^0 e^{-\varepsilon_5 t} \quad \text{If we take } t \text{ such that } e^{-\varepsilon_5 t} = \frac{1}{2} \text{ it results}
\]

\[
T_{29} \geq \left(\frac{(a_{29})^{(5)}(m)^{(5)}}{2}\right), \quad t = \log \frac{2}{\varepsilon_5} \quad \text{By taking now } \varepsilon_5 \text{ sufficiently small one sees that } T_{29} \text{ is unbounded.}
\]

The same property holds for \(T_{30}\) if \(\lim_{t \to \infty} (b''_{30})^{(5)}((G_{31})(t), t) = (b''_{30})^{(5)}\)

We now state a more precise theorem about the behaviors at infinity of the solutions

Analogous inequalities hold also for \(G_{33}, G_{34}, T_{32}, T_{33}, T_{34}\)

It is now sufficient to take \(\frac{(a_j)^{(6)}}{(M_{32})^{(6)}} \cdot \frac{(b_j)^{(6)}}{(M_{32})^{(6)}} < 1\) and to choose

\((\bar{P}_{32})^{(6)}\) and \((\bar{Q}_{32})^{(6)}\) large to have

\[
\frac{(a_j)^{(6)}}{(M_{32})^{(6)}} \left[(\bar{P}_{32})^{(6)} + (\bar{P}_{32})^{(6)} + G_j^0 e^{-\left(\frac{(\bar{P}_{32})^{(6)} + \bar{Q}_j^0}{2}\right)} \right] \leq (\bar{P}_{32})^{(6)}
\]

\[
\frac{(b_j)^{(6)}}{(M_{32})^{(6)}} \left[(\bar{Q}_{32})^{(6)} + T_j^0 e^{-\left(\frac{(\bar{Q}_{32})^{(6)} + \bar{T}_j^0}{r_j} \right)} \right] \leq (\bar{Q}_{32})^{(6)}
\]

In order that the operator \(A^{(6)}\) transforms the space of sextuples of functions \(G_i, T_i\) into itself
The operator $\mathcal{A}^{(6)}$ is a contraction with respect to the metric

$$d \left((G_{35}^{(1)}, T_{35}^{(1)}), (G_{35}^{(2)}, T_{35}^{(2)}) \right) =$$

$$\sup_{t \in \mathbb{R}^+} \left(\max_{i} |G_i^{(1)}(t) - G_i^{(2)}(t)| e^{- (\mathcal{H}_{32})^{(6)} t} \right) \max_{i} |T_i^{(1)}(t) - T_i^{(2)}(t)| e^{- (\mathcal{H}_{32})^{(6)} t}$$

Indeed if we denote

Remark 1: The fact that we supposed $(a_{32}''^{(6)})$ and $(b_{32}''^{(6)})$ depending also on t can be considered as not conformal with the reality, however we have put this hypothesis, in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by $(\mathcal{P}_{32})^{(6)} e^{(\mathcal{H}_{32})^{(6)} t}$ and $(\mathcal{Q}_{32})^{(6)} e^{(\mathcal{H}_{32})^{(6)} t}$ respectively of $\mathbb{R}^+.$

If instead of proving the existence of the solution on \mathbb{R}^+, we have to prove it only on a compact then it suffices to consider that $(a_{i}^{''''})^{(6)}$ and $(b_{i}^{''''})^{(6)}, i = 32,33,34$ depend only on T_{33} and respectively on (G_{33}) and not on t and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where $G_i(t) = 0$ and $T_i(t) = 0$

it results

$$G_i(t) \geq G_0 e^{\left[- \int_{0}^{t} (a_i^{''''})^{(6)} - (a_i^{''''})^{(6)} (T_{33}(s_{32}), s_{32})] ds_{32} \right]} \geq 0$$

$$T_i(t) \geq T_0 e^{-(b_i^{''''})^{(6)} t} > 0 \quad \text{for } t > 0$$

Remark 3: if G_{32} is bounded, the same property have also G_{33} and G_{34}, indeed if

$G_{32} < (\bar{M}_{32})^{(6)}$ it follows $\frac{dg_{32}}{dt} \leq (\bar{M}_{32})^{(6)}_1 - (a_{32}^{''''})^{(6)} G_{33}$ and by integrating
Indeed let

\[G_{33} \leq (\bar{M}_{32})^{(6)}_2 = G_{33}^0 + 2(a_{33})^{(6)}(\bar{M}_{32})^{(6)}_4/(a_{33}')^{(6)} \]

In the same way, one can obtain

\[G_{34} \leq (\bar{M}_{32})^{(6)}_3 = G_{34}^0 + 2(a_{34})^{(6)}(\bar{M}_{32})^{(6)}_4/(a_{34}')^{(6)} \]

If \(G_{33} \) or \(G_{34} \) is bounded, the same property follows for \(G_{32} \), \(G_{34} \) and \(G_{32} \), \(G_{33} \) respectively.

Remark 4: If \(G_{32} \) is bounded, from below, the same property holds for \(G_{33} \) and \(G_{34} \). The proof is analogous with the preceding one. An analogous property is true if \(G_{33} \) is bounded from below.

Remark 5: If \(T_{32} \) is bounded from below and \(\lim_{t \to \infty} (b''_i(t)) \) \((G_{35}(t), t)) = (b''_{33}(t)) \) then \(T_{33} \to \infty \).

Definition of \((m)^{(6)}\) and \(\epsilon_6 \):

Indeed let \(t_6 \) be so that for \(t > t_6 \)

\[(b_{33})^{(6)} - (b''_i(t))((G_{35}(t), t)) < \epsilon_6, T_{32}(t) > (m)^{(6)} \]

Then \(\frac{dT_{33}}{dt} \geq (a_{33})^{(6)}(m)^{(6)} - \epsilon_6 T_{33} \) which leads to

\[T_{33} \geq \left(\frac{(a_{33})^{(6)}(m)^{(6)}}{\epsilon_6} \right)(1 - e^{-\epsilon_6 t}) + T_{33}^0 e^{-\epsilon_6 t} \]

If we take \(t \) such that \(e^{-\epsilon_6 t} = \frac{1}{2} \), it results

\[T_{33} \geq \left(\frac{(a_{33})^{(6)}(m)^{(6)}}{2} \right), \quad t = \log \frac{2}{\epsilon_6} \] By taking now \(\epsilon_6 \) sufficiently small one sees that \(T_{33} \) is unbounded.

The same property holds for \(T_{34} \) if \(\lim_{t \to \infty} (b''_{34}(t)) \) \((G_{35}(t), t(t), t) = (b''_{34}(t)) \)

We now state a more precise theorem about the behaviors at infinity of the solutions of equations 37 to 42

Behavior of the solutions

Theorem 2: If we denote and define

Definition of \((\sigma_1)^{(1)}, (\sigma_2)^{(1)}, (\tau_1)^{(1)}, (\tau_2)^{(1)} :\)

(a) \(\sigma_1)^{(1)}, (\sigma_2)^{(1)}, (\tau_1)^{(1)}, (\tau_2)^{(1)} \) four constants satisfying

\[-(\sigma_1)^{(1)} \leq -(a_{13})^{(1)} + (a_{14})^{(1)} - \left(a_{13}'(T_{14} + t) + (a_{14}'(T_{14} + t) \leq -(\sigma_1)^{(1)} \right) \]

\[-(\tau_2)^{(1)} \leq -(b_{13})^{(1)} + (b_{14})^{(1)} - \left(b_{13}'(G, t) - (b_{14}'(G, t) \leq -(\tau_1)^{(1)} \right) \]

Definition of \((v_1)^{(1)}, (v_2)^{(1)}, (u_1)^{(1)}, (u_2)^{(1)}, v^{(1)}, u^{(1)} :\)

(b) By \((v_2)^{(1)} > 0, (v_2)^{(1)} < 0 \) and respectively \((u_2)^{(1)} > 0, (u_2)^{(1)} < 0 \) the roots of the equations

\[(a_{14})^{(1)}(v^{(1)})^2 + (\sigma_2)^{(1)}v^{(1)} - (a_{13})^{(1)} = 0 \] and \((b_{14})^{(1)}(u^{(1)})^2 + (\tau_1)^{(1)}u^{(1)} - (b_{13})^{(1)} = 0 \]

Definition of \((\tilde{v}_1)^{(1)}, (\tilde{v}_2)^{(1)}, (\tilde{u}_1)^{(1)}, (\tilde{u}_2)^{(1)} :\)

By \((\tilde{v}_1)^{(1)} > 0, (\tilde{v}_2)^{(1)} < 0 \) and respectively \((\tilde{u}_1)^{(1)} > 0, (\tilde{u}_2)^{(1)} < 0 \) the roots of the equations

\[(a_{14})^{(1)}(v^{(1)})^2 + (\sigma_2)^{(1)}v^{(1)} - (a_{13})^{(1)} = 0 \] and \((b_{14})^{(1)}(u^{(1)})^2 + (\tau_1)^{(1)}u^{(1)} - (b_{13})^{(1)} = 0 \]

Definition of \((m_1)^{(1)}, (m_2)^{(1)}, (\mu_1)^{(1)}, (\mu_2)^{(1)}, (v_0)^{(1)} :\)

www.ijsrp.org
(c) If we define \((m_1)^{(1)}(m_2)^{(1)}(\mu_1)^{(1)}(\mu_2)^{(1)}\) by
\[
(m_1)^{(1)} = (v_0)^{(1)}, (m_2)^{(1)} = (v_1)^{(1)}, \text{if } (v_0)^{(1)} < (v_1)^{(1)}
\]
\[
(m_2)^{(1)} = (v_1)^{(1)}, (m_2)^{(1)} = (\tilde{v}_1)^{(1)}, \text{if } (v_1)^{(1)} < (\tilde{v}_1)^{(1)},
\]
and \(\frac{v_0}{v_1} \leq 1\)
\[
(m_2)^{(1)} = (v_1)^{(1)}, (m_2)^{(1)} = (v_0)^{(1)}, \text{if } (\tilde{v}_1)^{(1)} < (v_0)^{(1)}
\]
and analogously
\[
(\mu_1)^{(1)} = (u_0)^{(1)}, (\mu_1)^{(1)} = (u_1)^{(1)}, \text{if } (u_0)^{(1)} < (u_1)^{(1)}
\]
\[
(\mu_2)^{(1)} = (u_1)^{(1)}, (\mu_2)^{(1)} = (\tilde{u}_1)^{(1)}, \text{if } (u_1)^{(1)} < (\tilde{u}_1)^{(1)},
\]
and \(\frac{u_0}{u_1} \leq 1\)
\[
(\mu_2)^{(1)} = (u_1)^{(1)}, (\mu_2)^{(1)} = (u_0)^{(1)}, \text{if } (\tilde{u}_1)^{(1)} < (u_0)^{(1)}
\]
are defined by 59 and 61 respectively.

Then the solution satisfies the inequalities
\[
G_{13}^0 e^{((S_1)^{(1)} - (p_{13})^{(1)})t} \leq G_{13}^0 e^{(S_1)^{(1)}t} \leq G_{13}^0 e^{((S_1)^{(1)} + (p_{13})^{(1)})t}
\]
where \((p_{ij})^{(1)}\) is defined
\[
\left(\frac{1}{(m_3)^{(1)}}\right) G_{13}^0 e^{((R_i)^{(1)} - (p_{13})^{(1)})t} \leq G_{13}^0 e^{(R_i)^{(1)}t} \leq \left(\frac{1}{(m_3)^{(1)}}\right) G_{13}^0 e^{((R_i)^{(1)} + (p_{13})^{(1)})t}
\]
\[
\left(\frac{(a_{13})^{(1)}(a_{15})^{(1)}}{(m_3)^{(1)}(s_1)^{(1)} - (p_{13})^{(1)} - (s_2)^{(1)} - (s_2)^{(1)}}\right) e^{((S_1)^{(1)} - (p_{13})^{(1)})t} - e^{-(S_2)^{(1)}t} \leq \frac{G_{15}^0 e^{-(S_2)^{(1)}t} \leq G_{15}^0 t + \frac{G_{15}^0 e^{-(S_2)^{(1)}t}}}
\]
\[
T_{13}^0 e^{(R_i)^{(1)}t} \leq T_{13}^0 e^{((R_i)^{(1)} - (r_{13})^{(1)})t}
\]
\[
\left(\frac{1}{(m_3)^{(1)}}\right) T_{13}^0 e^{(R_i)^{(1)}t} \leq T_{13}^0 e^{((R_i)^{(1)} - (r_{13})^{(1)})t}
\]
\[
\left(\frac{(b_{13})^{(1)}(b_{15})^{(1)}}{(m_3)^{(1)}(R_i)^{(1)} - (b_{13})^{(1)} - (b_{15})^{(1)} - (b_{15})^{(1)}}\right) e^{((R_i)^{(1)} - (r_{13})^{(1)})t} - e^{-(b_{15})^{(1)}t} \leq T_{15}^0 e^{-(b_{15})^{(1)}t} \leq T_{15}^0 e^{(R_i)^{(1)}t}
\]
\[
\frac{G_{15}^0 e^{-(b_{15})^{(1)}t}}{\left(\frac{(a_{13})^{(1)}(a_{15})^{(1)}}{(m_3)^{(1)}(R_i)^{(1)} - (b_{13})^{(1)} - (b_{15})^{(1)} - (b_{15})^{(1)}}\right) e^{((R_i)^{(1)} - (r_{13})^{(1)})t} - e^{-(b_{15})^{(1)}t} + \frac{G_{15}^0 e^{-(b_{15})^{(1)}t}}}
\]

Definition of \((S_1)^{(1)}, (S_2)^{(1)}, (R_1)^{(1)}, (R_2)^{(1)}\):-

Where \((S_1)^{(1)} = (a_{13})^{(1)}(m_3)^{(1)} - (a_{15})^{(1)}\)
\[
(S_2)^{(1)} = (a_{15})^{(1)} - (p_{13})^{(1)}
\]
\[(R_1)^{(1)} = (b_{13})^{(1)}(\mu_1)^{(1)} - (b_{15})^{(1)}\)
\[(R_2)^{(1)} = (b_{15})^{(1)} - (r_{13})^{(1)}\]

www.ijsrp.org
Behavior of the solutions

If we denote and define

Definition of ($\sigma_1^{(2)}$, $\sigma_2^{(2)}$, $\tau_1^{(2)}$, $\tau_2^{(2)}$):

(d) $\sigma_1^{(2)}, \sigma_2^{(2)}, \tau_1^{(2)}, \tau_2^{(2)}$ four constants satisfying

\[-(\sigma_2^{(2)}) \leq -(a_{16}^{(2)}) + (a_{17}^{(2)}) - (a_{18}^{(2)}) (T_{17}, t) + (a_{17}^{(2)}) (T_{17}, t) \leq -(\sigma_1^{(2)})
\]

\[-(\tau_2^{(2)}) \leq -(b_{16}^{(2)}) + (b_{17}^{(2)}) - (b_{18}^{(2)}) (G_{19}, t) - (b_{17}^{(2)}) (G_{19}, t) \leq -(\tau_1^{(2)})
\]

Definition of ($v_1^{(2)}$, $v_2^{(2)}$, $u_1^{(2)}$, $u_2^{(2)}$):

By $v_1^{(2)} > 0, v_2^{(2)} < 0$ and respectively $u_1^{(2)} > 0, u_2^{(2)} < 0$ the roots of the equations

\[(a_{17}^{(2)})(v^{(2)})^2 + (\sigma_2^{(2)})v^{(2)} - (a_{16}^{(2)}) = 0
\]

and $b_{14}^{(2)}(u^{(2)})^2 + (\tau_2^{(2)})u^{(2)} - (b_{16}^{(2)}) = 0$ and

Definition of ($\bar{v}_1^{(2)}$, $\bar{v}_2^{(2)}$, $\bar{u}_1^{(2)}$, $\bar{u}_2^{(2)}$):

By $\bar{v}_1^{(2)} > 0, \bar{v}_2^{(2)} < 0$ and respectively $\bar{u}_1^{(2)} > 0, \bar{u}_2^{(2)} < 0$ the roots of the equations

\[(a_{17}^{(2)})(v^{(2)})^2 + (\sigma_2^{(2)})v^{(2)} - (a_{16}^{(2)}) = 0
\]

and $b_{14}^{(2)}(u^{(2)})^2 + (\tau_2^{(2)})u^{(2)} - (b_{16}^{(2)}) = 0$

Definition of ($m_1^{(2)}$, $m_2^{(2)}$, $\mu_1^{(2)}$, $\mu_2^{(2)}$):

(f) If we define $m_1^{(2)}, m_2^{(2)}, \mu_1^{(2)}, \mu_2^{(2)}$ by

\[m_2^{(2)} = (v_0^{(2)}), m_1^{(2)} = (v_1^{(2)}), \text{ if } v_0^{(2)} < v_1^{(2)}
\]

\[m_2^{(2)} = (v_1^{(2)}), m_1^{(2)} = (\bar{v}_1^{(2)}), \text{ if } v_1^{(2)} < v_0^{(2)} < \bar{v}_1^{(2)}
\]

and $v_0^{(2)} = \frac{c_{16}^{(2)}}{c_{17}^{(2)}}$

\[m_2^{(2)} = (v_1^{(2)}), m_1^{(2)} = (v_0^{(2)}), \text{ if } \bar{v}_1^{(2)} < v_0^{(2)}
\]

and analogously

\[\mu_2^{(2)} = (u_0^{(2)}), \mu_1^{(2)} = (u_1^{(2)}), \text{ if } u_0^{(2)} < u_1^{(2)}
\]

\[\mu_2^{(2)} = (u_1^{(2)}), \mu_1^{(2)} = (\bar{u}_1^{(2)}), \text{ if } u_1^{(2)} < u_0^{(2)} < \bar{u}_1^{(2)}
\]

and $u_0^{(2)} = \frac{\nu_0^{(2)}}{\nu_1^{(2)}}$

\[\mu_2^{(2)} = (u_1^{(2)}), \mu_1^{(2)} = (u_0^{(2)}), \text{ if } \bar{u}_1^{(2)} < u_0^{(2)}
\]

Then the solution satisfies the inequalities

$G_{16}^{0}e^{(S_{1}(t) - (p_{16})^{(2)}t)} \leq G_{16}(t) \leq G_{16}^{0}e^{(S_{1}(t))t}$

p_{1} is defined.
If we denote and define

\[
\frac{1}{(m_2)^2} G_{16}^0 e^{((S_1)^2-(p_{16}(S_1)^2)t) \leq G_{17}(t) \leq \frac{1}{(m_2)^2} G_{16}^0 e^{((S_1)^2)}
\]

\[
\left(\frac{(a_{18}(2)G_{16}^0)}{(m_2)^2((S_1)^2-(p_{16}(S_1)^2))} \right) [e^{((S_1)^2-(p_{16}(S_1)^2)t} - e^{((S_1)^2)t} + G_{16}^0 e^{-(S_1)^2}t \leq G_{18}(t) \leq
\]

\[
\left(\frac{(a_{18}(2)G_{16}^0)}{(m_2)^2((S_1)^2+(a_{18}(2))} \right) [e^{((S_1)^2} - e^{(a_{18}(2)t} + G_{16}^0 e^{-(a_{18}(2))}t
\]

\[
T_0^0 e^{(R_1)^2} \leq T_16(t) \leq T_0^0 e^{((R_1)^2+(r_{16}(S_1)^2)}t
\]

\[
\frac{1}{(m_2)^2} T_{16}^0 e^{(R_2(2))} \leq T_{16}(t) \leq \frac{1}{(m_2)^2} T_{16}^0 e^{(R_1(2)^2+(r_{16}(S_1)^2)}t
\]

\[
\left(\frac{(b_{18}(2)T_16^0)}{(m_2)^2((R_1)^2-(b_{18}(2))} \right) [e^{(R_1)^2} - e^{(b_{18}(2))} + T_{16}^0 e^{-(b_{18}(2))t} \leq T_{18}(t) \leq
\]

\[
\left(\frac{(a_{18}(2)T_0^0)}{(m_2)^2((R_1)^2+(r_{16}(S_1)^2)} \right) [e^{((R_1)^2+(r_{16}(S_1)^2))} - e^{((R_2)^2)} + T_{18}^0 e^{-(R_2)^2}t \leq T_{18}(t) \leq
\]

Definition of \((S_1)^2, (S_2)^2, (R_1)^2, (R_2)^2)\):

Where

\[
(S_1)^2 = (a_{16}(2)(m_2)^2) - (a_{16}(2)
\]

\[
(S_2)^2 = (a_{16}(2) - (p_{16}(2)
\]

\[
(R_1)^2 = (b_{16}(2)(\mu_2)^1) - (b_{16}(2)(2)
\]

\[
(R_2)^2 = (b_{16}(2) - (r_{16}(2)
\]

Behavior of the solutions

If we denote and define

Definition of \((\sigma_1)^3, (\sigma_2)^3, (\tau_1)^3, (\tau_2)^3)\):

(a) \((\sigma_1)^3, (\sigma_2)^3, (\tau_1)^3, (\tau_2)^3\) four constants satisfying

\[-(\sigma_2)^3 < -(a_{20}(3) + (a_{21}(3)) + (a_{20}(3))T_{21}, t) + (a_{22}(3))T_{21}, t) \leq -(\sigma_1)^3
\]

\[-(\tau_2)^3 < -(b_{20}(3) + (b_{21}(3)) - (b_{20}(3)(G, t) - (b_{22}(3))(G_{23}), t) \leq -(\tau_1)^3
\]

Definition of \((v_1)^3, (v_2)^3, (u_1)^3, (u_2)^3)\):

(b) By \((v_1)^3 > 0, (v_2)^3 < 0\) and respectively \((u_1)^3 > 0, (u_2)^3 < 0\) the roots of the equations

\[(a_{21}(3)(v_3)^2 + (\sigma_1)^3v_3) - (a_{20}(3)) = 0\]

and \((b_{21}(3)(u_3)^2 + (\tau_1)^3u_3) - (b_{20}(3)) = 0\) and

By \((\bar{v}_1)^3 > 0, (\bar{v}_2)^3 < 0\) and respectively \((\bar{u}_1)^3 > 0, (\bar{u}_2)^3 < 0\) the roots of the equations

\[(a_{21}(3)(v_3)^2 + (\sigma_2)^3v_3) - (a_{20}(3)) = 0\]

and \((b_{21}(3)(u_3)^2 + (\tau_2)^3u_3) - (b_{20}(3)) = 0\)

Definition of \((m_1)^3, (m_2)^3, (\mu_1)^3, (\mu_2)^3)\):

(c) If we define \((m_1)^3, (m_2)^3, (\mu_1)^3, (\mu_2)^3)\ by
Then the solution satisfies the inequalities

\[
(m_2)^{(3)} = (v_0)^{(3)}, (m_1)^{(3)} = (v_1)^{(3)}, \text{ if } (v_0)^{(3)} < (v_1)^{(3)}
\]

\[
(m_2)^{(3)} = (v_1)^{(3)}, (m_1)^{(3)} = (\tilde{v}_1)^{(3)}, \text{ if } (v_1)^{(3)} < (v_0)^{(3)} < (\tilde{v}_1)^{(3)},
\]

and \[
(v_0)^{(3)} = \frac{g_{20}^0}{g_{21}^0}
\]

\[
(m_2)^{(3)} = (v_1)^{(3)}, (m_1)^{(3)} = (v_0)^{(3)}, \text{ if } (\tilde{v}_1)^{(3)} < (v_0)^{(3)}
\]

and analogously

\[
(\mu_2)^{(3)} = (u_0)^{(3)}, (\mu_1)^{(3)} = (u_1)^{(3)}, \text{ if } (u_0)^{(3)} < (u_1)^{(3)}
\]

\[
(\mu_2)^{(3)} = (u_1)^{(3)}, (\mu_1)^{(3)} = (\tilde{u}_1)^{(3)}, \text{ if } (u_1)^{(3)} < (u_0)^{(3)} < (\tilde{u}_1)^{(3)}, \text{ and } (u_0)^{(3)} = \frac{r_{20}^0}{r_{21}^0}
\]

Then the solution satisfies the inequalities

\[
G_{20}^0 e^{((S_1)^{(3)} - (p_{20})^{(3)}) t} \leq G_{20}^0 e^{(S_2)^{(3)} t} \leq G_{20}^0 e^{((S_1)^{(3)} - (p_{20})^{(3)}) t}
\]

\[
(\mu_2)^{(3)} = (u_0)^{(3)}, (\mu_1)^{(3)} = (u_1)^{(3)}, \text{ if } (u_0)^{(3)} < (u_1)^{(3)}
\]

\[
(\mu_2)^{(3)} = (u_1)^{(3)}, (\mu_1)^{(3)} = (\tilde{u}_1)^{(3)}, \text{ if } (u_1)^{(3)} < (u_0)^{(3)} < (\tilde{u}_1)^{(3)}, \text{ and } (u_0)^{(3)} = \frac{r_{20}^0}{r_{21}^0}
\]

The solution satisfies the inequalities

\[
G_{20}^0 e^{((R_1)^{(3)} - (r_{20})^{(3)}) t} \leq G_{20}^0 e^{((R_1)^{(3)} + (r_{20})^{(3)}) t} \leq G_{20}^0 e^{((R_1)^{(3)} + (r_{20})^{(3)}) t}
\]

Definition of \((S_1)^{(3)}, (S_2)^{(3)}, (R_1)^{(3)}, (R_2)^{(3)}\):

Where \((S_1)^{(3)} = (a_{20})^{(3)} (m_2)^{(3)} - (a_{20})^{(3)}\)

\[
(S_2)^{(3)} = (a_{22})^{(3)} - (p_{22})^{(3)}
\]

\[
(R_1)^{(3)} = (b_{20})^{(3)} (\mu_2)^{(3)} - (b_{20})^{(3)}
\]

\[
(R_2)^{(3)} = (b_{22})^{(3)} - (r_{22})^{(3)}
\]

Behavior of the solutions

Theorem 2: If we denote and define

Definition of \((\sigma_1)^{(4)}, (\sigma_2)^{(4)}, (\tau_1)^{(4)}, (\tau_2)^{(4)}\)
(d) $(\sigma_1)\,(4), \,(\sigma_2)\,(4), \,(\tau_1)\,(4), \,(\tau_2)\,(4)$ four constants satisfying

\[-(\sigma_2)\,(4) \leq -(a')_2\,(4) + (a')_2\,(4)(T_2, t) + (a'\,')_2\,(4)(T_2, t) \leq -(\sigma_1)\,(4)\]

\[-(\tau_2)\,(4) \leq -(b')_2\,(4) + (b')_2\,(4) - (b\,')_2\,(4)(G_2, t) - (b\,')_2\,(4)(G_2, t) \leq -(\tau_1)\,(4)\]

Definition of $(v)\,(4), (\nu)\,(4), (u)\,(4), (v)\,(4), u\,(4)$:

(e) By $(\nu)\,(4) > 0, (v)\,(4) < 0$ and respectively $(u)\,(4) > 0, (v)\,(4) < 0$ the roots of the equations

\[(a_2)\,(4)v(4)^2 + (\sigma_2)\,(4)v(4) - (a_0)\,(4) = 0\]

and $(b_2)\,(4)u(4)^2 + (\tau_2)\,(4)u(4) - (b_0)\,(4) = 0$ and

Definition of $(\nu)\,(4), (\nu)\,(4), (u)\,(4), (u)\,(4)$:

By $(\nu)\,(4) > 0, (\nu)\,(4) < 0$ and respectively $(u)\,(4) > 0, (u)\,(4) < 0$ the roots of the equations

\[(a_2)\,(4)v(4)^2 + (\sigma_2)\,(4)v(4) - (a_0)\,(4) = 0\]

and $(b_2)\,(4)u(4)^2 + (\tau_2)\,(4)u(4) - (b_0)\,(4) = 0$ and

Definition of $(m_1)\,(4), (m_2)\,(4), (\mu_1)\,(4), (\mu_2)\,(4), (v)\,(4)$:

(f) If we define $(m_1)\,(4), (m_2)\,(4), (\mu_1)\,(4), (\mu_2)\,(4)$ by

\[(m_1)\,(4) = (v_0)\,(4), (m_1)\,(4) = (v)\,(4), \text{ if } (v)\,(4) < (v)\,(4)\]

\[(m_2)\,(4) = (v_0)\,(4), (m_2)\,(4) = (\nu)\,(4), \text{ if } (\nu)\,(4) < (\nu)\,(4), \text{ if } (\nu)\,(4) = (v)\,(4)\]

and analogously

\[(\mu_1)\,(4) = (u_0)\,(4), (\mu_1)\,(4) = (u)\,(4), \text{ if } (u)\,(4) < (u)\,(4)\]

\[(\mu_2)\,(4) = (u_0)\,(4), (\mu_1)\,(4) = (u)\,(4), \text{ if } (u)\,(4) < (u)\,(4)\]

are defined by 59 and 64 respectively

Then the solution satisfies the inequalities

\[G_2^0 e^{(p_2)\,(4)(-p_2)\,(4)t} \leq G_2(t) \leq G_2^0 e^{(p_2)\,(4)t}\]

where $(p_2)\,(4)$ is defined

\[
\frac{1}{(m_3)\,(4)} G_2^0 e^{(p_2)\,(4)(-p_2)\,(4)t} \leq G_2(t) \leq \frac{1}{(m_3)\,(4)} G_2^0 e^{(p_2)\,(4)t}
\]

\[
\left(\frac{(a_3)\,(4)G_2^0}{(m_3)\,(4)(p_2)\,(4)(-p_2)\,(4)(-p_2)\,(4))}\left[e^{(p_2)\,(4)(-p_2)\,(4)t} - e^{-(p_2)\,(4)t}\right] + G_2^0 e^{-(p_2)\,(4)t}\right] \leq G_2(t) \leq \left(\frac{(a_3)\,(4)G_2^0}{(m_3)\,(4)(p_2)\,(4)(-p_2)\,(4)(-p_2)\,(4))}\left[e^{(p_2)\,(4)t} - e^{-(p_2)\,(4)t}\right] + G_2^0 e^{-(p_2)\,(4)t}\right)
\]

www.ijsrp.org
\[T_{24}^0 e^{(R_2)^4 t} \leq T_{24}(t) \leq T_{24}^0 e^{((R_1)^4 + (R_2)^4) t} \]

\[\frac{1}{\mu_1} T_{24}^0 e^{(R_2)^4 t} \leq T_{24}(t) \leq \frac{1}{\mu_2} T_{24}^0 e^{((R_1)^4 + (R_2)^4) t} \]

\[\frac{1}{\mu_1} T_{24}^0 e^{(R_2)^4 t} \leq T_{24}(t) \leq \frac{1}{\mu_2} T_{24}^0 e^{((R_1)^4 + (R_2)^4) t} \]

\[\frac{1}{\mu_1} T_{24}^0 e^{((R_1)^4 + (R_2)^4) t} \leq T_{24}(t) \leq \frac{1}{\mu_2} T_{24}^0 e^{((R_1)^4 + (R_2)^4) t} \]

Definition of \((S_1)^4, (S_2)^4, (R_1)^4, (R_2)^4\):-

Where \((S_1)^4 = (a_{24})^4(m_2^4) - (a_2^4)^4\)

\((S_2)^4 = (a_{26})^4 - (p_{26})^4\)

\((R_1)^4 = (b_{24})^4(\mu_2^4) - (b_2^4)^4\)

\((R_2)^4 = (b_2^4)^4 - (r_{26})^4\)

Behavior of the solutions

If we denote and define

Definition of \((\sigma_1)^5, (\sigma_2)^5, (\tau_1)^5, (\tau_2)^5\):

\((g)\) \((\sigma_1)^5, (\sigma_2)^5, (\tau_1)^5, (\tau_2)^5\) four constants satisfying

\[-(\sigma_2)^5 \leq -(a_{28}^5) + (a_{29}^5) - (a_{28}^5)(T_{29}, t) + (a_{29}^5)(T_{29}, t) \leq -(\sigma_1)^5\]

\[-(\tau_2)^5 \leq -(b_{28}^5) + (b_{29}^5) - (b_{28}^5)((G_{31}), t) - (b_{29}^5)((G_{31}), t) \leq -(\tau_1)^5\]

Definition of \((\nu_1)^5, (\nu_2)^5, (u_2)^5, (u_2)^5\):

\((h)\) By \((\nu_1)^5 > 0, (\nu_2)^5 < 0\) and respectively \((u_1)^5 > 0, (u_2)^5 < 0\) the roots of the equations \((a_{29}^5)(u)^5 + (\sigma_1)^5v^5 - (a_{28}^5)^5 = 0\)

\[\text{and} \quad (b_{28}^5)(u)^5 + (\tau_1)^5v^5 - (b_{28}^5)^5 = 0\]

Definition of \((\bar{\nu}_1)^5, (\bar{\nu}_2)^5, (\bar{u}_2)^5, (\bar{u}_2)^5\):

By \((\bar{\nu}_1)^5 > 0, (\bar{\nu}_2)^5 < 0\) and respectively \((\bar{u}_1)^5 > 0, (\bar{u}_2)^5 < 0\) the roots of the equations \((a_{29}^5)(u)^5 + (\sigma_2)^5v^5 - (a_{28}^5)^5 = 0\)

\[\text{and} \quad (b_{29}^5)(u)^5 + (\tau_2)^5v^5 - (b_{28}^5)^5 = 0\]

Definition of \((m_1)^5, (m_2)^5, (\mu_1)^5, (\mu_2)^5, (v_0)^5\):

\((i)\) If we define \((m_1)^5, (m_2)^5, (\mu_1)^5, (\mu_2)^5, (v_0)^5\) by

\[(m_2)^5 = (v_0)^5, (m_1)^5 = (v_1)^5, \text{if} \ (v_0)^5 < (v_1)^5 \]

\[(m_2)^5 = (v_1)^5, (m_1)^5 = (v_1)^5, \text{if} \ (v_1)^5 < (v_0)^5 < (v_1)^5 \]

\[(m_2)^5 = (v_1)^5, (m_1)^5 = (v_0)^5, \text{if} \ (v_1)^5 < (v_0)^5 < (v_1)^5 \]

and analogously
\[(\mu_2)^{(5)} = (u_0)^{(5)}, (\mu_1)^{(5)} = (u_1)^{(5)}, \text{ if } (u_0)^{(5)} < (u_1)^{(5)}\]

\[(\mu_2)^{(5)} = (u_1)^{(5)}, (\mu_1)^{(5)} = (\bar{u}_1)^{(5)}, \text{ if } (u_1)^{(5)} < (u_0)^{(5)} < (\bar{u}_1)^{(5)},\]

and \[(u_0)^{(5)} = \frac{\gamma_1}{\gamma_2}\]

\[(\mu_2)^{(5)} = (u_1)^{(5)}, (\mu_1)^{(5)} = (u_0)^{(5)}, \text{ if } (\bar{u}_1)^{(5)} < (u_0)^{(5}) \text{ where } (u_1)^{(5)}, (\bar{u}_1)^{(5)} \text{ are defined by 59 and 65 respectively.}\]

Then the solution satisfies the inequalities

\[G_{28}^0 e^{((S_2)^{(5)} - (p_{28})^{(5)})t} \leq G_{28}(t) \leq G_{28}^0 e^{(S_2)^{(5)}t}\]

where \((p_1)^{(5)}\) is defined

\[\frac{1}{(m_2)^5} G_{28}^0 e^{((S_2)^{(5)} - (p_{28})^{(5)})t} \leq G_{28}(t) \leq \frac{1}{(m_2)^5} G_{28}^0 e^{(S_2)^{(5)}t}\]

\[T_{28}^0 e^{(R_2)^{(5)}t} \leq T_{28}(t) \leq T_{28}^0 e^{((R_1)^{(5)} + (R_{28})^{(5)})t}\]

Define \((S_1)^{(5)}, (S_2)^{(5)}, (R_1)^{(5)}, (R_2)^{(5)}\)

Where \((S_1)^{(5)} = (a_{28})^{(5)}(m_2)^{(5)} - (a_{28})^{(5)}\)

\[(S_2)^{(5)} = (a_{30})^{(5)} - (p_{30})^{(5)}\]

\[(R_1)^{(5)} = (b_{28})^{(5)}(\mu_2)^{(5)} - (b_{28})^{(5)}\]

\[(R_2)^{(5)} = (b_{30})^{(5)} - (R_{30})^{(5)}\]

Behavior of the solutions

If we denote and define

Definition of \((\sigma_1)^{(6)}, (\sigma_2)^{(6)}, (r_1)^{(6)}, (r_2)^{(6)}\):

\[j) \ (\sigma_1)^{(6)}, (\sigma_2)^{(6)}, (r_1)^{(6)}, (r_2)^{(6)} \text{ four constants satisfying}\]

\[-(\sigma_2)^{(6)} \leq -(a_{32})^{(6)} + (a_{33})^{(6)} - (a_{32})^{(6)}(T_{33}, t) + (a_{32})^{(6)}(T_{33}, t) \leq -(\sigma_2)^{(6)}\]

\[-(r_2)^{(6)} \leq -(b_{32})^{(6)} + (b_{33})^{(6)} - (b_{32})^{(6)}(G_{32}, t) - (b_{32})^{(6)}(G_{33}, t) \leq -(r_2)^{(6)}\]

Definition of \((v_1)^{(6)}, (v_2)^{(6)}, (u_1)^{(6)}, (u_2)^{(6)}, v^{(6)}, u^{(6)}\):

www.ijsrp.org
(k) By \((v_2)^{(6)} > 0, (v_2)^{(6)} < 0 \) and respectively \((u_2)^{(6)} > 0, (u_2)^{(6)} < 0 \) the roots of the equations
\[
(a_{33})^{(6)}v^{(6)} + (a_{32})^{(6)}v^{(6)} - (a_{32})^{(6)} = 0
\]
and \((b_{33})^{(6)}u^{(6)} + (b_{32})^{(6)}u^{(6)} - (b_{32})^{(6)} = 0 \) and

Definition of \((\bar{v}_1)^{(6)}, (\bar{v}_2)^{(6)}, (\bar{u}_1)^{(6)}, (\bar{u}_2)^{(6)}:\)

By \((\bar{v}_1)^{(6)} > 0, (\bar{v}_2)^{(6)} < 0 \) and respectively \((\bar{u}_1)^{(6)} > 0, (\bar{u}_2)^{(6)} < 0 \) the roots of the equations \((a_{33})^{(6)}v^{(6)} + (a_{32})^{(6)}v^{(6)} - (a_{32})^{(6)} = 0\)
and \((b_{33})^{(6)}u^{(6)} + (b_{32})^{(6)}u^{(6)} - (b_{32})^{(6)} = 0\)

Definition of \((m_1)^{(6)}, (m_2)^{(6)}, (\mu_1)^{(6)}, (\mu_2)^{(6)}, (v_0)^{(6)}:\)

(l) If we define \((m_1)^{(6)}, (m_2)^{(6)}, (\mu_1)^{(6)}, (\mu_2)^{(6)}\) by
\[
(m_1)^{(6)} = (v_0)^{(6)}, (m_2)^{(6)} = (v_1)^{(6)}, \text{ if } (v_0)^{(6)} < (v_1)^{(6)}
\]
\[
(m_2)^{(6)} = (v_1)^{(6)}, (m_2)^{(6)} = (\bar{v}_0)^{(6)}, \text{ if } (v_0)^{(6)} < (\bar{v}_1)^{(6)}
\]
and \((v_0)^{(6)} = \frac{\gamma_2^G}{\gamma_2^S}\)
\[
(m_2)^{(6)} = (v_1)^{(6)}, (m_1)^{(6)} = (v_0)^{(6)}, \text{ if } (\bar{v}_1)^{(6)} < (v_0)^{(6)}
\]
and analogously
\[
(\mu_2)^{(6)} = (u_0)^{(6)}, (\mu_1)^{(6)} = (u_1)^{(6)}, \text{ if } (u_0)^{(6)} < (u_1)^{(6)}
\]
\[
(\mu_2)^{(6)} = (u_1)^{(6)}, (\mu_1)^{(6)} = (\bar{u}_0)^{(6)}, \text{ if } (u_0)^{(6)} < (\bar{u}_1)^{(6)}
\]
and \((u_0)^{(6)} = \frac{\gamma_2^G}{\gamma_2^S}\)
\[
(\mu_2)^{(6)} = (u_1)^{(6)}, (\mu_1)^{(6)} = (u_0)^{(6)}, \text{ if } (\bar{u}_1)^{(6)} < (u_0)^{(6)}\)

Then the solution satisfies the inequalities
\[
G^{0}_{32}e^{((S_1)^{(6)}-(p_{32})^{(6)})t} \leq G^{0}_{32}e^{((S_1)^{(6)})t}
\]
where \((p_{32})^{(6)}\) is defined as
\[
\frac{1}{(m_3)^{(6)}}G^{0}_{32}e^{((S_1)^{(6)}-(p_{32})^{(6)})t} \leq G^{0}_{32}e^{((S_1)^{(6)})t}
\]
\[
\left((m_1)^{(6)}-(S_1)^{(6)}-(p_{32})^{(6)}-(S_2)^{(6)}\right)\left[e^{((S_1)^{(6)}-(p_{32})^{(6)})t} - e^{-(S_2)^{(6)}}\right] + G^{0}_{34}e^{-(S_2)^{(6)}} \leq G^{0}_{34}e^{(S_2)^{(6)}} \leq G^{0}_{34}e^{-(R_{13})^{(6)}}
\]
\[
T^{0}_{32}e^{(R_{13})^{(6)}} \leq T^{0}_{32}e^{((R_{13})^{(6)}+(R_{32})^{(6)})t}
\]
\[
\frac{1}{(m_3)^{(6)}}T^{0}_{32}e^{(R_{13})^{(6)}} \leq T^{0}_{32}e^{((R_{13})^{(6)}+(R_{32})^{(6)})t}
\]
\[
\left((m_2)^{(6)}-(R_1)^{(6)}-(R_{32})^{(6)}\right)\left[e^{((R_{13})^{(6)})t} - e^{-(R_{13})^{(6)}}\right] + T^{0}_{34}e^{-(R_{13})^{(6)}} \leq T^{0}_{34}e^{(R_{13})^{(6)}} \leq T^{0}_{34}e^{-(R_{23})^{(6)}}
\]
\[
\left((m_2)^{(6)}-(R_1)^{(6)}+(R_{32})^{(6)}\right)\left[e^{((R_{13})^{(6)}+(R_{32})^{(6)})t} - e^{-(R_{13})^{(6)}}\right] + T^{0}_{34}e^{-(R_{23})^{(6)}}
\]

Definition of \((S_1)^{(6)}, (S_2)^{(6)}, (R_1)^{(6)}, (R_2)^{(6)}:\)
Where \((S_1)^{(6)} = (a_{32})^{(6)}(m_2)^{(6)} - (a'_{32})^{(6)}\)
\[(S_2)^{(6)} = (a_{34})^{(6)} - (p_{34})^{(6)}\]
\[\begin{align*}
(R_1)^{(6)} &= (b_{32})^{(6)}(\mu_2)^{(6)} - (b'_{32})^{(6)} \\
(R_2)^{(6)} &= (b'_{34})^{(6)} - (r_{34})^{(6)}
\end{align*}\]

Proof: From Global Equations we obtain
\[
\frac{dv^{(1)}}{dt} = (a_{13})^{(1)} - \left((a'_{13})^{(1)} - (a_{14})^{(1)} + (a_{14}''^{(1)}(T_{14}, t) - (a_{14}'^{(1)}(T_{14}, t)v^{(1)} - (a_{14})^{(1)}v^{(1)}\right)
\]

Definition of \(v^{(1)} := \frac{G_{13}}{G_{14}}\)

It follows
\[
-\left((a_{14})^{(1)}(v^{(1)})^2 + (\sigma_2)^{(1)}v^{(1)} - (a_{13})^{(1)} \right) \leq \frac{dv^{(1)}}{dt} \leq -\left((a_{14})^{(1)}(v^{(1)})^2 + (\sigma_1)^{(1)}v^{(1)} - (a_{13})^{(1)} \right)
\]

From which one obtains

Definition of \((\tilde{v}_1)^{(1)}, (v_0)^{(1)} :=\)

(a) For \(0 < \frac{G_{13}}{G_{14}} < (v_1)^{(1)} < (\tilde{v}_1)^{(1)}\)

\[
v^{(1)}(t) \geq \frac{(v_1)^{(1)} + (C)^{(1)}(v_2)^{(1)}e^{-[a_{14}]^{(1)}[(v_1)^{(1)} - (v_0)^{(1)}]t}}{1 + (C)^{(1)}e^{-[a_{14}]^{(1)}[(v_1)^{(1)} - (v_0)^{(1)}]t}} \]

\[
(C)^{(1)} = \frac{(v_1)^{(1)} - (v_0)^{(1)}}{(v_0)^{(1)} - (v_2)^{(1)}}
\]

it follows \((v_0)^{(1)} \leq v^{(1)}(t) \leq (v_1)^{(1)}\)

In the same manner , we get

\[
v^{(1)}(t) \leq \frac{(\tilde{v}_1)^{(1)} + (C)^{(1)}(v_2)^{(1)}e^{-[a_{14}]^{(1)}[(v_1)^{(1)} - (v_2)^{(1)}]t}}{1 + (C)^{(1)}e^{-[a_{14}]^{(1)}[(v_1)^{(1)} - (v_2)^{(1)}]t}} \]

\[
(C)^{(1)} = \frac{(v_1)^{(1)} - (v_0)^{(1)}}{(v_0)^{(1)} - (v_2)^{(1)}}
\]

From which we deduce \((v_0)^{(1)} \leq v^{(1)}(t) \leq (\tilde{v}_1)^{(1)}\)

(b) If \(0 < (v_1)^{(1)} < (v_0)^{(1)} = \frac{G_{13}}{G_{14}} < (\tilde{v}_1)^{(1)}\) we find like in the previous case,

\[
(v_1)^{(1)} \leq \frac{(v_1)^{(1)} + (C)^{(1)}(v_2)^{(1)}e^{-[a_{14}]^{(1)}[(v_1)^{(1)} - (v_2)^{(1)}]t}}{1 + (C)^{(1)}e^{-[a_{14}]^{(1)}[(v_1)^{(1)} - (v_2)^{(1)}]t}} \leq v^{(1)}(t) \leq \frac{(\tilde{v}_1)^{(1)} + (C)^{(1)}(v_2)^{(1)}e^{-[a_{14}]^{(1)}[(v_1)^{(1)} - (v_2)^{(1)}]t}}{1 + (C)^{(1)}e^{-[a_{14}]^{(1)}[(v_1)^{(1)} - (v_2)^{(1)}]t}} \leq (\tilde{v}_1)^{(1)}
\]

(c) If \(0 < (v_1)^{(1)} \leq (\tilde{v}_1)^{(1)} \leq \left(\frac{G_{13}}{G_{14}}\right)\), we obtain

www.ijsrp.org
\[(v_1)^{(1)}(t) \leq v(t) \leq \frac{(v_2)^{(1)} + (\bar{v})^{(1)} + (\bar{v})^{(2)} - (a_{i1})^{(1)}(v_{12})^{(2)} - (a_{i1})^{(2)}(v_{11})^{(2)} - (a_{i1})^{(1)}(v_{0})^{(2)}}{1 + (G_{123})^{(2)} e^{-[(a_{i1})^{(1)}(v_{12})^{(2)} - (a_{i1})^{(2)}(v_{11})^{(2)} - (a_{i1})^{(1)}(v_{0})^{(2)}]}} \leq (v_0)^{(1)} \]

And so with the notation of the first part of condition (c), we have

Definition of \(v^{(1)}(t) \) :-

\[(m_2)^{(1)} \leq v^{(1)}(t) \leq (m_1)^{(1)}, \quad v^{(1)}(t) = \frac{G_{123}(t)}{G_{14}(t)} \]

In a completely analogous way, we obtain

Definition of \(u^{(1)}(t) \) :-

\[(\mu_2)^{(1)} \leq u^{(1)}(t) \leq (\mu_1)^{(1)}, \quad u^{(1)}(t) = \frac{T_{12}(t)}{T_{14}(t)} \]

Now, using this result and replacing it in Global Equations we get easily the result stated in the theorem.

Particular case:

If \((a_{i1})^{(1)} = (a_{i1})^{(2)}, \text{then} \ (\sigma_2)^{(1)} = (\sigma_2)^{(2)} \text{ and in this case} \ (v_1)^{(1)} = (\bar{v}_1)^{(1)} \text{ if in addition} \ (v_0)^{(1)} = (v_1)^{(1)} \text{ then} \ (v_1)^{(1)}(t) = (v_0)^{(1)} \text{ and as a consequence} \ G_{13}(t) = (v_0)^{(1)}G_{14}(t) \text{ this also defines} \ (v_0)^{(1)} \text{ for the special case}.

Analogously if \((b_{i2})^{(1)} = (b_{i2})^{(2)}, \text{then} \ (\tau_2)^{(1)} = (\tau_2)^{(2)} \text{ and then} \ (u_2)^{(1)}(t) = (\bar{u}_2)^{(1)}(t) \text{ if in addition} \ (u_0)^{(1)} = (u_2)^{(1)} \text{ then} \ T_{12}(t) = (u_0)^{(1)}T_{14}(t) \text{ This is an important consequence of the relation between} \ (v_1)^{(1)} \text{ and} \ (\bar{v}_1)^{(1)}, \text{and definition of} \ (u_0)^{(1)} \text{.}

From Global Equations we obtain

\[\frac{du^{(2)}}{dt} = (a_{i16})^{(2)} - (a_{i16})^{(2)} - (a_{i17})^{(2)} + (a_{i16})^{(2)}(T_{17}, t) - (a_{i17})^{(2)}(T_{17}, t)u^{(2)} - (a_{i17})^{(2)}u^{(2)} \]

Definition of \(v^{(2)} \) :-

\[v^{(2)} = \frac{G_{16}}{G_{17}} \]

It follows

\[-\left((a_{i17})^{(2)}(v^{(2)})^2 + (\sigma_2)^{(2)}v^{(2)} - (a_{i16})^{(2)}\right) \leq \frac{du^{(2)}}{dt} \leq -\left((a_{i17})^{(2)}(v^{(2)})^2 + (\sigma_2)^{(2)}v^{(2)} - (a_{i16})^{(2)}\right) \]

From which one obtains

Definition of \((\bar{v}_1)^{(2)}, (v_0)^{(2)} \) :-

\((v_0)^{(2)} = \frac{G_{16}}{G_{17}} < (v_1)^{(2)} < \frac{G_{16}}{G_{17}} \)

\[v^{(2)}(t) \geq \frac{v_{i1}^{(2)}(t) + C^{(2)}(t) + C^{(2)}(t) - (a_{i17})^{(2)}(v^{(2)})^2 - (a_{i17})^{(2)}(v^{(2)})^2 - (a_{i17})^{(2)}(v^{(2)})^2}{1 + (C^{(2)}) e^{-[(a_{i17})^{(2)}(v^{(2)})^2 - (a_{i17})^{(2)}(v^{(2)})^2]}} \]

Definition of \((\bar{C})^{(2)} = \frac{(v_1)^{(2)} - (v_0)^{(2)}}{(v_0)^{(2)} - (v_2)^{(2)}} \]

it follows \((v_0)^{(2)} \leq v^{(2)}(t) \leq (v_1)^{(2)} \)

In the same manner, we get

\[v^{(2)}(t) \leq \frac{v_{i1}^{(2)}(t) + C^{(2)}(t) + C^{(2)}(t) - (a_{i17})^{(2)}(v^{(2)})^2 - (a_{i17})^{(2)}(v^{(2)})^2}{1 + (C^{(2)}) e^{-[(a_{i17})^{(2)}(v^{(2)})^2 - (a_{i17})^{(2)}(v^{(2)})^2]}} \]

Definition of \((\bar{C})^{(2)} = \frac{(v_0)^{(2)} - (v_1)^{(2)}}{(v_1)^{(2)} - (v_2)^{(2)}} \)
From which we deduce $(v_0)^{(2)} \leq v^{(2)}(t) \leq (\bar{v}_1)^{(2)}$

(c) If $0 < (v_1)^{(2)} < (v_0)^{(2)} = \frac{G_16}{G_17}$ we find like in the previous case,

$$(v_1)^{(2)} \leq \left(\frac{G_16}{G_17} \right)^{(2)} \leq \left(\frac{G_16}{G_17} \right)^{(2)} \leq \left(\bar{v}_1 \right)^{(2)}$$

(f) If $0 < (v_1)^{(2)} \leq (v_0)^{(2)} = \frac{G_16}{G_17}$, we obtain

$$(v_1)^{(2)} \leq (v_0)^{(2)} = \frac{G_16}{G_17}$$

And so with the notation of the first part of condition (c), we have

Definition of $v^{(2)}(t)$:

$$(m_2)^{(2)} \leq v^{(2)}(t) \leq (m_2)^{(2)}, \quad v^{(2)}(t) = \frac{G_16}{G_17}$$

In a completely analogous way, we obtain

Definition of $u^{(2)}(t)$:

$$(m_2)^{(2)} \leq u^{(2)}(t) \leq (m_2)^{(2)}, \quad u^{(2)}(t) = \frac{G_16}{G_17}$$

Now, using this result and replacing it in the Global Equations we get easily the result stated in the theorem.

Particular case:

If $(a_{16''}^{(2)}) = (a_{17''}^{(2)})$, then $(a_{12}^{(2)}) = (a_{12}^{(2)})$ and in this case $(v_1)^{(2)} = (v_1)^{(2)}$ if in addition $(v_0)^{(2)} = (v_0)^{(2)}$ and as a consequence $G_16(t) = G_17(t)$

Analogously if $(b_{16''}^{(2)}) = (b_{17''}^{(2)})$, then $(a_{12}^{(2)}) = (a_{12}^{(2)})$ and then

$$(u_1)^{(2)} = (u_1)^{(2)}$$

if in addition $(u_0)^{(2)} = (u_0)^{(2)}$ then $T_{16}(t) = T_{17}(t)$

This is an important consequence of the relation between $(v_1)^{(2)}$ and $(\bar{v}_1)^{(2)}$

From Global Equations we obtain

$$\frac{dv^{(3)}}{dt} = (a_{20})^{(3)} - (a_{20}^{(3)} - (a_{21}^{(3)} + (a_{20}^{(3)})(T_{21}(t))) - (a_{21}^{(3)})(T_{21}(t)v^{(3)} - (a_{21})^{(3)}v^{(3)}$$

Definition of $v^{(3)}$:

$$v^{(3)} = \frac{G_{20}}{G_{21}}$$

It follows

$$- (a_{21})^{(3)}v^{(3)} - (a_{21})^{(3)}v^{(3)} \leq \frac{dv^{(3)}}{dt} \leq - (a_{21})^{(3)}v^{(3)} + (a_{21}^{(3)}v^{(3)} - (a_{20})^{(3})$$

From which one obtains
(a) For \(0 < (v_0)^{(3)} = c_{0,3}^a < (v_1)^{(3)} < (\bar{v}_1)^{(3)} \)

\[
v^{(3)}(t) \leq \frac{\left(\bar{v}_1^{(3)} + (\bar{C})^{(3)}(\bar{v}_2)^{(3)}\right)e^{-\left[a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t\right]} - a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t}{1 + (\bar{C})^{(3)}e^{-\left[a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t\right]}}, \quad \bar{C}^{(3)} = \frac{v_1^{(3)} - v_2^{(3)}}{v_0^{(3)} - v_2^{(3)}}
\]

it follows \((v_0)^{(3)} \leq v^{(3)}(t) \leq (\bar{v}_1)^{(3)} \)

In the same manner, we get

\[
v^{(3)}(t) \leq \frac{\left(\bar{v}_1^{(3)} + (\bar{C})^{(3)}(\bar{v}_2)^{(3)}\right)e^{-\left[a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t\right]} - a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t}{1 + (\bar{C})^{(3)}e^{-\left[a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t\right]}}, \quad \bar{C}^{(3)} = \frac{v_1^{(3)} - v_2^{(3)}}{v_0^{(3)} - v_2^{(3)}}
\]

Definition of \((\bar{v}_1)^{(3)} \):

From which we deduce \((v_0)^{(3)} \leq v^{(3)}(t) \leq (\bar{v}_1)^{(3)} \)

(b) If \(0 < (v_1)^{(3)} < (v_0)^{(3)} = c_{0,3}^a < (\bar{v}_1)^{(3)} \) we find like in the previous case,

\[
(v_1)^{(3)} \leq \frac{(v_1)^{(3)} + (\bar{C})^{(3)}(v_2)^{(3)}e^{-\left[a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t\right]} - a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t}{1 + (\bar{C})^{(3)}e^{-\left[a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t\right]}}, \quad \bar{C}^{(3)} = \frac{v_1^{(3)} - v_2^{(3)}}{v_0^{(3)} - v_2^{(3)}}
\]

(c) If \(0 < (v_1)^{(3)} \leq (\bar{v}_1)^{(3)} \leq (v_0)^{(3)} = \frac{c_{0,3}^a}{c_{21}^{(3)}} \), we obtain

\[
(v_1)^{(3)} \leq v^{(3)}(t) \leq \frac{(v_1)^{(3)} + (\bar{C})^{(3)}(v_2)^{(3)}e^{-\left[a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t\right]} - a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t}{1 + (\bar{C})^{(3)}e^{-\left[a_{21}^{(3)}(v_1^{(3)} - v_2^{(3)})t\right]}}, \quad \bar{C}^{(3)} = \frac{v_1^{(3)} - v_2^{(3)}}{v_0^{(3)} - v_2^{(3)}}
\]

And so with the notation of the first part of condition (c), we have

Definition of \(v^{(3)}(t) \):

\[
(m_2)^{(3)} \leq v^{(3)}(t) \leq (m_1)^{(3)}, \quad v^{(3)}(t) = \frac{2c_{0,3}^a(t)}{c_{21}^{(3)}(t)}
\]

In a completely analogous way, we obtain

Definition of \(u^{(3)}(t) \):

\[
(\mu_2)^{(3)} \leq u^{(3)}(t) \leq (\mu_1)^{(3)}, \quad u^{(3)}(t) = \frac{T_20(t)}{T_{21}(t)}
\]

Now, using this result and replacing it in Concatenated set of Global Equations we get easily the result stated in the theorem.

Particular case:

If \((a_2^{(3)}) = (a_2^{(3)}), then \((\sigma_1)^{(3)} = (\sigma_2)^{(3)} \) and in this case \((v_1)^{(3)} = (\bar{v}_1)^{(3)} \) if in addition \((v_0)^{(3)} = (v_1)^{(3)} \) then \(v^{(2)}(t) = (v_0)^{(3)} \) and as a consequence \(t_{20}(t) = (v_0)^{(3)}t_{21}(t) \)

Analogously if \((b_2^{(3)} = (b_2^{(3)}) \), then \((\tau_1)^{(3)} = (\tau_2)^{(3)} \) and then

\((u_1)^{(3)} = (\bar{u}_1)^{(3)} \) if in addition \((u_0)^{(3)} = (u_1)^{(3)} \) then \(T_{20}(t) = (u_0)^{(3)}T_{21}(t) \) This is an important
consequence of the relation between $(\nu_{1})^{(3)}$ and $(\tilde{\nu}_{1})^{(3)}$

From Global Equations we obtain

$$\frac{dv^{(4)}}{dt} = (a_{24})^{(4)} - \left((a'_{24})^{(4)} - (a''_{25})^{(4)} + (a''_{24})^{(4)}(T_{25},t)\right) - (a''_{25})^{(4)}(T_{25},t)v^{(4)} - (a_{25})^{(4)}v^{(4)}$$

Definition of $v^{(4)}$:-

$$v^{(4)} = \frac{\dot{g}_{24}}{\dot{g}_{25}}$$

It follows

$$- \left((a_{25})^{(4)}v^{(4)}\right)^{2} + (\sigma_{2})^{(4)}v^{(4)} - (a_{24})^{(4)} \leq \frac{dv^{(4)}}{dt} \leq - \left((a_{25})^{(4)}v^{(4)}\right)^{2} + (\sigma_{4})^{(4)}v^{(4)} - (a_{24})^{(4)}$$

From which one obtains

Definition of $(\nu_{1})^{(4)}, (\tilde{\nu}_{1})^{(4)}$:-

(d) For $0 < \left(\nu_{0})^{(4)} = \frac{\dot{g}_{24}}{\dot{g}_{25}} < (\nu_{1})^{(4)} < (\tilde{\nu}_{1})^{(4)}$

$$v^{(4)}(t) \leq \frac{(\nu_{1})^{(4)} + (C)^{(4)}(v_{2})^{(4)}e^{-a_{25}(v_{1})^{(4)} - (v_{2})^{(4)}}t}{4 + (C)^{(4)}e^{-a_{25}(v_{1})^{(4)} - (v_{2})^{(4)}}t}, \quad (C)^{(4)} = \frac{(v_{2})^{(4)} - (v_{0})^{(4)}}{(v_{0})^{(4)} - (v_{2})^{(4)}}$$

it follows $(v_{0})^{(4)} \leq v^{(4)}(t) \leq (\nu_{1})^{(4)}$

In the same manner, we get

$$v^{(4)}(t) \leq \frac{(v_{1})^{(4)} + (C)^{(4)}(v_{2})^{(4)}e^{-a_{25}(v_{1})^{(4)} - (v_{2})^{(4)}}t}{4 + (C)^{(4)}e^{-a_{25}(v_{1})^{(4)} - (v_{2})^{(4)}}t}, \quad (C)^{(4)} = \frac{(v_{2})^{(4)} - (v_{0})^{(4)}}{(v_{0})^{(4)} - (v_{2})^{(4)}}$$

From which we deduce $(v_{0})^{(4)} \leq v^{(4)}(t) \leq (\tilde{\nu}_{1})^{(4)}$

(e) If $0 < (\nu_{1})^{(4)} < (v_{0})^{(4)} = \frac{\dot{g}_{24}}{\dot{g}_{25}} < (\tilde{\nu}_{1})^{(4)}$ we find like in the previous case,

$$(\nu_{1})^{(4)} \leq \frac{(v_{1})^{(4)} + (C)^{(4)}(v_{2})^{(4)}e^{-a_{25}(v_{1})^{(4)} - (v_{2})^{(4)}}t}{1 + (C)^{(4)}e^{-a_{25}(v_{1})^{(4)} - (v_{2})^{(4)}}t} \leq v^{(4)}(t) \leq \frac{(\tilde{\nu}_{1})^{(4)}}{4 + (C)^{(4)}e^{-a_{25}(v_{1})^{(4)} - (v_{2})^{(4)}}t} \leq (\tilde{\nu}_{1})^{(4)}$$

(f) If $0 < (\nu_{1})^{(4)} \leq (\tilde{\nu}_{1})^{(4)} \leq \frac{\dot{g}_{24}}{\dot{g}_{25}}$, we obtain

$$(\nu_{1})^{(4)} \leq v^{(4)}(t) \leq \frac{(\tilde{\nu}_{1})^{(4)}}{1 + (C)^{(4)}e^{-a_{25}(v_{1})^{(4)} - (v_{2})^{(4)}}t} \leq (v_{0})^{(4)} $$

And so with the notation of the first part of condition (c), we have

Definition of $v^{(4)}(t)$:-

$$m_{2}^{(4)} \leq v^{(4)}(t) \leq m_{1}^{(4)}$$

$$v^{(4)}(t) = \frac{\dot{g}_{24}(t)}{\dot{g}_{25}(t)}$$

In a completely analogous way, we obtain

Definition of $u^{(4)}(t)$:-
\((\mu_2)^{(4)} \leq u^{(4)}(t) \leq (\mu_1)^{(4)}, \quad u^{(4)}(t) = \frac{T_{24}(t)}{T_{25}(t)}\)

Now, using this result and replacing it in concatenated set of global equations we get easily the result stated in the theorem.

Particular case:

If \((a_{24}^{\nu})^{(4)} = (a_{25}^{\nu})^{(4)},\) then \((\sigma_1)^{(4)} = (\sigma_2)^{(4)}\) and in this case \((v_1)^{(4)} = (\tilde{v}_1)^{(4)}\) if in addition \((v_0)^{(4)} = (v_1)^{(4)}\) then \(v^{(4)}(t) = (v_0)^{(4)}\) and as a consequence \(G_{24}(t) = (v_0)^{(4)}G_{25}(t)\) this also defines \((v_0)^{(4)}\) for the special case.

Analogously if \((b_{24}^{\nu})^{(4)} = (b_{25}^{\nu})^{(4)},\) then \((\tau_1)^{(4)} = (\tau_2)^{(4)}\) and then \((u_1)^{(4)} = (\tilde{u}_1)^{(4)}\) if in addition \((u_0)^{(4)} = (u_1)^{(4)}\) then \(T_{24}(t) = (u_0)^{(4)}T_{25}(t)\) This is an important consequence of the relation between \((v_1)^{(4)}\) and \((\tilde{v}_1)^{(4)},\) and definition of \((u_0)^{(4)}\).

From Global Equations we obtain

\[
\frac{dv^{(5)}}{dt} = (a_{28})^{(5)} - \left((a_{28}^{(5)}) - (a_{28}^{(5)}) + (a_{28}^{(5)})(T_{29}, t)\right) - (a_{29}^{(5)})(T_{29}, t)v^{(5)} - (a_{29}^{(5)}v^{(5)}
\]

Definition of \(v^{(5)}\) :-

\[
v^{(5)} = \frac{G_{28}}{G_{29}}
\]

It follows

\[-(a_{29}^{(5)}v^{(5)})^2 + (\sigma_2)^{(5)}v^{(5)} - (a_{28}^{(5)}) \leq \frac{dv^{(5)}}{dt} \leq -(a_{29}^{(5)}v^{(5)})^2 + (\sigma_1)^{(5)}v^{(5)} - (a_{28}^{(5)})\]

From which one obtains

Definition of \((\tilde{v}_1)^{(5)}, (v_0)^{(5)}\) :-

(g) For \(0 < (v_0)^{(5)} = \frac{G_{28}}{G_{29}} < (v_1)^{(5)} < (\tilde{v}_1)^{(5)}\)

\[
v^{(5)}(t) \leq \frac{(\tilde{v}_1)^{(5)} - (v_0)^{(5)} - (v_1)^{(5)} - (v_2)^{(5)}}{1 + (\tilde{C})^{(5)}e^{-a_{29}^{(5)}(v_1)^{(5)} - (v_2)^{(5)} t}} \leq \frac{(v_0)^{(5)} - (v_1)^{(5)} - (v_2)^{(5)}}{1 + (\tilde{C})^{(5)}e^{-a_{29}^{(5)}(v_1)^{(5)} - (v_2)^{(5)} t}}
\]

it follows \((v_0)^{(5)} \leq v^{(5)}(t) \leq (v_2)^{(5)}\)

In the same manner, we get

\[
v^{(5)}(t) \leq \frac{(\tilde{v}_1)^{(5)} - (v_0)^{(5)} - (v_1)^{(5)} - (v_2)^{(5)}}{1 + (\tilde{C})^{(5)}e^{-a_{29}^{(5)}(v_1)^{(5)} - (v_2)^{(5)} t}} \leq (\tilde{v}_1)^{(5)}
\]

From which we deduce \((v_0)^{(5)} \leq v^{(5)}(t) \leq (v_2)^{(5)}\)

(h) If \(0 < (v_1)^{(5)} < (v_0)^{(5)} = \frac{G_{28}}{G_{29}} < (v_2)^{(5)}\) we find like in the previous case,

\[
(v_1)^{(5)} \leq \frac{(\tilde{v}_1)^{(5)} + (v_2)^{(5)} - (v_0)^{(5)} - (v_1)^{(5)} e^{-a_{29}^{(5)}(v_1)^{(5)} - (v_2)^{(5)} t}}{1 + (\tilde{C})^{(5)}e^{-a_{29}^{(5)}(v_1)^{(5)} - (v_2)^{(5)} t}} \leq v^{(5)}(t) \leq
\]

\[
\frac{(\tilde{v}_1)^{(5)} - (v_0)^{(5)} - (v_1)^{(5)} - (v_2)^{(5)} e^{-a_{29}^{(5)}(v_1)^{(5)} - (v_2)^{(5)} t}}{1 + (\tilde{C})^{(5)}e^{-a_{29}^{(5)}(v_1)^{(5)} - (v_2)^{(5)} t}} \leq (v_1)^{(5)}
\]
(i) If \(0 < (\nu_1) (s) \leq (\bar{\nu}_1) (s) \leq (\nu_0) (s) = \frac{G_{2\nu}}{G_{2\nu}} \), we obtain

\[
(\nu_1) (s) \leq v(s) (t) \leq \frac{G_{2\nu}(s)}{G_{2\nu}(s)} \frac{(\nu_1) (s) - (\nu_2) (s)}{1 + G(\nu_1) (s) - (\nu_2) (s)} \leq (\nu_0) (s)
\]

And so with the notation of the first part of condition (c), we have

Definition of \(v(s) (t) :- \)

\[
(m_2) (s) \leq v(s) (t) \leq (m_1) (s), \quad v(s) (t) = \frac{G_{2\nu}(s)}{G_{2\nu}(s)}
\]

In a completely analogous way, we obtain

Definition of \(u(s) (t) :- \)

\[
(\mu_2) (s) \leq u(s) (t) \leq (\mu_1) (s), \quad u(s) (t) = \frac{T_{2\nu}(t)}{T_{2\nu}(t)}
\]

Now, using this result and replacing it in global equations we get easily the result stated in the theorem.

Particular case :

If \((a_{2\nu}^{''}) (s) = (a_{2\nu}^{''}) (s)\), then \((\sigma_1) (s) = (\sigma_2) (s)\) and in this case \((\nu_1) (s) = (\bar{\nu}_1) (s)\) if in addition \((\nu_0) (s) = (\nu_5) (s)\) then \(v(s) (t) = (\nu_0) (s)\) and as a consequence \(G_{2\nu}(t) = (\nu_0) (s) G_{2\nu}(t)\) **this also defines** \((\nu_0) (s)\) **for the special case**.

Analogously if \((b_{2\nu}^{''}) (s) = (b_{2\nu}^{''}) (s)\), then \((\tau_1) (s) = (\tau_2) (s)\) and then \((\mu_1) (s) = (\bar{\mu}_1) (s)\) if in addition \((\mu_0) (s) = (\mu_4) (s)\) then \(T_{2\nu}(t) = (\nu_0) (s) T_{2\nu}(t)\). This is an important consequence of the relation between \((\nu_1) (s)\) and \((\bar{\nu}_1) (s)\), and **definition of** \((\mu_0) (s)\).

From global equations we obtain

\[
\frac{d\nu^{(6)}}{dt} = (a_{32})^{(6)} - (a_{32}^{''})^{(6)} + (a_{32}^{''})^{(6)}(T_{33}, t) - (\sigma_2) (s)(a_{32})^{(6)} - (a_{32})^{(6)}
\]

Definition of \(v^{(6)} :- \)

\[
v^{(6)} = \frac{G_{2\nu}}{G_{3\nu}}
\]

It follows

\[
-(a_{33})^{(6)}(v^{(6)})^2 + (\sigma_2) (s)v^{(6)} - (a_{32})^{(6)} \leq \frac{d\nu^{(6)}}{dt} \leq -(a_{33})^{(6)}(v^{(6)})^2 + (\sigma_1) (s)v^{(6)} - (a_{32})^{(6)}
\]

From which one obtains

Definition of \((\bar{\nu}_1)^{(6)}, (\nu_0)^{(6)} :- \)

\[
(\nu_0)^{(6)} = \frac{G_{2\nu}}{G_{3\nu}} < (\nu_1)^{(6)} < (\bar{\nu}_1)^{(6)}
\]

\[
\nu^{(6)} (t) \geq \frac{(\nu_0)^{(6)}(\nu_0)^{(6)}(\nu_0)^{(6)}(\nu_0)^{(6)}(\nu_0)^{(6)} - (a_{33})^{(6)}(v^{(6)})^2 - (a_{32})^{(6)} - (a_{32})^{(6)}}{1 + (\nu_1) (s) - (\nu_2) (s)} \quad \text{and} \quad (\nu_0)^{(6)} = \frac{(\nu_0)^{(6)}(\nu_0)^{(6)} - (\nu_0)^{(6)}}{(\nu_0)^{(6)} - (\nu_0)^{(6)}}
\]

it follows \((\nu_0)^{(6)} \leq v^{(6)} (t) \leq (\nu_1)^{(6)}\)

In the same manner, we get

www.ijsrp.org
\[v^{(6)}(t) \leq \frac{\varphi_1^{(6)} + \varphi_2^{(6)}}{1 + \varphi_3^{(6)}} e^{-\frac{A_{33}^{(6)}}{1 + \varphi_3^{(6)}}(v_1^{(6)} - v_2^{(6)}) t} \]

From which we deduce \((v_0)^{(6)} \leq v^{(6)}(t) \leq (\tilde{v}_1)^{(6)} \)

(k) If \(0 < (v_1)^{(6)} < (v_0)^{(6)} = \frac{\varphi_1^{(6)}}{\varphi_3^{(6)}} < (\tilde{v}_1)^{(6)} \) we find like in the previous case,

\[(v_1)^{(6)} \leq \frac{\varphi_1^{(6)} + (\tilde{v}_1)^{(6)} v_2^{(6)}}{1 + (\tilde{v}_1)^{(6)}} e^{-\frac{A_{33}^{(6)}}{1 + (\tilde{v}_1)^{(6)}}(v_1^{(6)} - v_2^{(6)}) t} \leq v^{(6)}(t) \leq (\tilde{v}_1)^{(6)} \]

(l) If \(0 < (v_1)^{(6)} \leq (\tilde{v}_1)^{(6)} \leq (v_0)^{(6)} = \frac{\varphi_1^{(6)}}{\varphi_3^{(6)}} \), we obtain

\[(v_1)^{(6)} \leq v^{(6)}(t) \leq \frac{\varphi_1^{(6)} + (\tilde{v}_1)^{(6)} v_2^{(6)}}{1 + (\tilde{v}_1)^{(6)}} e^{-\frac{A_{33}^{(6)}}{1 + (\tilde{v}_1)^{(6)}}(v_1^{(6)} - v_2^{(6)}) t} \leq (v_0)^{(6)} \]

And so with the notation of the first part of condition (c) , we have

Definition of \(v^{(6)}(t) \) :-

\[m_2^{(6)} \leq v^{(6)}(t) \leq m_1^{(6)}, \quad v^{(6)}(t) = \frac{\varphi_1^{(6)}}{\varphi_3^{(6)}} \]

In a completely analogous way, we obtain

Definition of \(u^{(6)}(t) \) :-

\[\mu_2^{(6)} \leq u^{(6)}(t) \leq \mu_1^{(6)}, \quad u^{(6)}(t) = \frac{T_{32}^{(6)}}{T_{33}^{(6)}} \]

Now, using this result and replacing it in concatenated set of global equations we get easily the result stated in the theorem.

Particular case :

If \((a_{13}^{''})^{(6)} = (a_{13}^{''})^{(6)} \), then \((\sigma_1)^{(6)} = (\sigma_2)^{(6)} \) and in this case \((v_1)^{(6)} = (\tilde{v}_1)^{(6)} \) if in addition \((v_0)^{(6)} = (v_1)^{(6)} \) then \(v^{(6)}(t) = (v_0)^{(6)} \) and as a consequence \(G_{32}(t) = (v_0)^{(6)} G_{33}(t) \) this also defines \((v_0)^{(6)} \) for the special case.

Analogously if \((b_{12}^{''})^{(6)} = (b_{12}^{''})^{(6)} \), then \((\tau_1)^{(6)} = (\tau_2)^{(6)} \) and then \((u_1)^{(6)} = (\tilde{u}_1)^{(6)} \) if in addition \((u_0)^{(6)} = (u_1)^{(6)} \) then \(T_{32}(t) = (u_0)^{(6)} T_{33}(t) \) This is an important consequence of the relation between \((v_1)^{(6)} \) and \((\tilde{v}_1)^{(6)} \), and definition of \((u_0)^{(6)} \).

1. SYSTEM:
2. hydrocarbon deposit- ozone credit
3. plant investment-oxygen output
4. oxygen income(in water)-cellular consumption
5. oxygen savings(clouds)-terrestrial organisms
6. dead organic matter-decompose organism
7. solar radiation-chemical processes

We can prove the following

Theorem 3: If \((a_{13}^{''})^{(1)} \) and \((b_{12}^{''})^{(1)} \) are independent on \(t \), and the conditions
\[
(a_{13}^{(1)}(a_{14}^{(1)}) - (a_{13}^{(1)}(a_{14}^{(1)}) < 0) \\
(a_{13}^{(1)}(a_{14}^{(1)}) - (a_{13}^{(1)}(a_{14}^{(1)}) + (a_{13}^{(1)}(p_{13}^{(1)}) + (a_{14}^{(1)}(p_{14}^{(1)}) + (p_{13}^{(1)}(p_{14}^{(1)}) > 0
\]

www.ijsrp.org
\[(b^{(1)}_{13})^{(1)}(b^{(1)}_{14})^{(1)} - (b^{(1)}_{13})^{(1)}(b^{(1)}_{14})^{(1)} > 0 ,
(b^{(1)}_{13})^{(1)}(b^{(1)}_{14})^{(1)} - (b^{(1)}_{13})^{(1)}(b^{(1)}_{14})^{(1)} - (b^{(1)}_{13})^{(1)}(r_{14})^{(1)} - (b^{(1)}_{14})^{(1)}(r_{14})^{(1)} + (r_{13})^{(1)}(r_{14})^{(1)} < 0
\]
with \((p_{13})^{(1)}, (r_{14})^{(1)}\) as defined are satisfied, then the system

If \((a^{(2)}_t)\) and \((b^{(2)}_t)\) are independent on \(t\), and the conditions
\[(a^{(2)}_{16})^{(2)}(a^{(2)}_{17})^{(2)} - (a^{(2)}_{16})^{(2)}(a^{(2)}_{17})^{(2)} < 0
(a^{(2)}_{16})^{(2)}(a^{(2)}_{17})^{(2)} - (a^{(2)}_{16})^{(2)}(a^{(2)}_{17})^{(2)} + (a^{(2)}_{16})^{(2)}(p_{16})^{(2)} + (a^{(2)}_{17})^{(2)}(p_{17})^{(2)} + (p_{16})^{(2)}(p_{17})^{(2)} > 0
(b^{(2)}_{16})^{(2)}(b^{(2)}_{17})^{(2)} - (b^{(2)}_{16})^{(2)}(b^{(2)}_{17})^{(2)} > 0,
(b^{(2)}_{16})^{(2)}(b^{(2)}_{17})^{(2)} - (b^{(2)}_{16})^{(2)}(b^{(2)}_{17})^{(2)} - (b^{(2)}_{16})^{(2)}(r_{17})^{(2)} - (b^{(2)}_{17})^{(2)}(r_{17})^{(2)} + (r^{(2)}_{16})^{(2)}(r^{(2)}_{17})^{(2)} < 0
\]
with \((p_{16})^{(2)}, (r_{17})^{(2)}\) as defined are satisfied, then the system

: If \((a^{(3)}_t)\) and \((b^{(3)}_t)\) are independent on \(t\), and the conditions
\[(a^{(3)}_{20})^{(3)}(a^{(3)}_{21})^{(3)} - (a^{(3)}_{20})^{(3)}(a^{(3)}_{21})^{(3)} < 0
(a^{(3)}_{20})^{(3)}(a^{(3)}_{21})^{(3)} - (a^{(3)}_{20})^{(3)}(a^{(3)}_{21})^{(3)} + (a^{(3)}_{20})^{(3)}(p_{20})^{(3)} + (a^{(3)}_{21})^{(3)}(p_{21})^{(3)} + (p_{20})^{(3)}(p_{21})^{(3)} > 0
(b^{(3)}_{20})^{(3)}(b^{(3)}_{21})^{(3)} - (b^{(3)}_{20})^{(3)}(b^{(3)}_{21})^{(3)} > 0,
(b^{(3)}_{20})^{(3)}(b^{(3)}_{21})^{(3)} - (b^{(3)}_{20})^{(3)}(b^{(3)}_{21})^{(3)} - (b^{(3)}_{20})^{(3)}(r_{21})^{(3)} - (b^{(3)}_{21})^{(3)}(r_{21})^{(3)} + (r^{(3)}_{20})^{(3)}(r^{(3)}_{21})^{(3)} < 0
\]
with \((p_{20})^{(3)}, (r_{21})^{(3)}\) as defined are satisfied, then the system

If \((a^{(4)}_t)\) and \((b^{(4)}_t)\) are independent on \(t\), and the conditions
\[(a^{(4)}_{24})^{(4)}(a^{(4)}_{25})^{(4)} - (a^{(4)}_{24})^{(4)}(a^{(4)}_{25})^{(4)} < 0
(a^{(4)}_{24})^{(4)}(a^{(4)}_{25})^{(4)} - (a^{(4)}_{24})^{(4)}(a^{(4)}_{25})^{(4)} + (a^{(4)}_{24})^{(4)}(p_{24})^{(4)} + (a^{(4)}_{25})^{(4)}(p_{25})^{(4)} + (p_{24})^{(4)}(p_{25})^{(4)} > 0
(b^{(4)}_{24})^{(4)}(b^{(4)}_{25})^{(4)} - (b^{(4)}_{24})^{(4)}(b^{(4)}_{25})^{(4)} > 0,
(b^{(4)}_{24})^{(4)}(b^{(4)}_{25})^{(4)} - (b^{(4)}_{24})^{(4)}(b^{(4)}_{25})^{(4)} - (b^{(4)}_{24})^{(4)}(r_{25})^{(4)} - (b^{(4)}_{25})^{(4)}(r_{25})^{(4)} + (r^{(4)}_{24})^{(4)}(r^{(4)}_{25})^{(4)} < 0
\]
with \((p_{24})^{(4)}, (r_{25})^{(4)}\) as defined are satisfied, then the system

If \((a^{(5)}_t)\) and \((b^{(5)}_t)\) are independent on \(t\), and the conditions
\[(a^{(5)}_{28})^{(5)}(a^{(5)}_{29})^{(5)} - (a^{(5)}_{28})^{(5)}(a^{(5)}_{29})^{(5)} < 0
(a^{(5)}_{28})^{(5)}(a^{(5)}_{29})^{(5)} - (a^{(5)}_{28})^{(5)}(a^{(5)}_{29})^{(5)} + (a^{(5)}_{28})^{(5)}(p_{28})^{(5)} + (a^{(5)}_{29})^{(5)}(p_{29})^{(5)} + (p_{28})^{(5)}(p_{29})^{(5)} > 0
(b^{(5)}_{28})^{(5)}(b^{(5)}_{29})^{(5)} - (b^{(5)}_{28})^{(5)}(b^{(5)}_{29})^{(5)} > 0,
(b^{(5)}_{28})^{(5)}(b^{(5)}_{29})^{(5)} - (b^{(5)}_{28})^{(5)}(b^{(5)}_{29})^{(5)} - (b^{(5)}_{28})^{(5)}(r_{29})^{(5)} - (b^{(5)}_{29})^{(5)}(r_{29})^{(5)} + (r^{(5)}_{28})^{(5)}(r^{(5)}_{29})^{(5)} < 0
\]
with \((p_{28})^{(5)}, (r_{29})^{(5)}\) as defined are satisfied, then the system

If \((a^{(6)}_t)\) and \((b^{(6)}_t)\) are independent on \(t\), and the conditions
\[(a^{(6)}_{32})^{(6)}(a^{(6)}_{33})^{(6)} - (a^{(6)}_{32})^{(6)}(a^{(6)}_{33})^{(6)} < 0
\]
has a unique positive solution, which is an equilibrium solution for the system

\[
(a'_{32})^6(a'_{33})^6 - (a_{32})^6(a_{33})^6 + (a_{32})^6(p_{32})^6 + (a'_{33})^6(p_{33})^6 + (p_{32})^6(p_{33})^6 > 0
\]

\[
(b'_{32})^6(b'_{33})^6 - (b_{32})^6(b_{33})^6 > 0 ,
\]

\[
(b'_{32})^6(b'_{33})^6 - (b_{32})^6(b_{33})^6 - (b'_{32})^6(r'_{33})^6 - (b'_{33})^6(r'_{33})^6 + (r_{32})^6(r_{33})^6 < 0
\]

with \((p_{32})^6, (r_{33})^6\) as defined are satisfied, then the system

\[
(a_{13})^1 G_{14} - [(a'_{13})^1 + (a''_{13})^1(T_{14})]G_{13} = 0
\]

\[
(a_{14})^1 G_{13} - [(a'_{14})^1 + (a''_{14})^1(T_{14})]G_{14} = 0
\]

\[
(a_{15})^1 G_{14} - [(a'_{15})^1 + (a''_{15})^1(T_{14})]G_{15} = 0
\]

\[
(b_{13})^1 T_{14} - [(b'_{13})^1 + (b''_{13})^1(G)]T_{13} = 0
\]

\[
(b_{14})^1 T_{13} - [(b'_{14})^1 + (b''_{14})^1(G)]T_{14} = 0
\]

\[
(b_{15})^1 T_{14} - [(b'_{15})^1 + (b''_{15})^1(G)]T_{15} = 0
\]

has a unique positive solution, which is an equilibrium solution for the system

\[
(a_{16})^2 G_{17} - [(a'_{16})^2 + (a''_{16})^2(T_{17})]G_{16} = 0
\]

\[
(a_{17})^2 G_{16} - [(a'_{17})^2 + (a''_{17})^2(T_{17})]G_{17} = 0
\]

\[
(a_{18})^2 G_{17} - [(a'_{18})^2 + (a''_{18})^2(T_{17})]G_{18} = 0
\]

\[
(b_{16})^2 T_{17} - [(b'_{16})^2 + (b''_{16})^2(G_{19})]T_{16} = 0
\]

\[
(b_{17})^2 T_{16} - [(b'_{17})^2 + (b''_{17})^2(G_{19})]T_{17} = 0
\]

\[
(b_{18})^2 T_{17} - [(b'_{18})^2 + (b''_{18})^2(G_{19})]T_{18} = 0
\]

has a unique positive solution, which is an equilibrium solution

\[
(a_{20})^3 G_{21} - [(a'_{20})^3 + (a''_{20})^3(T_{21})]G_{20} = 0
\]

\[
(a_{21})^3 G_{20} - [(a'_{21})^3 + (a''_{21})^3(T_{21})]G_{21} = 0
\]

\[
(a_{22})^3 G_{21} - [(a'_{22})^3 + (a''_{22})^3(T_{21})]G_{22} = 0
\]

\[
(b_{20})^3 T_{21} - [(b'_{20})^3 + (b''_{20})^3(G_{23})]T_{20} = 0
\]

\[
(b_{21})^3 T_{20} - [(b'_{21})^3 + (b''_{21})^3(G_{23})]T_{21} = 0
\]

\[
(b_{22})^3 T_{21} - [(b'_{22})^3 + (b''_{22})^3(G_{23})]T_{22} = 0
\]

has a unique positive solution, which is an equilibrium solution

\[
(a_{24})^4 G_{25} - [(a'_{24})^4 + (a''_{24})^4(T_{25})]G_{24} = 0
\]

\[
(a_{25})^4 G_{24} - [(a'_{25})^4 + (a''_{25})^4(T_{25})]G_{25} = 0
\]

\[
(a_{26})^4 G_{25} - [(a'_{26})^4 + (a''_{26})^4(T_{25})]G_{26} = 0
\]
has a unique positive solution, which is an equilibrium solution for the system

\[(b_{24})^4T_{25} - [(b'_{24})^4 - (b''_{24})^4(G_{27})]T_{24} = 0\]
\[(b_{25})^4T_{24} - [(b'_{25})^4 - (b''_{25})^4(G_{27})]T_{25} = 0\]
\[(b_{26})^4T_{25} - [(b'_{26})^4 - (b''_{26})^4(G_{27})]T_{26} = 0\]

Indeed the first two equations have a nontrivial solution

\[(a_{28})^5G_{28} - [(a'_{28})^5 + (a''_{28})^5(T_{29})]G_{28} = 0\]
\[(a_{29})^5G_{28} - [(a'_{29})^5 + (a''_{29})^5(T_{29})]G_{29} = 0\]
\[(a_{30})^5G_{29} - [(a'_{30})^5 + (a''_{30})^5(T_{29})]G_{30} = 0\]
\[(b_{28})^5T_{29} - [(b'_{28})^5 - (b''_{28})^5(G_{31})]T_{28} = 0\]
\[(b_{29})^5T_{29} - [(b'_{29})^5 - (b''_{29})^5(G_{31})]T_{29} = 0\]
\[(b_{30})^5T_{29} - [(b'_{30})^5 - (b''_{30})^5(G_{31})]T_{30} = 0\]

has a unique positive solution, which is an equilibrium solution for the system

\[(a_{32})^6G_{33} - [(a'_{32})^6 + (a''_{32})^6(T_{33})]G_{32} = 0\]
\[(a_{33})^6G_{32} - [(a'_{33})^6 + (a''_{33})^6(T_{33})]G_{33} = 0\]
\[(a_{34})^6G_{33} - [(a'_{34})^6 + (a''_{34})^6(T_{33})]G_{34} = 0\]
\[(b_{32})^6T_{33} - [(b'_{32})^6 - (b''_{32})^6(G_{35})]T_{32} = 0\]
\[(b_{33})^6T_{32} - [(b'_{33})^6 - (b''_{33})^6(G_{35})]T_{33} = 0\]
\[(b_{34})^6T_{33} - [(b'_{34})^6 - (b''_{34})^6(G_{35})]T_{34} = 0\]

has a unique positive solution, which is an equilibrium solution for the system

(a) Indeed the first two equations have a nontrivial solution \(G_{13}, G_{14}\) if

\[F(T) = (a_{13}^{(1)}(a'_{14}^{(1)}) - (a_{13}^{(1)}(a_{14}^{(1)})) + (a_{13}^{(1)}(a''_{14}^{(1)})(T_{14}) + (a_{14}^{(1)}(a'_{13}^{(1)})(T_{14}) + (a''_{13}^{(1)}(T_{14})(a'_{14}^{(1)})(T_{14}) = 0\]

(a) Indeed the first two equations have a nontrivial solution \(G_{16}, G_{17}\) if
\[F(T_{14}) = (a_{16}^{(2)}a_{17}^{(2)}) - (a_{16})^{(2)}(a_{17})^{(2)} + (a_{16}^{(2)}a_{17}^{(2)}(T_{17}) + (a_{17}^{(2)}(a_{17}^{(2)}(T_{17}) + (a_{16}^{(2)}(T_{17})(a_{17}^{(2)}(T_{17}) = 0 \]

(a) Indeed the first two equations have a nontrivial solution \(G_{29}, G_{21} \) if

\[F(T_{23}) = (a_{20}^{(3)}a_{21}^{(3)} - (a_{20})^{(3)}(a_{21})^{(3)} + (a_{20}^{(3)}a_{21}^{(3)}(T_{21}) + (a_{21}^{(3)}(a_{20}^{(3)}(T_{21}) + (a_{20}^{(3)}(T_{21})(a_{21}^{(3)}(T_{21}) = 0 \]

(a) Indeed the first two equations have a nontrivial solution \(G_{29}, G_{21} \) if

\[F(T_{27}) = (a_{24}^{(4)}a_{25}^{(4)} - (a_{24})^{(4)}(a_{25})^{(4)} + (a_{24}^{(4)}a_{25}^{(4)}(T_{25}) + (a_{25}^{(4)}(a_{24}^{(4)}(T_{25}) + (a_{24}^{(4)}(T_{25})(a_{25}^{(4)}(T_{25}) = 0 \]

(a) Indeed the first two equations have a nontrivial solution \(G_{29}, G_{21} \) if

\[F(T_{31}) = (a_{28}^{(5)}a_{29}^{(5)} - (a_{28})^{(5)}(a_{29})^{(5)} + (a_{28}^{(5)}a_{29}^{(5)}(T_{29}) + (a_{29}^{(5)}(a_{28}^{(5)}(T_{29}) + (a_{28}^{(5)}(T_{29})(a_{29}^{(5)}(T_{29}) = 0 \]

(a) Indeed the first two equations have a nontrivial solution \(G_{33}, G_{33} \) if

\[F(T_{35}) = (a_{32}^{(6)}a_{33}^{(6)} - (a_{32})^{(6)}(a_{33})^{(6)} + (a_{32}^{(6)}a_{33}^{(6)}(T_{33}) + (a_{33}^{(6)}(a_{32}^{(6)}(T_{33}) + (a_{32}^{(6)}(T_{33})(a_{33}^{(6)}(T_{33}) = 0 \]

\[\text{Definition and uniqueness of } T_{14}^* : - \]

After hypothesis \(f (0) < 0, f (\infty) > 0 \) and the functions \((a_{i}^{(1)(T_{14})} \) being increasing, it follows that there exists a unique \(T_{14}^* \) for which \(f (T_{14}^*) = 0 \). With this value, we obtain from the three first equations

\[G_{13} = \frac{(a_{13}^{(2)}(T_{14})}{(a_{13}^{(2)}(T_{14})} \quad G_{15} = \frac{(a_{15}^{(2)}(T_{14})}{(a_{15}^{(2)}(T_{14})} \quad G_{17} = \frac{(a_{17}^{(2)}(T_{14})}{(a_{17}^{(2)}(T_{14})} \]

\[\text{Definition and uniqueness of } T_{17}^* : - \]

After hypothesis \(f (0) < 0, f (\infty) > 0 \) and the functions \((a_{i}^{(2)(T_{17})} \) being increasing, it follows that there exists a unique \(T_{17}^* \) for which \(f (T_{17}^*) = 0 \). With this value, we obtain from the three first equations

\[G_{16} = \frac{(a_{16}^{(2)}(T_{17})}{(a_{16}^{(2)}(T_{17})} \quad G_{18} = \frac{(a_{18}^{(2)}(T_{17})}{(a_{18}^{(2)}(T_{17})} \quad G_{20} = \frac{(a_{20}^{(2)}(T_{21})}{(a_{20}^{(2)}(T_{21})} \]

\[\text{Definition and uniqueness of } T_{21}^* : - \]

After hypothesis \(f (0) < 0, f (\infty) > 0 \) and the functions \((a_{i}^{(1)(T_{21})} \) are increasing, it follows that there exists a unique \(T_{21}^* \) for which \(f (T_{21}^*) = 0 \). With this value, we obtain from the three first equations

\[G_{20} = \frac{(a_{20}^{(3)}(T_{21})}{(a_{20}^{(3)}(T_{21})} \quad G_{22} = \frac{(a_{22}^{(3)}(T_{21})}{(a_{22}^{(3)}(T_{21})} \]

\[\text{Definition and uniqueness of } T_{25}^* : - \]

After hypothesis \(f (0) < 0, f (\infty) > 0 \) and the functions \((a_{i}^{(4)(T_{25})} \) being increasing, it follows that there exists a unique \(T_{25}^* \) for which \(f (T_{25}^*) = 0 \). With this value, we obtain from the three first equations
ISSN 2250-3153

\[G_{24} = \frac{(g_{24})^4 G_{25}}{[(a_{24}^4)^4 + (a_{25}^4)^4]} \quad G_{26} = \frac{(g_{26})^4 G_{25}}{[(a_{26}^4)^4 + (a_{25}^4)^4]} \]

Definition and uniqueness of \(T_{29}^* \):

After hypothesis \(f(0) < 0, f(\infty) > 0 \) and the functions \((a_i^\prime)^5 (T_{29}) \) being increasing, it follows that there exists a unique \(T_{29}^* \) for which \(f(T_{29}^*) = 0 \). With this value, we obtain from the three first equations

\[G_{28} = \frac{(g_{28})^5 G_{29}}{[(a_{28}^5)^5 + (a_{29}^5)^5]} \quad G_{30} = \frac{(g_{30})^5 G_{29}}{[(a_{30}^5)^5 + (a_{29}^5)^5]} \]

Definition and uniqueness of \(T_{33}^* \):

After hypothesis \(f(0) < 0, f(\infty) > 0 \) and the functions \((a_i^\prime)^6 (T_{33}) \) being increasing, it follows that there exists a unique \(T_{33}^* \) for which \(f(T_{33}^*) = 0 \). With this value, we obtain from the three first equations

\[G_{32} = \frac{(g_{32})^6 G_{33}}{[(a_{32}^6)^6 + (a_{33}^6)^6]} \quad G_{34} = \frac{(g_{34})^6 G_{33}}{[(a_{34}^6)^6 + (a_{33}^6)^6]} \]

(e) By the same argument, Solutional equations admit solutions \(G_{13}, G_{14} \) if

\[\phi(G) = (b_{13}^\prime)^2 (b_{14}^\prime)^2 - (b_{13})^2 (b_{14})^2 \]

\[(b_{13}^\prime)^2 (b_{14}^\prime)^2 (G_{10}) + (b_{14}^\prime)^2 (b_{13})^2 (G_{10}) + (b_{13}^\prime)^2 (b_{14})^2 (G_{10}) = 0 \]

Where in \(G(G_{13}, G_{14}, G_{15}) \), \(G_{13}, G_{15} \) must be replaced by their values. It is easy to see that \(\phi \) is a decreasing function in \(G_{14} \) taking into account the hypothesis \(\phi(0) > 0, \phi(\infty) < 0 \) it follows that there exists a unique \(G_{14}^* \) such that \(\phi(G^*) = 0 \)

(f) By the same argument, the Solutional equations admit solutions \(G_{16}, G_{17} \) if

\[\phi(G_{19}) = (b_{16}^\prime)^2 (b_{17}^\prime)^2 - (b_{16})^2 (b_{17})^2 \]

\[(b_{16}^\prime)^2 (b_{17}^\prime)^2 (G_{19}) + (b_{17}^\prime)^2 (b_{16})^2 (G_{19}) + (b_{16}^\prime)^2 (b_{17})^2 (G_{19}) = 0 \]

Where in \(G(G_{19}, G_{16}, G_{17}, G_{18}) \), \(G_{16}, G_{18} \) must be replaced by their values. It is easy to see that \(\phi \) is a decreasing function in \(G_{17} \) taking into account the hypothesis \(\phi(0) > 0, \phi(\infty) < 0 \) it follows that there exists a unique \(G_{17}^* \) such that \(\phi(G_{17}^*) = 0 \)

(g) By the same argument, the equations (Solutional) admit solutions \(G_{20}, G_{21} \) if

\[\phi(G_{23}) = (b_{20}^\prime)^2 (b_{21}^\prime)^2 - (b_{20})^2 (b_{21})^2 \]

\[(b_{20}^\prime)^2 (b_{21}^\prime)^2 (G_{23}) + (b_{21}^\prime)^2 (b_{20})^2 (G_{23}) + (b_{20}^\prime)^2 (b_{21})^2 (G_{23}) = 0 \]

Where in \(G(G_{20}, G_{23}, G_{22}) \), \(G_{20}, G_{22} \) must be replaced by their values. It is easy to see that \(\phi \) is a decreasing function in \(G_{21} \) taking into account the hypothesis \(\phi(0) > 0, \phi(\infty) < 0 \) it follows that there exists a unique \(G_{21}^* \) such that \(\phi(G_{21}^*) = 0 \)

(h) By the same argument, the equations (Solutional) admit solutions \(G_{24}, G_{25} \) if

\[\phi(G_{27}) = (b_{24}^\prime)^2 (b_{25}^\prime)^2 - (b_{24})^2 (b_{25})^2 \]

\[(b_{24}^\prime)^2 (b_{25}^\prime)^2 (G_{27}) + (b_{25}^\prime)^2 (b_{24})^2 (G_{27}) + (b_{24}^\prime)^2 (b_{25})^2 (G_{27}) = 0 \]

Where in \(G(G_{27}, G_{24}, G_{25}, G_{26}) \), \(G_{24}, G_{26} \) must be replaced by their values from 96. It is easy to see that \(\phi \) is a decreasing function in \(G_{25} \) taking into account the hypothesis \(\phi(0) > 0, \phi(\infty) < 0 \) it follows that there...
exists a unique G_{29} such that $\varphi((G_{29})^*) = 0$

(i) By the same argument, the equations (solutional) admit solutions G_{28}, G_{29} if

$$\varphi(G_{31}) = (b_{28}^{(5)}(b_{29}^{(5)}) - (b_{28}^{(5)})(b_{29}^{(5)}) -$$

$$[b_{28}^{(5)}(b_{29}^{(5)})(G_{31}) + (b_{28}^{(5)}(b_{29}^{(5)})(G_{31})] + (b_{29}^{(5)}(G_{31})(b_{29}^{(5)})(G_{31}) = 0$$

Where in $(G_{31})(G_{28}, G_{29}, G_{30}), G_{28}, G_{30}$ must be replaced by their values. It is easy to see that φ is a decreasing function in G_{29} taking into account the hypothesis $\varphi(0) > 0, \varphi(\infty) < 0$ it follows that there exists a unique G_{29} such that $\varphi((G_{31})^*) = 0$

(j) By the same argument, the equations (solutional) admit solutions G_{32}, G_{33} if

$$\varphi(G_{35}) = (b_{32}^{(6)}(b_{33}^{(6)}) - (b_{32}^{(6)})(b_{33}^{(6)}) -$$

$$[b_{32}^{(6)}(b_{33}^{(6)})(G_{35}) + (b_{32}^{(6)}(b_{33}^{(6)})(G_{35})] + (b_{33}^{(6)}(G_{35})(b_{33}^{(6)})(G_{33}) = 0$$

Where in $(G_{35})(G_{32}, G_{33}, G_{34}), G_{32}, G_{34}$ must be replaced by their values. It is easy to see that φ is a decreasing function in G_{33} taking into account the hypothesis $\varphi(0) > 0, \varphi(\infty) < 0$ it follows that there exists a unique G_{33} such that $\varphi(G^*) = 0$

Finally we obtain the unique solution G_{14}^* given by $\varphi(G^*) = 0, T_{14}^*$ given by $f(T_{14}^*) = 0$ and

$$G_{13}^* = \frac{(a_{13}(1)(G_{14}^*)}{[a_{13}(1)(a_{15}(3)(T_{14})]} , G_{15}^* = \frac{(a_{15}(1)(G_{14}^*)}{[a_{15}(1)(a_{15}(3)(T_{14})]}$$

$$T_{13}^* = \frac{(b_{13}(1)(T_{14}^*)}{[b_{13}(1)(a_{15}(3)(G^*)]} , T_{15}^* = \frac{(b_{15}(1)(T_{14}^*)}{[b_{15}(1)(a_{15}(3)(G^*)]}$$

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

$$G_{17}^* given by \varphi((G_{19})^*) = 0, T_{17}^* given by f(T_{17}^*) = 0 and$$

$$G_{16}^* = \frac{(a_{16}(2)(G_{17}^*)}{[a_{16}(3)(a_{16}(2)(T_{17})]} , G_{18}^* = \frac{(a_{18}(2)(G_{17}^*)}{[a_{18}(3)(a_{18}(2)(T_{17})]}$$

$$T_{16}^* = \frac{(b_{16}(2)(T_{17}^*)}{[b_{16}(2)(a_{18}(3)(G_{17})]} , T_{18}^* = \frac{(b_{18}(2)(T_{17}^*)}{[b_{18}(2)(a_{18}(3)(G_{17})]}$$

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

given by $\varphi((G_{23})^*) = 0, T_{21}^* given by f(T_{21}^*) = 0 and

$$G_{20}^* = \frac{(a_{20}(3)(G_{21}^*)}{[a_{20}(3)(a_{20}(3)(T_{21})]} , G_{22}^* = \frac{(a_{22}(3)(G_{21}^*)}{[a_{22}(3)(a_{22}(3)(T_{21})]}$$

$$T_{20}^* = \frac{(b_{20}(3)(T_{21}^*)}{[b_{20}(3)(a_{20}(3)(G_{21})]} , T_{22}^* = \frac{(b_{22}(3)(T_{21}^*)}{[b_{22}(3)(a_{22}(3)(G_{21})]}$$

Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

\[G_{25}^* \text{ given by } \varphi (G_{27}) = 0, \quad T_{25}^* \text{ given by } f (T_{25}) = 0 \text{ and } \]

\[G_{24}^* = \frac{(a_{24})^4(a_T)^4 G_{26}}{(a_{24})^4 + (a_T)^4 (G_{26})^4 (T_{26})^4}, \quad G_{26}^* = \frac{(a_{26})^4(a_T)^4 G_{24}}{(a_{26})^4 + (a_T)^4 (G_{24})^4 (T_{24})^4} \]

\[T_{24}^* = \frac{(b_{24})^4(a_T)^4 T_{26}}{(b_{24})^4 - (a_T)^4 ((G_{26})^4)^4}, \quad T_{26}^* = \frac{(b_{26})^4(a_T)^4 T_{24}}{(b_{26})^4 - (a_T)^4 ((G_{24})^4)^4} \]

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

\[G_{29}^* \text{ given by } \varphi ((G_{31})^*) = 0, \quad T_{29}^* \text{ given by } f (T_{29}) = 0 \text{ and } \]

\[G_{28}^* = \frac{(a_{28})^5(a_T)^5 G_{30}}{(a_{28})^5 + (a_T)^5 (G_{30})^5 (T_{30})^5}, \quad G_{30}^* = \frac{(a_{30})^5(a_T)^5 G_{28}}{(a_{30})^5 + (a_T)^5 (G_{28})^5 (T_{28})^5} \]

\[T_{28}^* = \frac{(b_{28})^5(a_T)^5 T_{30}}{(b_{28})^5 - (a_T)^5 ((G_{30})^5)^5}, \quad T_{30}^* = \frac{(b_{30})^5(a_T)^5 T_{28}}{(b_{30})^5 - (a_T)^5 ((G_{28})^5)^5} \]

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

\[G_{33}^* \text{ given by } \varphi ((G_{35})^*) = 0, \quad T_{33}^* \text{ given by } f (T_{33}) = 0 \text{ and } \]

\[G_{32}^* = \frac{(a_{32})^6(a_T)^6 G_{34}}{(a_{32})^6 + (a_T)^6 (G_{34})^6 (T_{34})^6}, \quad G_{34}^* = \frac{(a_{34})^6(a_T)^6 G_{32}}{(a_{34})^6 + (a_T)^6 (G_{32})^6 (T_{32})^6} \]

\[T_{32}^* = \frac{(b_{32})^6(a_T)^6 T_{34}}{(b_{32})^6 - (a_T)^6 ((G_{34})^6)^6}, \quad T_{34}^* = \frac{(b_{34})^6(a_T)^6 T_{32}}{(b_{34})^6 - (a_T)^6 ((G_{32})^6)^6} \]

Obviously, these values represent an equilibrium solution

ASYMPTOTIC STABILITY ANALYSIS FOR THE GLOBAL SYSTEM

1. hydrocarbon deposit-ozone credit
2. plant investment-oxygen output
3. oxygen income(in water)-cellular consumption
4. oxygen savings(clouds)-terrestrial organisms
5. dead organic matter-decompose organism
6. solar radiation-chemical processes

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions \((a_{ij})^{(1)}(t)\) and \((b_{ij})^{(1)}(t)\) belong to \(C^1(\mathbb{R}^+)\) then the above equilibrium point is asymptotically stable.

Proof: Denote

Definition of \(G_i, T_i\) :-

\[G_i = G_i^* + G_i, \quad T_i = T_i^* + T_i \]

\[\frac{\partial (a_{ij})^{(1)}(t)}{\partial t_{ij}} (T_{14})^{(1)} = (q_{14})^{(1)} , \quad \frac{\partial (b_{ij})^{(1)}(t)}{\partial G_j} (G^*) = s_{ij} \]

Then taking into account equations (GLOBAL) and neglecting the terms of power 2, we obtain

www.ijsrp.org
\[\frac{dG_{13}}{dt} = -((a_{13}')^{(1)} + (p_{13}')^{(1)})G_{13} + (a_{13}')^{(1)}G_{14} + (q_{13}')^{(1)}G_{13} T_{14}\]

\[\frac{dG_{14}}{dt} = -((a_{14}')^{(1)} + (p_{14}')^{(1)})G_{14} + (a_{14}')^{(1)}G_{13} - (q_{14}')^{(1)}G_{14} T_{14}\]

\[\frac{dG_{15}}{dt} = -((a_{15}')^{(1)} + (p_{15}')^{(1)})G_{15} + (a_{15}')^{(1)}G_{14} - (q_{15}')^{(1)}G_{15} T_{14}\]

\[\frac{dT_{13}}{dt} = -((b_{13}')^{(1)} - (r_{13}')^{(1)})T_{13} + (b_{13}')^{(1)}T_{14} + \sum_{j=13}^{15} (s_{13}(j)T_{13}G_j)\]

\[\frac{dT_{14}}{dt} = -((b_{14}')^{(1)} - (r_{14}')^{(1)})T_{14} + (b_{14}')^{(1)}T_{13} + \sum_{j=13}^{15} (s_{14}(j)T_{13}G_j)\]

\[\frac{dT_{15}}{dt} = -((b_{15}')^{(1)} - (r_{15}')^{(1)})T_{15} + (b_{15}')^{(1)}T_{14} + \sum_{j=13}^{15} (s_{15}(j)T_{13}G_j)\]

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions \((a_i')^{(2)}\) and \((b_i')^{(2)}\) Belong to \(C^{(2)}(\mathbb{R}_+)\) then the above equilibrium point is asymptotically stable.

Proof: Denote

\[G_i = G_i^* + G_i \quad T_i = T_i^* + T_i\]

\[\frac{\partial G_i^{(2)}}{\partial T_{17}} = (q_{17})^{(2)} \quad \frac{\partial (b_i')^{(2)}}{\partial G_j}(G_{19})^* = s_{ij}\]

Taking into account equations 89 to 94 and neglecting the terms of power 2, we obtain

\[\frac{dG_{16}}{dt} = -((a_{16}')^{(2)} + (p_{16}')^{(2)})G_{16} + (a_{16}')^{(2)}G_{17} - (q_{16}')^{(2)}G_{16} T_{17}\]

\[\frac{dG_{17}}{dt} = -((a_{17}')^{(2)} + (p_{17}')^{(2)})G_{17} + (a_{17}')^{(2)}G_{16} - (q_{17}')^{(2)}G_{17} T_{17}\]

\[\frac{dG_{18}}{dt} = -((a_{18}')^{(2)} + (p_{18}')^{(2)})G_{18} + (a_{18}')^{(2)}G_{17} - (q_{18}')^{(2)}G_{18} T_{17}\]

\[\frac{dT_{16}}{dt} = -((b_{16}')^{(2)} - (r_{16}')^{(2)})T_{16} + (b_{16}')^{(2)}T_{17} + \sum_{j=16}^{18} (s_{16}(j)T_{16}G_j)\]

\[\frac{dT_{17}}{dt} = -((b_{17}')^{(2)} - (r_{17}')^{(2)})T_{17} + (b_{17}')^{(2)}T_{16} + \sum_{j=16}^{18} (s_{17}(j)T_{16}G_j)\]

\[\frac{dT_{18}}{dt} = -((b_{18}')^{(2)} - (r_{18}')^{(2)})T_{18} + (b_{18}')^{(2)}T_{17} + \sum_{j=16}^{18} (s_{18}(j)T_{16}G_j)\]

If the conditions of the previous theorem are satisfied and if the functions \((a_i')^{(3)}\) and \((b_i')^{(3)}\) Belong to \(C^{(3)}(\mathbb{R}_+)\) then the above equilibrium point is asymptotically stable.

Proof: Denote

\[G_i = G_i^* + G_i \quad T_i = T_i^* + T_i\]

\[\frac{\partial (a_{i}')^{(3)}}{\partial T_{21}}(T_{21}^*) = (q_{21})^{(3)} \quad \frac{\partial (b_i')^{(3)}}{\partial G_j}(G_{23})^* = s_{ij}\]

Then taking into account equations (GLOBAL) and neglecting the terms of power 2, we obtain
Then taking into account equations (GLOBAL) and neglecting the terms of power 2, we obtain

\[
\frac{dG_{20}}{dt} = -((a_{20})^{(3)} + (p_{20})^{(3)})G_{20} + (a_{20})^{(3)}G_{21} - (q_{20})^{(3)}G_{20}T_{21}
\]

\[
\frac{dG_{21}}{dt} = -((a_{21})^{(3)} + (p_{21})^{(3)})G_{21} + (a_{21})^{(3)}G_{20} - (q_{21})^{(3)}G_{21}T_{21}
\]

\[
\frac{dG_{22}}{dt} = -((a_{22})^{(3)} + (p_{22})^{(3)})G_{22} + (a_{22})^{(3)}G_{21} - (q_{22})^{(3)}G_{22}T_{21}
\]

\[
\frac{dG_{20}}{dt} = -((b_{20})^{(3)} - (r_{20})^{(3)})T_{20} + (b_{20})^{(3)}T_{21} + \Sigma_{j=20}^{22}(s_{20}(j)T_{20}^*G_{j})
\]

\[
\frac{dG_{21}}{dt} = -((b_{21})^{(3)} - (r_{21})^{(3)})T_{21} + (b_{21})^{(3)}T_{20} + \Sigma_{j=20}^{22}(s_{21}(j)T_{21}^*G_{j})
\]

\[
\frac{dG_{22}}{dt} = -((b_{22})^{(3)} - (r_{22})^{(3)})T_{22} + (b_{22})^{(3)}T_{21} + \Sigma_{j=20}^{22}(s_{22}(j)T_{22}^*G_{j})
\]

If the conditions of the previous theorem are satisfied and if the functions \((a_i)^{(4)}\) and \((b_i)^{(4)}\) Belong to \(C^{(4)}(\mathbb{R}_+)^{n}\) then the above equilibrium point is asymptotically stable.

Denote

Definition of \(G_i, T_i :=\)

\[G_i = G_i^* + G_i, \quad T_i = T_i^* + T_i\]

\[\frac{\partial(a_i^{(4)})}{\partial T_{25}}(T_{25}^*) = (q_{25})^{(4)}, \quad \frac{\partial(b_i^{(4)})}{\partial G_j}(G_{27}^*) = s_{ij}\]

Then taking into account equations (GLOBAL) and neglecting the terms of power 2, we obtain

\[
\frac{dG_{24}}{dt} = -((a_{24})^{(4)} + (p_{24})^{(4)})G_{24} + (a_{24})^{(4)}G_{25} - (q_{24})^{(4)}G_{24}T_{25}
\]

\[
\frac{dG_{25}}{dt} = -((a_{25})^{(4)} + (p_{25})^{(4)})G_{25} + (a_{25})^{(4)}G_{24} - (q_{25})^{(4)}G_{25}T_{25}
\]

\[
\frac{dG_{26}}{dt} = -((a_{26})^{(4)} + (p_{26})^{(4)})G_{26} + (a_{26})^{(4)}G_{25} - (q_{26})^{(4)}G_{26}T_{25}
\]

\[
\frac{dG_{24}}{dt} = -((b_{24})^{(4)} - (r_{24})^{(4)})T_{24} + (b_{24})^{(4)}T_{25} + \Sigma_{j=24}^{26}(s_{24}(j)T_{24}^*G_{j})
\]

\[
\frac{dG_{25}}{dt} = -((b_{25})^{(4)} - (r_{25})^{(4)})T_{25} + (b_{25})^{(4)}T_{24} + \Sigma_{j=24}^{26}(s_{25}(j)T_{25}^*G_{j})
\]

\[
\frac{dG_{26}}{dt} = -((b_{26})^{(4)} - (r_{26})^{(4)})T_{26} + (b_{26})^{(4)}T_{25} + \Sigma_{j=24}^{26}(s_{26}(j)T_{26}^*G_{j})
\]

If the conditions of the previous theorem are satisfied and if the functions \((a_i)^{(5)}\) and \((b_i)^{(5)}\) Belong to \(C^{(5)}(\mathbb{R}_+)^n\) then the above equilibrium point is asymptotically stable.

Proof: Denote

Definition of \(G_i, T_i :=\)

\[G_i = G_i^* + G_i, \quad T_i = T_i^* + T_i\]

\[\frac{\partial(a_i^{(5)})}{\partial T_{29}}(T_{29}^*) = (q_{29})^{(5)}, \quad \frac{\partial(b_i^{(5)})}{\partial G_j}(G_{31}^*) = s_{ij}\]

Then taking into account equations (GLOBAL) and neglecting the terms of power 2, we obtain
\[
\frac{dG_{28}}{dt} = -\left((a_{28}')(5) + (p_{28})'(5)\right)G_{28} + (a_{28})'(5)G_{29} - (q_{28})'(5)G_{28}^* T_{29}
\]
\[
\frac{dG_{29}}{dt} = -\left((a_{29}')(5) + (p_{29})'(5)\right)G_{29} + (a_{29})'(5)G_{28} - (q_{29})'(5)G_{29}^* T_{29}
\]
\[
\frac{dG_{30}}{dt} = -\left((a_{30}')(5) + (p_{30})'(5)\right)G_{30} + (a_{30})'(5)G_{29} - (q_{30})'(5)G_{30}^* T_{29}
\]
\[
\frac{dT_{28}}{dt} = -\left((b_{28}')(5) - (r_{28})'(5)\right)T_{28} + (b_{28})'(5)T_{29} + \sum_{j=28}^{30}(s_{28}(j)T_{28} G_j)
\]
\[
\frac{dT_{29}}{dt} = -\left((b_{29}')(5) - (r_{29})'(5)\right)T_{29} + (b_{29})'(5)T_{28} + \sum_{j=28}^{30}(s_{29}(j)T_{28} G_j)
\]
\[
\frac{dT_{30}}{dt} = -\left((b_{30}')(5) - (r_{30})'(5)\right)T_{30} + (b_{30})'(5)T_{28} + \sum_{j=28}^{30}(s_{30}(j)T_{28} G_j)
\]

If the conditions of the previous theorem are satisfied and if the functions \((a_i')(6)\) and \((b_i')(6)\) Belong to \(C^6(\mathbb{R}_+)\) then the above equilibrium point is asymptotically stable.

Define

Definition of \(G_i, T_i : -\)

\[G_i = G_i^* + G_i, \quad T_i = T_i^* + T_i\]

\[\frac{\partial (a_{i33}')(6)}{\partial T_{33}} (T_{33}^*) = (q_{33})'(6), \quad \frac{\partial (b_{i33}')(6)}{\partial T_{33}} (G_{33}^*) = s_{ij}\]

Then taking into account equations 89 to 94 and neglecting the terms of power 2, we obtain

\[
\frac{dG_{32}}{dt} = -\left((a_{32}')(6) + (p_{32})'(6)\right)G_{32} + (a_{32})'(6)G_{33} - (q_{32})'(6)G_{32}^* T_{33}
\]
\[
\frac{dG_{33}}{dt} = -\left((a_{33}')(6) + (p_{33})'(6)\right)G_{33} + (a_{33})'(6)G_{32} - (q_{33})'(6)G_{33}^* T_{33}
\]
\[
\frac{dG_{34}}{dt} = -\left((a_{34}')(6) + (p_{34})'(6)\right)G_{34} + (a_{34})'(6)G_{33} - (q_{34})'(6)G_{34}^* T_{33}
\]
\[
\frac{dT_{32}}{dt} = -\left((b_{32}')(6) - (r_{32})'(6)\right)T_{32} + (b_{32})'(6)T_{33} + \sum_{j=32}^{34}(s_{32}(j)T_{32} G_j)
\]
\[
\frac{dT_{33}}{dt} = -\left((b_{33}')(6) - (r_{33})'(6)\right)T_{33} + (b_{33})'(6)T_{32} + \sum_{j=32}^{34}(s_{33}(j)T_{32} G_j)
\]
\[
\frac{dT_{34}}{dt} = -\left((b_{34}')(6) - (r_{34})'(6)\right)T_{34} + (b_{34})'(6)T_{33} + \sum_{j=32}^{34}(s_{34}(j)T_{32} G_j)
\]

The characteristic equation of this system is

\[
((\lambda)^{(1)} + (b_{13})(1) - (r_{13})(1))((\lambda)^{(1)} + (a_{15})(1) + (p_{15})(1))
\]
\[
\left[(\lambda)^{(1)} + (a_{13})(1) + (p_{13})(1)(q_{14})(1)G_{14} + (a_{14})(1)(q_{13})(1)G_{13} \right]
\]
\[
\left[((\lambda)^{(1)} + (b_{13})(1) - (r_{13})(1))s_{(14),(14)}T_{14}^* + (b_{14})(1)s_{(13),(14)}T_{14}^* \right]
\]
\[
+ \left[((\lambda)^{(1)} + (a_{14})(1) + (p_{14})(1)(q_{13})(1)G_{13} + (a_{13})(1)(q_{14})(1)G_{14} \right)
\]
\[
\begin{align*}
&\left((\lambda)^{(1)} + (b_{13}^{(1)} - (r_{13}^{(1)})s_{(14),(13)}T_{14} + (b_{14}^{(1)}s_{(13),(13)}T_{13}^*) \right) \\
&\left((\lambda)^{(2)} + (a_{14}^{(1)} + (p_{13}^{(1)} + (p_{14}^{(1)} (\lambda)^{(1)}) \right) \\
&\left((\lambda)^{(3)} + (b_{13}^{(1)} + (b_{14}^{(1)} - (r_{13}^{(1)} + (r_{14}^{(1)} (\lambda)^{(1)}) \right) \\
&+ \left((\lambda)^{(1)} (a_{13}^{(1)} + (a_{14}^{(1)} + (p_{13}^{(1)} + (p_{14}^{(1)} (\lambda)^{(1)}) \right) (q_{13}^{(1)}G_{15} \right) \\
&+ (\lambda)^{(1)} + (a_{13}^{(1)} + (p_{13}^{(1)} (a_{15}^{(1)}q_{14}^{(1)}G_1^4 + (a_{14}^{(1)}a_{15}^{(1)}q_{15}^{(1)}G_3^1) \right) \\
&\left((\lambda)^{(1)} + (b_{13}^{(1)} - (r_{13}^{(1)}s_{(14),(15)}T_{14} + (b_{14}^{(1)}s_{(13),(15)}T_{13}^*) \right) = 0 \\
&+ \left((\lambda)^{(2)} + (b_{13}^{(2)} - (r_{13}^{(2)})((\lambda)^{(2)} + (a_{13}^{(2)} + (p_{13}^{(2)}) \right) \\
&\left(((\lambda)^{(2)} + (a_{16}^{(2)} + (p_{17}^{(2)}(q_{17}^{(2)}G_1^7 + (a_{17}^{(2)}q_{17}^{(2)}G_3^1) \right) \\
&\left((\lambda)^{(2)} + (b_{16}^{(2)} - (r_{16}^{(2)})s_{(17),(16)}T_{17} + (b_{17}^{(2)}s_{(16),(16)}T_{16}^*) \right) \\
&\left(((\lambda)^{(2)} + (a_{17}^{(2)} + (a_{27}^{(2)} + (p_{16}^{(2)} + (p_{17}^{(2)} (\lambda)^{(2)} \right) \\
&\left(((\lambda)^{(2)} + (b_{16}^{(2)} + (b_{17}^{(2)} - (r_{16}^{(2)} + (r_{17}^{(2)} (\lambda)^{(2)} \right) \\
&+ \left(((\lambda)^{(2)} + (a_{16}^{(2)} + (a_{17}^{(2)} + (p_{16}^{(2)} + (p_{17}^{(2)} (\lambda)^{(2)} \right) (q_{18}^{(2)}G_{18} \right) \\
&+ (\lambda)^{(2)} + (a_{16}^{(2)} + (p_{17}^{(2)} ((a_{18}^{(2)}q_{17}^{(2)}G_1^7 + (a_{17}^{(2)}a_{18}^{(2)}q_{18}^{(2)}G_{16} \right) \\
&\left(((\lambda)^{(2)} + (b_{16}^{(2)} - (r_{16}^{(2)})s_{(17),(18)}T_{17} + (b_{17}^{(2)}s_{(16),(18)}T_{16}^*) \right) = 0 \\
&+ \left((\lambda)^{(3)} + (b_{22}^{(3)} - (r_{22}^{(3)})((\lambda)^{(3)} + (a_{22}^{(3)} + (p_{22}^{(3)}) \right) \\
&\left(((\lambda)^{(3)} + (a_{20}^{(3)} + (p_{20}^{(3)}(q_{21}^{(3)}G_2^5 + (a_{21}^{(3)}q_{20}^{(3)}G_{20}^5) \right) \\
&\left((\lambda)^{(3)} + (b_{20}^{(3)} - (r_{20}^{(3)})s_{(21),(21)}T_{21} + (b_{21}^{(3)}s_{(20),(21)}T_{21}^*) \right) \\
&+ \left(((\lambda)^{(3)} + (a_{21}^{(3)} + (p_{21}^{(3)}(q_{20}^{(3)}G_{20}^5 + (a_{20}^{(3)}q_{21}^{(3)}G_2^1 \right) \\
&\left(((\lambda)^{(3)} + (b_{20}^{(3)} - (r_{20}^{(3)})s_{(21),(20)}T_{21} + (b_{21}^{(3)}s_{(20),(20)}T_{20}^*) \right) \\
&\left(((\lambda)^{(3)} + (a_{20}^{(3)} + (a_{21}^{(3)} + (p_{20}^{(3)} + (p_{21}^{(3)} (\lambda)^{(3)} \right) \\
&\left(((\lambda)^{(3)} + (b_{20}^{(3)} + (b_{21}^{(3)} - (r_{20}^{(3)} + (r_{21}^{(3)} (\lambda)^{(3)} \right)
\end{align*}
\]
\[
\begin{align*}
&+ \left((\lambda)^{(3)} \right)^2 + \left((a'_{20})^{(3)} + (a'_{21})^{(3)} + (p_{20})^{(3)} + (p_{21})^{(3)} \right) (\lambda)^{(3)} (q_{22})^{(3)} G_{22} \\
&+ \left((\lambda)^{(3)} + (a'_{20})^{(3)} + (p_{20})^{(3)} \right) \left((a_{22})^{(3)} (q_{21})^{(3)} G_{21} + (a_{21})^{(3)} (a_{22})^{(3)} (q_{20})^{(3)} G_{20} \right) \\
&\left((\lambda)^{(3)} + (b'_{20})^{(3)} - (r_{20})^{(3)} \right) s_{(21),(22)} T_{21}^* + (b_{21})^{(3)} s_{(20),(22)} T_{20}^* \right) = 0 \\
&+ \left((\lambda)^{(4)} + (a'_{25})^{(4)} - (r_{24})^{(4)} \right) \left(\left(\lambda \right)^{(4)} + (a'_{26})^{(4)} + (p_{26})^{(4)} \right) \\
&\left((\lambda)^{(4)} + (a'_{24})^{(4)} + (p_{24})^{(4)} (q_{24})^{(4)} G_{24}^* + (a_{24})^{(4)} (q_{25})^{(4)} G_{25}^* \right) \\
&\left((\lambda)^{(4)} + (b'_{24})^{(4)} - (r_{24})^{(4)} \right) s_{(25),(24)} T_{25}^* + (b_{25})^{(4)} s_{(24),(24)} T_{24}^* \\
&\left((\lambda)^{(4)} \right)^2 + \left((a'_{24})^{(4)} + (a_{25})^{(4)} + (p_{24})^{(4)} + (p_{25})^{(4)} \right) (\lambda)^{(4)} \right) \\
&\left((\lambda)^{(4)} \right)^2 + \left((b'_{24})^{(4)} + (b_{25})^{(4)} - (r_{24})^{(4)} + (r_{25})^{(4)} \right) (\lambda)^{(4)} \right) \\
&+ \left((\lambda)^{(4)} \right)^2 + \left((a'_{24})^{(4)} + (a'_{25})^{(4)} + (p_{24})^{(4)} + (p_{25})^{(4)} \right) (\lambda)^{(4)} \right) (q_{26})^{(4)} G_{26} \\
&+ \left((\lambda)^{(4)} + (a'_{24})^{(4)} + (p_{24})^{(4)} \right) \left((a_{26})^{(4)} (q_{25})^{(4)} G_{25}^* + (a_{25})^{(4)} (a_{26})^{(4)} (q_{24})^{(4)} G_{24}^* \right) \\
&\left((\lambda)^{(4)} + (b'_{24})^{(4)} - (r_{24})^{(4)} \right) s_{(25),(26)} T_{25}^* + (b_{25})^{(4)} s_{(24),(26)} T_{24}^* \right) = 0 \\
&+ \left((\lambda)^{(5)} + (a'_{30})^{(5)} - (r_{30})^{(5)} \right) \left((\lambda)^{(5)} + (a'_{34})^{(5)} + (p_{30})^{(5)} \right) \\
&\left((\lambda)^{(5)} + (a'_{29})^{(5)} + (p_{29})^{(5)} (q_{29})^{(5)} G_{29}^* + (a_{29})^{(5)} (q_{28})^{(5)} G_{28}^* \right) \\
&\left((\lambda)^{(5)} + (b'_{29})^{(5)} - (r_{28})^{(5)} \right) s_{(29),(28)} T_{29}^* + (b_{29})^{(5)} s_{(28),(29)} T_{28}^* \\
&+ \left((\lambda)^{(5)} + (a'_{25})^{(5)} + (p_{29})^{(5)} \right) (q_{28})^{(5)} G_{28}^* + (a_{28})^{(5)} (q_{29})^{(5)} G_{29}^* \\
&\left((\lambda)^{(5)} + (b'_{28})^{(5)} - (r_{28})^{(5)} \right) s_{(28),(28)} T_{28}^* + (b_{28})^{(5)} s_{(28),(28)} T_{28}^* \\
&\left((\lambda)^{(5)} \right)^2 + \left((a'_{28})^{(5)} + (a'_{29})^{(5)} + (p_{28})^{(5)} + (p_{29})^{(5)} \right) (\lambda)^{(5)} \right) \\
&\left((\lambda)^{(5)} \right)^2 + \left((b'_{28})^{(5)} + (b_{29})^{(5)} - (r_{28})^{(5)} + (r_{29})^{(5)} \right) (\lambda)^{(5)} \right) \\
&+ \left((\lambda)^{(5)} \right)^2 + \left((a'_{30})^{(5)} + (a'_{29})^{(5)} + (p_{28})^{(5)} + (p_{29})^{(5)} \right) (\lambda)^{(5)} \right) (q_{30})^{(5)} G_{30} \\
&+ \left((\lambda)^{(5)} + (a_{28})^{(5)} + (p_{28})^{(5)} \right) \left((a_{30})^{(5)} (q_{29})^{(5)} G_{29}^* + (a_{29})^{(5)} (a_{30})^{(5)} (q_{28})^{(5)} G_{28}^* \right)
\end{align*}
\]
\[
\left((\lambda)^{(6)} + (b_{28}^{(5)} - (r_{28})^{(6)}) s_{29}^{(29),(30)} T_{29}^{*} + (b_{29})^{(5)} s_{29}^{(29),(30)} T_{28}^{*} \right) = 0
\]

\[
+ \left((\lambda)^{(6)} + (b_{34})^{(6)} - (r_{34})^{(6)} \right) ((\lambda)^{(6)} + (a_{34})^{(6)} + (p_{34})^{(6)})
\]

\[
\left[((\lambda)^{(6)} + (a_{32})^{(6)} + (p_{32})^{(6)}(q_{33})^{(6)} G_{33}^{*} + (a_{33})^{(6)}(q_{32})^{(6)} G_{32}^{*}) \right]
\]

\[
((\lambda)^{(6)} + (b_{32}^{(6)}) - (r_{32})^{(6)}) s_{33}^{(33),(32)} T_{32}^{*} + (b_{33})^{(6)} s_{33}^{(33),(32)} T_{32}^{*}
\]

\[
+ \left((\lambda)^{(6)} + (b_{32}^{(6)}) - (r_{32})^{(6)} \right) s_{33}^{(33),(32)} T_{33}^{*} + (b_{33})^{(6)} s_{33}^{(33),(32)} T_{32}^{*}
\]

\[
\left((\lambda)^{(6)} - (b_{32}^{(6)} + (a_{32})^{(6)} + (p_{32})^{(6)} + (p_{33})^{(6)} \right) (\lambda)^{(6)}
\]

\[
\left((\lambda)^{(6)} - (b_{32}^{(6)} + (b_{32}^{(6)} - (r_{32})^{(6)} + (r_{33})^{(6)}) (\lambda)^{(6)}
\]

\[
+ \left((\lambda)^{(6)} - (b_{32}^{(6)} + (a_{32})^{(6)} + (p_{32})^{(6)} + (p_{33})^{(6)} \right) (\lambda)^{(6)}
\]

\[
\left((\lambda)^{(6)} - (r_{32})^{(6)} \right) s_{33}^{(33),(34)} T_{33}^{*} + (b_{33})^{(6)} s_{33}^{(33),(34)} T_{32}^{*} \right) = 0
\]

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this proves the theorem.

Acknowledgments:

The introduction is a collection of information from various articles, Books, News Paper reports, Home Pages Of authors, Journal Reviews, the internet including Wikipedia. We acknowledge all authors who have contributed to the same. In the eventuality of the fact that there has been any act of omission on the part of the authors, We regret with great deal of compunction, contrition, and remorse. As Newton said, it is only because erudite and eminent people allowed one to piggy ride on their backs; probably an attempt has been made to look slightly further. Once again, it is stated that the references are only illustrative and not comprehensive.

REFERENCES

1. "Part III. The Science of the Ozone Hole".

2. A HAIMOVICI: “On the growth of a two species ecological system divided on age groups”. Tensor, Vol 37 (1982), Commemoration volume dedicated to Professor Akitsugu Kawaguchi on his 80th birthday

12. ^ Andino, Jean M. (21 October 1999). "Chlorofluorocarbons (CFCs) are heavier than air, so how do scientists suppose that these chemicals reach the altitude of the ozone layer to adversely affect it?” Sci. Am.

17. ^ PWMU. "World Meteorological Organization (WMO)". Wmo.ch. Retrieved 2011-03-28.[dead link]

18. ^ U.S. EPA: Ozone Depletion [dead link]

21. ^ [1][dead link]

First Author:

Mr. K. N. Prasanna Kumar has three doctorates one each in Mathematics, Economics, and Political Science. Thesis was based on Mathematical Modeling. He was recently awarded D.litt., for his work on ‘Mathematical Models in Political Science’ --- Department of studies in Mathematics, Kuvempu University, Shimoga, Karnataka, India.

Corresponding Author: drknkp Kumar@gmail.com

Second Author:

Prof. B.S Kiranagi is the Former Chairman of the Department of Studies in Mathematics, Manasa Gangotri and present Professor Emeritus of UGC in the Department. Professor Kiranagi has guided over 25 students and he has received many encomiums and laurels for his contribution to Co homology Groups and Mathematical Sciences. Known for his prolific writing, and one of the senior most Professors of the country, he has over 150 publications to his credit. A prolific writer and a prodigious thinker, he has to his credit several books on Lie Groups, Co Homology Groups, and other mathematical application topics, and excellent publication history. -- UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri, University of Mysore, Karnataka, India

Third Author:

Prof. C.S. Bagewadi is the present Chairman of Department of Mathematics and Department of Studies in Computer Science and has guided over 25 students. He has published articles in both national and international journals. Professor Bagewadi specializes in Differential Geometry and its wide-ranging ramifications. He has to his credit more than 159 research papers. Several Books on Differential Geometry, Differential Equations are coauthored by him --- Chairman, Department of studies in Mathematics and Computer science, Jnanasahyadri Kuvempu university, Shankarghatta, Shimoga district, Karnataka, India