
International Journal of Scientific and Research Publications, Volume 1, Issue 1, December 2011 1
ISSN 2250-3153

www.ijsrp.org

Development of a Simple Serial Communication Protocol

for Microcontrollers (SSCPM)

Chetan Patil

Electronics & Communication, National Institute of Technology, Surathkal, Karnataka, India

chetankpatil@ieee.org

 Abstract- The paper describes development of a simple

communication protocol meant for communication between the

microcontrollers, separated by a small distance, of the order of a

few meters. The following protocol which I have named as

Simple Serial Communication Protocol for Microcontrollers

(SSCPM) can transfer small amount of data between the

microcontrollers at a reasonable speed of up to 4 kbits/sec

between 2 microcontrollers, separated by up to 3 or 4 meters.

This communication is asynchronous and serial transfer. The

main advantage of this protocol is that it does not require any

inbuilt or external peripherals, which is the case in other

protocols. This protocol requires just a single wire between the 2

microcontrollers and a simple half duplex communication is

possible between the two systems at any point of time. The user

can just apply the simple code that has been developed in C

language so that it becomes independent of the operating

platform. The code is just additional functions that are added to

the main operating code and can be called at any point of the

code to transfer or receive the data from the neighbouring

microcontroller. Since the protocol is based on soft transmission

of the code, the efficiency of the protocol is partially dependent

on the frequency at which the two microcontrollers are working.

There is no necessity that the two microcontrollers operate at the

same frequency, but evidently higher the operating frequency,

greater the data transfer rate between the two. The maximum

data transfer rate is governed by the microcontroller with the

lower clock frequency. The paper describes how the protocol has

been developed so far and tested on the microcontrollers. The

paper also gives possible extensions to the development of the

protocol which include auto baud rate detection, increasing the

range of distance between the two microcontrollers, increasing

the data transfer rate and other features. However the protocol

described in this paper is a possible alternative to the scenario

where simple data transfer without much complexity is essential

and does not essentially replace or improve the existing advanced

communication protocols. Since this is open source protocol and

no hardware requirement, the protocol can be of great

encouragement to those who wish to develop applications

without licensing or buying other hardware.

 Index Terms- Serial communication Protocol, communication

protocol for Microcontroller, Atmega32

1. INTRODUCTION

here have been several communication protocols in the

embedded systems like RS-232, Serial Peripheral Interface

(SPI), Inter-Integrated Circuit (I2C), Controller Area Network

(CAN) and many more. But most of these protocols require a

prerequisite hardware and sometimes licence for the copyrighted

code for the protocol. Hence in simple applications where this

amount of complexity in terms of communication as well as

rights to use is not essential and only some kind of basic

communication is essential, there is a need to develop a simpler

interface to overcome this existing complexity. The best

alternative would be to develop a new protocol which may not be

the fastest or most efficient, but definitely the simplest, cheapest

and open source. Making this protocol independent of the

hardware platform/requirement would increase the flexibility of

the protocol to a great extent. The development of such a

protocol has been brought out in this paper which elaborates the

details of the protocol, the advantages, the limitations and further

possible improvements of the protocol.

Figure1. Block diagram of SSCPM

2. DETAILS

 The development of the protocol has been conducted in

several phases. The first phase was to implement a simple data

reception code in Atmega 32 using interrupt.

Atmega 32 has 2 external interrupts on PORTD INT0 and INT1

which can be invariably used as either interrupt pins or as

input/output pins. The INT0 of PORTD i.e. PD2 was used for

this purpose which can be interchangeably used as interrupt pin

or IO pin. The advantage of using the interrupt is the time and

power saved because of unnecessary polling.

T

International Journal of Scientific and Research Publications, Volume 1, Issue 1, December 2011 2

ISSN 2250-3153

www.ijsrp.org

 The above code demonstrates the usage of PD2 to receive one

byte of data from pin PD2. The data was set using the switch

connected to a pull up resistor for testing purpose. In the latter

part this data will be provided by another microcontroller which

intends to transmit the required data to the host microcontroller.

The data supplied by the user through the switch is around

2000ms for each bit and the same is applicable for the start bit.

Initially the required interrupts for PD2 is enabled.

Figure 2. Experimental setup to test data reception

 The figure above indicates the test setup of the host

microcontroller. The above setup has Atmega32 as the host

microcontroller and is used to verify the code and analyse the

same. The output pins of the microcontroller are connected to the

LEDs to display the most significant 4 bits of the data, for

verification purpose. The voltage levels of the Atmega 32 are 5V

for high and 0V for low. These levels might for different

microcontrollers like for MSP430 series, it is 3.3V for high and

0V for low. However the functionality of the code remains

unchanged. Here, PD2 has been enabled as an external interrupt

which triggers for low level. This is done by setting the GICR

and MCUCR registers as shown in the above code. After the

initialization the processor is ready to process the interrupt on

request. When the user grounds the PD2 pin for an instant, the

ISR is called and the data reception initiates. The microcontroller

waits for 3000ms so that it is in the middle of the first data bit

and then samples the data. Thereafter the microcontroller waits

for 2000ms each time and samples the data. The details of the

data pattern diagram will make it clear of how this code works

for the input data.

Figure3. Generic data pattern of the SSCPM protocol

 The above figure indicates the simplicity of the coding of the

data byte that has to be transmitted. Consider that a single data

that is 8 bits of data have to be transmitted corresponding to the

data byte, then a start byte is appended to the 8 bits which makes

the total bits to be transmitted equal to 9 bits for each

transmission. The 1
st
 bit corresponds to the start/stop bit. The low

indicates the commencement of the transmission of the data since

the low level input is used to trigger the INT0 interrupt of the

host microcontroller. Soon after this bit is received by the host

microcontroller, it disables any further interrupts and starts to

receive the data. A global short unsigned integer is used to store

the value of the received data and is processed or stored in the

memory as per the user’s requirement.

 The above experiment gave successful results. This however

was using input provided by the user i.e. the user fed the data

input to the microcontroller. In practice another microcontroller

transmits this data and hence the same has to be devised. For the

test setup the duration of each bit was 2s. However in practice,

the duration of the data bit can be as low as 100 us. The lower the

data bit duration, higher is the rate of data transfer. However the

lower limit of the data bit duration is governed by the clock

frequency of the microcontroller, the details of which will be

dealt in the latter part.

 Now, the next phase is to generate the data from a

microcontroller using the same data pattern diagram. Another

microcontroller i.e. Atmega32 is used for this purpose. This

Atmega32 is operating at a clock frequency of 16 MHz using an

external crystal. The Atmega32 of the host microcontroller is

operating at a clock frequency of 1 MHz using internal clock.

International Journal of Scientific and Research Publications, Volume 1, Issue 1, December 2011 3

ISSN 2250-3153

www.ijsrp.org

This has been deliberately done to check for possible problems in

synchronization of the two systems. The following code was

used corresponding to transfer data to the host microcontroller.

The code was compiled using AVR Studio 4 and the snapshot of

the same has been given here. For other microcontroller families,

we can use a different platform for compiling our code.

 The above code shows how the data can be transmitted to the

host microcontroller using appropriate timing delays. Since it is

the testing phase, the microcontroller is coded only with the data

transmission and not data reception. The output of this

microcontroller is given to the PD2 of the first (host)

microcontroller. It is essential to note that both the

microcontrollers might have an independent source of voltage

but the grounds of both the systems have to be short. This is the

case even in most other common protocols but nevertheless an

important point to consider.

 It is important to note that though we are declaring the entire

PORTD (D0 through D7) to be the output ports while

initializing, we are using only the pin PD2 for the transmission of

the data. The rest of the pins of the PORTD can be used as per

the user’s requirement and correspondingly configured as input

or output pins. _delay_ms() is a function that is available from

the library avr/delay.h and can provide fairly accurate delays of

the order of milliseconds. Similarly _delay_us() is used in the

latter part of the development which can give delay of the order

of hundreds of microseconds. These functions differ according to

the compiling platform and the library used and hence has to

suitably replaced in case of different microcontroller.

Figure 4. Experimental setup to transmit data to the host

 The above figure indicates the setup of another microcontroller

which wishes to transmit the data to the host microcontroller and

the output of this microcontroller was verified on a LED and the

timing of each bit transmitted data bit was verified to be correct.

The successful transmission of the data from the above

microcontroller paved way to check if the data was intercepted

by the host microcontroller appropriately and the experiment

proved successful i.e. the data received by the host

microcontroller was the same as the transmitted data.

 The next phase was to make both the systems completely

independent and use the transmission and reception as an

interrupt function whenever required. For this the functions

depicted in the first and second phase i.e. to transmit and to

receive were integrated into one single block of code wherein the

user can fit in any application code along with this part of the

code without any hindrance to the main application code. Since

the data reception is interrupt driven, the microcontroller does

not waste time in polling which is the case in some of the

communication protocols. More important was to reduce the data

bit duration to a great extent so that higher data rates could be

verified. For this purpose the duration of each data bit was

reduced to 500 us including the start/stop bit. The timing diagram

below depicts clearly the implementation of the same.

Figure5. Timing details of the data transmitted and received

The above figure shows the timing diagram of the data bits. The

start bit is a low for 500 us, which triggers the interrupt on the

host microcontroller. The receiving microcontroller senses this

interrupt and enters the ISR and performs the data reception

function using the same pin PD2 as input pin. After the interrupt

is triggered, the microcontroller waits for 750 us so that it

samples the mid value of the first bit. This reduces the

International Journal of Scientific and Research Publications, Volume 1, Issue 1, December 2011 4

ISSN 2250-3153

www.ijsrp.org

probability of data sampling error and increases data transfer

efficiency. Thereafter it samples the data after every 500 us so

that it is sampling the middle of the interval of each data bit.

Figure6. Complete setup of the system for demonstration

 The figure above shows the final setup of the system

containing 2 microcontrollers connected by just a single wire,

which is connected to PD2 of each microcontroller. Also, both

the systems have different power sources but their grounds are

short externally. The data transferred can be verified by

displaying on the LEDs of either microcontroller. The setup

clearly shows the compactness of the system and independence

of any external hardware resources or extra wires. Thus both

transmission and reception are possible by the single wire

between the two microcontrollers.

 The code below explains the exact details of the protocol.

 The above code depicts the exact working of the code. It

would be essential to note that when the microcontroller receives

the interrupt i.e. to receive the data, it enters the ISR and first

disables any further interrupts since while data transfer is taking

place, the microcontroller might mistake it for interrupt and

cause complication in interrupt servicing. After the reception of

all the 8 data bits, the microcontroller enables the interrupt on the

pin PD2 again so that any further request for data reception can

be honoured correspondingly. Another important feature to note

is that, the pin PD2, serves as input pin all the while, but only

during data transmission it changes into an output pin and

transmits all the data bits and then after the completion of all the

International Journal of Scientific and Research Publications, Volume 1, Issue 1, December 2011 5

ISSN 2250-3153

www.ijsrp.org

data transmission, it converts to an input pin again. This is the

main reason for the flexibility available in this protocol. The

code clearly depicts the compactness and flexibility of the data

transfer system in case of the SSCPM.

3. CONCLUSION

 The tests conducted on the system proved to be successful. The

microcontrollers under consideration were

1. Atmega 32 operating at 1MHz internal clock

2. Atmega 32 operating at 16 MHz external clock

 Though the microcontrollers were operating at different

frequency and also not synchronized with clock, there was no

data error even at data rates of up to 2 kBps and efficiency

proved to be almost 100%. Further increase in the data transfer

rate gave an error of around 15%, which is very evident since the

data bit duration approaches the clock frequency closer and

closer.

 The main advantages of the newly developed protocol are:

1. Simplicity in the communication channel as this protocol

requires just one wire i.e. medium of transmission/reception and

can render to both reception and transmission

2. No hardware resources are required by the microcontroller

which is not the case in many protocols. Thus a microcontroller

with no specific peripherals can use this medium of

communication

3. No licensing/permission for using the protocol. In case of most

of other protocols, a specified prices has to be paid as

licence/fees

4. No polling, since the communication is interrupt driven and

hence considerable amount of power is saved

5. Can be extended to any microcontroller family irrespective of

RISC or CISC

6. Platform independent since the code is in C language (high

level language)

7. Very effective where small amount of data is required to be

transferred

8. Works very efficiently where distance between the two

systems is not very large

Some disadvantages of the protocol are:

1. Data transfer rate is dependent on operating frequency of the

slowest microcontroller; hence the data rate can drop

considerably with decrease in the operating frequency of the

microcontroller

2. Data error may increase considerably with larger amount of

data to be transferred

3. The protocol has not been tested for larger distance and hence

can be a barrier in some cases

4. This is a half duplex communication and sometimes pose a

problem where in simultaneous read/write becomes essential

5. Dependant on software/timer delays and so might result in

inaccuracy if the coding is not done efficiently. However at any

point of time, this issue can be resolved by increasing the

duration of the data bits

Possible improvement in the protocol

1. The protocol discussed as per the above code requires that the

both the transmitter and the receiver are aware of the bit rate so

that the delays can be set appropriately by each microcontroller.

However auto baud rate detection can be implemented to resolve

this issue. For this there are 2 alternatives, first is to transmit a

series of ones and zeros alternatively and the receiving

microcontroller can measure the average bit duration of each bit

using level triggered timers and is a one-time. The second

alternative is to transfer an additional high bit after the start bit

during each transmission so that the timer of the receiving

microcontroller can calculate the baud rate and the main

advantage is that the baud rate can be changed by the

transmitting microcontroller at any time.

2. The data register illustrated in the code is a single 8 bit

register. However it would be advantageous to declare an array

of 8 bit memory locations as data buffer so that after receiving

each byte the data can be loaded into this data buffer. This data

buffer can prove to be useful when the transmitter transmits a

sequence of data continuously to the receiving microcontroller.

Similarly an output buffer can also be designated to transmit a

sequence of data.

3. The signals considered in the experiment are 5V for high and

0V for low as per the Atmega 32 levels. However the range of

distance of communication can be increased to considerable

extent by increasing the voltage difference level using amplifiers

or level shifter. However, this can cause the cost to go up but this

is not essential most of the times since the protocol is meant for

communication between systems which are at a close distance.

4. The model has been explained with only 2 systems in

consideration; however the same can be extended to multiple

systems using the same single wire to interface with all the

systems. For this the transmitting microcontroller would first

send the byte containing the address of the particular system and

then the particular system would authorize itself to be the

receiver and receive the corresponding data.

 With the development of the technology, better and more

efficient techniques have been developed to break the barriers of

communication. However it is equally important to look for

possible simpler solutions which can be applied to systems where

highly complex form of communication systems are unnecessary

and prove to be redundant. This protocol is a step in that

direction and further development in the protocol can be utilized

as a reliable and simple to use communication protocol in all

future embedded systems.

REFERENCES

[1] L.R. Thebaud, “Systems and Methods with Identity Verification
 by Comparison and Interpretation of Skin Patterns Such as
 Fingerprints,” US Patent No. 5,909,501, 1999.
[2] Fang Yi-yuan; Chen Xue-jun; Design and Simulation of UART Serial

Communication Module Based on VHDL, Intelligent Systems and
Applications (ISA), 2011 3rd International Workshop

[3] Roxel D.E., Serial Interfaces for Minicomputers, IEEE transactions on
Computers

International Journal of Scientific and Research Publications, Volume 1, Issue 1, December 2011 6

ISSN 2250-3153

www.ijsrp.org

