
International Journal of Scientific and Research Publications, Volume 4, Issue 12, December 2014     1 
ISSN 2250-3153  

www.ijsrp.org 

Solving Quintics and Septics by Radicals 

Mohammed A. Faggal
 *
, Daniel Lazard

 **
 

 
* National Grid, Dammam, Saudi Arabia 

** UPMC Univ Paris 06, LIP6, F-75005, Paris, France 

INRIA Paris-Rocquencourt, SALSA project team, F-78153 Le Chesnay, France 

CNRS, LIP6, F-75005, Paris, France 

 
Abstract- Formulas are given for solving by radicals every 

solvable quintic or septics. The formula for the quintics are much 

shorter than the preceding ones, while the formula for the septics 

seems the first published one. Instead of using resolvent as the 

preceding papers on this subject, this paper uses the factorization 

of the polynomials whose roots are the sum of two different roots 

of the input (for the quintics) or the sum of three different roots 

of the input (for the septics). 

 

I. INTRODUCTION 

olving equations by radical is a long standing open problem. 

The problem was almost closed by Abel who proved that, in 

general, the solutions of the equations of degree five or higher 

may not be expressed in term of radicals. However Abel did left 

open two sub problems. 

        The first one is, given an equation, to test if it is solvable by 

radicals. This problem has, theoretically, been solved by Galois 

who introduced Galois theory for this purpose. However, for a 

given equation, the computation which is needed is not 

practicable without a computer. Even with a computer, the 

computation needs very efficient algorithms, and it is rather 

recent that one is able to compute the Galois group and thus to 

test solvability of equations of degrees up to 15 (Geissler and 

        The second problem is, when one has a solvable equation, to 

effectively compute the solutions in term of radicals. All the 

papers that we know on this subject concern the quintic equations 

(Paxton Young, 1888; Dummit, 1991; Lazard, 2004; Lavallee et 

al., 2005) or sextic equations (Hagedorn, 2000). One of the 

reasons for this is the size of the formulas. The formula for the 

quintic given in Lazard (2004) is three pages length. Using the 

same method to solve a septic equation would need to consider a 

resolvent equation of degree 120 instead of degree 6 for solving 

quintics. Such a computation is thus unrealistic. 

        In this paper we present some progress on this second 

problem. Firstly we describe a new formula for solving quintics 

which is much shorter than the preceding ones. Secondly, we 

present a complete formula for solving solvable septics. In the 

worst case the roots extractions which are needed for getting the 

first root are one seventh root, the root of a cyclic cubic (which 

involves a cubic root and √−3) and the square root of the product 

of the discriminant by −7. For the other roots, one has to add a 

seventh root of unit, which involves √−7, √−3 and a cubic root. 

As far as we know this is the first complete formula for solving 

solvable septics. 

        The key idea which allows these progresses is the following. 

In the preceding formulas for quintics, the roots are expressed in 

term of a single invariant, which is a root of a polynomial of 

degree six, the quintic being solvable if and only if this 

polynomial has a rational root. Instead we use the 

characterization given by Bruen et al. (1986) of the solvable 

polynomials of prime degree in the following way. 

        Let f be a quintic whose discriminant is a square, and f 10 be 

the polynomial of degree 10 whose roots are the sums of two 

different roots of  f. The quintic f is solvable if and only if f 10  

factors into two quintics. Thus the for every solvable quintic, the 

polynomial f 10  factors in two quintics over the field extension 

by the square root of the discriminant. The coefficient of these 

quintics is not only invariants of the group of order 10, but they 

generate the algebra of the invariants of this group. It follows that 

the roots of the input quintic may be expressed in term of these 

invariants. This is detailed in Section 4. 

        Similarly, for a septic, let f 35  be the polynomial of degree 

35 whose roots are the sums of three different roots of the septic. 

The septic is solvable if and only if f 35 factors either in more 

than two factors or in a factor of degree 21 and a factor of degree 

14. Factorizing further on the extension by the square root of the 

discriminant, we get, in any case, two polynomials of degree 7 

which are invariant by the group of order 21. These two factors 

do not provide directly enough invariants to express the 

solutions. We have thus to deduce from them other septics which 

are invariant by the same group of order 21 for expressing the 

roots of the input septic. 

The details are given in Section 5. 

 

II. GENERALITIES AND NOTATION 

        In this section, we describe the generalities which may 

applied to any solvable equation of prime degree, even the trivial 

cases 2 and 3. 

        We consider a univariate irreducible polynomial f = x
n
 + 

a1x
n-1

 + … + an of prime degree n, with coefficients in a field 

whose characteristic does not divide n(n − 1). 

        To simplify the formulas, we usually suppose that f is in 

depressed form, that is that a1 = 0. This does not restricts the 

generality, as the depressed form may be obtained by the 

Tschirnhaus transformation x → x − a1/n and the roots of the 

initial polynomial may be obtained by subtracting a1/n from the 

roots of the depressed form. 

        We choose once for all an arbitrary root x0 off, a cycle σ of 

order n in the Galois group of f and a primitive nth root of unit ω. 

        These choices allow to number the other roots of f  by xi = 

σ
i
 (x0). The index i of xi is supposed to belong to the finite field 

Fn, i.e. xi+n = xi. 

 

S 
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        As usual when solving by radical in prime degree 
1
 the roots 

are computed from their Fourier transform uj = ∑  
n-1

 i=0   ω
ij
xi. . In 

particular u0 = x0 + · · · + xn−1 is the sum of the roots and, if the 

polynomial is in depressed form, we have u0 = 0. 

        We have σ (uj) = ω
−j

uj . It follows that any monomial in the 

ui whose the sum of the indexes are a multiple of n is invariant 

by σ. 

        As n is supposed to be prime, the polynomial f is solvable if 

and only if its Galois group is contained in the affine group of Fn, 

of order n(n − 1). Each element of this groups of order n(n − 1) 

is defined by a pair (a, b) of elements of Fn, with b ≠ 0, and acts 

on xi by xi → xa+bi. If g is a generator of the multiplicative group 

F
*

n, this group is thus generated by σ, which corresponds to (a, b) 

= (1, 1) and the automorphism γ, which corresponds to (a, b) = 

(0, g). Thus γ (xi) = xgi and γ (ui) = uig−1 . In this paper, we choose 

g = 3, g
−1

 = 2 when n = 5 and g = 5, g
−1

 = 3 when n = 7. 

        These notations allow to be more accurate than in the 

introduction for describing our method. The factorization of the 

minimal polynomial of the sum of two or three roots over the 

field extension by the square root of the discriminant provides 

 

        
1
 This is true even in degree 2 an 3, even if it is not explicit 

on classical formulas. 

 

a number of invariants of the group of order n(n − 1)/2 generated 

by σ and γ
2
. The game consists in defining some polynomials in 

the ui which are invariant by this group, in expressing them in 

term of these known invariants, which gives some equations in 

the ui. One of these equations is a polynomial of degree (n − 1)/2 

in u1
n
 which allows to compute u1. The other equations depend 

only on u1 and some ui and are linear in ui and thus allows to 

express ui in term of u1. 

        A key ingredient for this is an algorithm for expressing 

some invariant in term of a given set of invariants, which will be 

described in next section. 

 

2.1 Reducing invariants 

        The invariants, we are considering here are homogeneous 

polynomials in the indeterminates x0, . . . , xn−1, which are 

invariant under the action of a subgroup of the symmetric group 

of all permutations of the xi. 
2 

In practice we will consider only 

invariants for the group of order n(n − 1)/2. 

        The problem that we consider is to express an invariant 

(which is useful for solving) in term of a given set of invariants 

(which are easy to compute). The method that we use is 

essentially described in Lazard (2004). It is based on the 

following classical result. 

 

        Proposition 1. The algebra of the invariants of a subgroup 

G of the group of permutations of n elements is a free module of 

finite type over the ring of the polynomials in the elementary 

symmetric functions. 

        To describe how this result may be used, we need some 

notation. 

        We denote by Ed the elementary symmetric function of 

degree d of the xi, and we associate to it a new indeterminate ed 

and the polynomial Ed − ed (depending on the variables x0, . . . , 

xn−1 and ed). Let G be the Grobner basis of the ideal <E1 − e1, . . . 

,En – en>, for a monomial ordering which eliminates the xi (i.e. 

for comparing two monomials, one uses the powers of the ed only 

when the powers of the xi are the same). The following result is 

proved in Lazard (2004). 

 

        Lemma 2. An invariant belongs to a basis of the free 

module of Proposition 1 if and only if the leading monomial of its 

normal form by G is independent of the ed. 

 
2
 We use the same notations for the roots of a specific 

polynomial f and for the roots of the generic polynomial  Π
n−1  

i=0 

(x−xi). The choice between the two meanings of xi will be clear 

form the context. This ambiguity is useful as it allows, even in 

the case of a specific polynomial, to consider an invariant either 

as an element of the field of the coefficients or as a polynomial 

function of the roots. 

 

This allows the following procedure to compute invariants. 

        For the first invariant F1, we compute its normal NF(F1) 

form by G. If it belongs to a basis of the free module of 

invariants (i.e. its leading term depends only on the xi), we 

introduce a new indeterminate f1 and the polynomial P1 := 

NF(F1) − f1. 

        From now on, the normal form procedure is modified and 

consists in reducing first by G, then by P1, . . ., a polynomial 

being reducible by some Pi only if its leading term is the product 

of the leading term of Pi by a monomial which is independent 

of the xi. 

        With this special normal form procedure, if the normal form 

of an invariant has leading term which depends only on the xi, it 

is linearly independent of the invariant corresponding to the 

preceding Pi, and one may add a new indeterminate fi and a new 

polynomial Pi. On the other hand, if the normal form depends 

only on the ei and the fi then this gives the expression of the new 

invariant in term of the preceding ones. 

        This procedure allows to output easily the formulas 

presented in the next sections. 

 

III. MINIMAL POLYNOMIAL OF SUMS OF ROOTS 

        As the solutions are expressed by factorizing the minimal 

polynomial of the sum of two or three roots of the input 

polynomial, we need to compute this minimal polynomial. This 

may be done at run time by a sub procedure of the solving 

procedure, but it is better to compute it, once for all, as a 

polynomial whose coefficients are polynomials in the 

coefficients of a generic polynomial. This has the advantage to 

avoid to take care of the nature of the coefficients when writing 

the solving procedure, and also to be closer to what is usually 

called a formula. 

        We know of several ways to do this computation. We 

present the two which are the most convenient for solving in 

degree 5 and 7. 

 

3.1 Sum of two roots by resultant 

        Let f(x) be a polynomial. If s is the sum of two roots of f, 

then there is α such α and s − α are roots of f. Thus s is a root of 

the polynomial R defined in MAPLE syntax by resultant(f, 

subs(x=s-x,f),x). Unfortunately, R is not the minimal polynomial 
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of s. It the product of the square of the desired polynomial and 

the polynomial whose roots are the double of a root of f. 

        One may get the desired polynomial by factoring R, but it is 

much more convenient to get it directly without factoring. For 

this purpose, we consider the two polynomials 

f+ = f(x)+f(y) and f− = (f(x) − f(y))/(x − y). Both are symmetric in 

x and y. Thus, if we substitute x by (s+d)/2 and y by (s−d)/2, we 

get two polynomials in s and d
2
, and we get the desired 

polynomial by the resultant eliminating d
2
. This resultant is the 

minimal polynomial of s. In fact the desired minimal polynomial 

has degree n (n − 1)/2. The degrees in d
2
 of f+ and f− are 

respectively ⌊n/2⌋ and ⌊(n−1)/2⌋. The degrees in s of the 

coefficient of d
2i

 in f+ and f− are respectively at most n − 2i and n 

− 2i − 1. It follows that the resultant has degree in s at most 

n (n − 1)/2 which is the degree of the desired minimal 

polynomial. 

 

        This computation is easily and efficiently implemented in 

MAPLE by the following instructions. 

fx :=f; fy :=subs (x = y, f); 

fp :=subs (t =sqrt (t), primpart (subs (x = (s + t)/2, y = (s − t)/2, 

fx +fy))); 

fm:=subs (t =sqrt (t)), 

    primpart (normal (subs (x = (s + t)/2, y = (s − t)/2, (fx −fy)/(x 

− y))))); 

collect (primpart (resultant (fp, fm, t)), s); 

 

 

3.2 Sum of three roots by Newton’s identities 

        For getting the minimal polynomial of the sum of three 

roots, the preceding method based on a resultant computation 

may not be used because there are several variables to eliminate. 

Grobner bases may be used, but induce problems of efficiency 

when the coefficients of the input polynomial are algebraic 

numbers or are generic (independent variables). This case of 

generic coefficients is especially important because it provides a 

formula which may be used directly, whichever is the nature of 

the coefficients. 

 

        To get this minimal polynomial, we use Newton inequality 

in the following way. 

        We start from the polynomial f = x
n
 + a1 x

n−1 
+ · · · + an−1 x 

+ an. There are 

N = n (n − 1) (n − 2)/6 sums of three different roots. Thus we are 

looking for a polynomial of degree N. We compute first the sums 

Si of the ith powers of the roots for i = 1, . . . ,N by the Newton 

inequalities: 

 

−S1 =a1 

−Si =a1 Si−1 + a2 Si−2 + · · · + ai−1 S1 + i ai                for i ≤ n 

−Si =a1 Si−1 + a2 Si−2 + · · · + an−1 Si−n+1 + an Si−n       for i > n 

 

 

        Then we compute, for i + j ≤ N the sums S2(i, j) of the 

products x
i 
y

j
 where x and y are two different roots of f. We have 

 

Si,j =Si Sj − Si+j             if i > j 

Si,i =(Si
2
 – S2i)/2. 

 

        From this we deduce the sums S3(i, j, k) of the products x
i
 y

j
 

z
k
 of three powers of roots: 

 

Si,j,k =Si Sj,k − Si+j,k − Si+k,j                    if i > j > k 

Si,i,k =Sk Si,i − Si+k,i                                    if i > k 

Si,k,k =Si Sk,k − Si+k,k                                  if i > k 

Si,i,i =(Si Si,i – S2i,i)/3. 

 

        These sums are useful to compute the sums of Newton of 

the roots of the desired polynomial of degree N. In fact these 

sums of Newton are the sums of the (x+y+z)
m
 where x, y, z runs 

over all triplets of roots of f. When expanding these sums of 

products, the Si, Si,j , Si,j,k appear with multinomial coefficients. 

However it should be remarked that a term x
i
 y

j
 appears in the 

expansion of n−2 terms (x+y +z)
m 

and x
i
 in the expansion of (n − 

1) (n − 2)/2 terms. 

 

Thus we have 

 
 

        Finally the coefficients of the desired polynomial are 

obtained by using the Newton identities again: 

 

 
 

        Although rather involved this procedure is quite efficient: 

Applied to the generic depressed polynomial of degree 7, all the 

Ai have together 2, 635 terms which are computed in around two 

seconds on a laptop. 

 

IV. QUINTICS 

4.1 Generic quintic 

        Let  F = x
5
 + A1 x

4
 + A2 x

3
 + A3 x

2
 + A4 x + A5 = Π

4
i=0(x − 

xi) be a generic quintics, where the roots xi are indeterminates. 

The action on the sums of two roots of the circular permutation σ 

defined in Section 2 has two orbits, containing respectively x0 + 

x1 and x0 + x2. These orbits are invariant under the action of γ
2
 

and exchanged by γ. It follows that the polynomials F1 = Π
4
i=0  s 

− (xi + xi+1) and F2 = Q4i=0 s − (xi + xi+2) (recall that the 

indexes are defined modulo 5) are invariant by the group of order 

10 generated by σ and γ
2
. 

        Let us denote respectively by Bi and Ci the coefficients of 

s
5−i 

in F1 and F2. Let also Di = Bi − Ci. All these polynomials in 

the xi are thus invariant for the group of order 10. 

        The procedure described in Section 2.1 allows to prove 

easily the following. 

 

        Proposition 3. We have B1 = C1 = 2A1, B2 + C2 = 3A2 + 

2A1
2
, B3 + C3 = A3 + 3A1 A2. 

        There is a base of the free module of the invariants of the 

group of 10 elements containing 1,D2,D3,D4,D5,D2
2
,D2 

D3,D2
3
,D3

2
,D2 D5,D2

4
,D2 D3 D5. 
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        There is another base containing the same invariants, with 

D2
2
 and D2 D3 replaced by B4 + C4 and B5 + C5. 

        Let us recall that the Molien series of a group is the formal 

series whose coefficient of degree i is the dimension of the vector 

space of the invariants of degree 

        i. The Molien series of the symmetric group of order n is the 

series expansion of 1/ Π
n

i=1 (1 − t
i
). Proposition 1 implies that the 

Molien series of a group of permutations is the expansion of M/ 

Π
n
i=1 (1 − t

i
) where M is a polynomial whose coefficient of 

degree i is the number of invariants of degree i in the bases 

defined in Proposition 1. There are standard procedures to 

compute the Molien series. One is implemented is software 

MAGMA, which gives that for the group of order 10 the 

polynomial M is t
10

 +t
8
 +t

7
 +2 t

6
 +2 t

5
 +2 t

4
 +t

3
 +t

2
 +1. 

Similarly, the polynomial M for the maximal solvable group of 

order 20 is t
8
 + t

7
 + t

6
 + t

5
 + t

4
 + 1. 

It follows. 

 

        Proposition 4. Each set of invariants described in 

Proposition 3 is a basis over the ring of elementary symmetric 

functions of the module of the invariants of the group of 10 

elements. 

 

        A basis of the invariants of the maximal solvable group of 

degree 5 and order 20 is (1,D2
2
,D2D3,D3

2
,D2D5,D2

4
). 

 

4.2 Solving quintics 

        When the generic polynomial F of the preceding section is 

specialized to a polynomial f = a0 x
5
 + a1 x

4
 + a2 x

3
 + a3 x

2
 + a4 x 

+ a5, all the invariants specialize as well. In this section, we 

denote by K the field of the coefficients of f. If f is irreducible 

over K and solvable, its Galois group may be of order 20. Let us 

consider the extension K(√D) of K generated by the square root 

of the discriminant D of f. Over this field the Galois group is 

either the cyclic group of order 5 of the group of order 10. It 

follows that the specializations f1 and f2 of F1 and F2 have their 

coefficients in this field and are irreducible on it (the Galois 

group is transitive on their roots). Moreover, if the discriminant 

of f is not a square, its Galois group is transitive on the sums of 

two roots and f1 and f2 are conjugate, i.e. they are exchanged by 

changing the sign of the square root of the discriminant. Thus we 

have the following 

 

        Proposition 5. Over K(√D), the minimal polynomial f10 of 

the sum of two roots of  f  factors exactly in two factors of degree 

5. 

       Moreover if the discriminant of f is not a square (i.e. K(√D) 

6= K), then f1 and f2 are conjugate. It follows that, in any case, 

the coefficients of f1 + f2 and (f1 − f2)√D belong to K. 

       To simplify the formulas, from now on we suppose, w.l.o.g., 

that f is in depressed form, that is a1 = 0. 

       Supposing, w.l.o.g., that f1 and f2 are monic, let us denote by 

ei and di the coefficients of degree 5 − i of f1 + f2 and (f1 − f2)√D 

respectively. Proposition 4 shows that any invariant of the group 

of order 10 may be expressed polynomially in term of the ai, di 

and ei, and we have described a procedure to compute such an 

expression. 

       The following polynomials in the ui (Fourier transform of 

the roots) are such invariants. We give them with their 

expression in term of the coefficients of f1 and f2 computed by 

above procedure.  

   

       Equations 1 and 2 show that u1
5
 and u2

5
 are the roots of a 

quadratic equation with may be solved to get u1
5
. Extracting a 

fifth root gives u1. If it is not null, the value of u1u4 gives u4 

rationally in term of u1. Then u2 and u3 are deduced by solving 

the linear system given by Equations 3 and 4. Finally the roots 

are deduced by inverse Fourier transform. This procedure is 

made explicit below. 

       However some care is needed if the quadratic equation for 

u1
5
 has a null root or a double root. 

       If the two roots of this quadratic equation are null, one may 

exchange f1 and f2, which amounts to change the sign of all di in 

the above relations. If the new quadratic equation would have 

also two null roots, then all the ui would be null and the five roots 

of f would be equal, which is impossible as f is irreducible. 

       If one root of the quadratic equation is null then one chooses 

u4 = 0 and u1 is the fifth root of the right hand side of Equation 2. 

        The determinant of the linear system in u2 and u3 is u1
5
 – u4

5
. 

We show now that it may be null only if u1 = u4 = 0. In fact, if 

u1
5
= u4

5
≠ 0, we have u4 = ω

i
 u1 for some i, where ω is the 

primitive root of unit which has been chosen. Thus, if we denote 

by h1 and h3 the right hand sides of Equations 1 and 3 

respectively, we have u1
2
= h1/ω

i 
and u2 ω

2
 + u3 = h3. As u2 u3 = 

d2/2 − 5 a5 (conjugate equation of Equation 1), we see that all the 

ui and thus all the roots belong to an extension of K of degree 

prime to 5, which implies that f is not irreducible.   Thus we have 

proved that the following MAPLE procedure computes the roots 

of f. However, for better readability we write separately the 

polynomial of degree 10 which is factored during the procedure. 

For the same reason, the usual mathematical notation for product 

and root extractions has been preferred to the alphanumerical 

notation which is usual in programming languages.  
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With this definition, the MAPLE procedure is:  

 
 

       Remark 6. The length of this complete program has to be 

compared with the three pages length formula of Lazard (2004). 

On the other hand, more square roots appear apparently in our 

new formula than in the one of Lazard (2004). In fact √D and √5 

appear both in factor of the di. Thus if they are replaced by √5D, 

the final expression of the roots contains exactly the same square 

roots as in Lazard (2004). 

 

V. SEPTICS 

       For solving septics, we consider the minimal polynomial of 

the sums of three different roots, which is of degree 35. It is 

shown in Bruen et al. (1986) (Theorem II.3.2) that the 

factorization of this polynomial allows to determine the Galois 

group. 

       Proposition 7. The minimal polynomial of the sum of three 

roots is irreducible if the Galois group is either the alternate or 

the symmetric group. It has two irre-  ducible  factors of degrees 

7 and 28 in the case of the non solvable group of order 168, two 

irreducible factors of degrees 14 and 21 in the case of the 

solvable group of order 42, three irreducible factors, one of 

degrees 21 and two of degree 7 in case of the solvable group of 

order 21, four irreducible factors, one of degree 14 and three of 

degree 7 in case of the dihedral group of order 14 and five 

irreducible factors of degree 7 in the case of the cyclic group of 

order seven. 

       To explain how this result may be used in solving, we have 

to look inside its proof, which will be done in next subsection.   

        

       5.1 Generic septic 

       Let x0, . . . , x6 be the seven roots of a generic septic. 

       The circular permutation σ defined in Section 2 acts on the 

sum of three roots. There are five orbits under this action, 

generated respectively by x0+x1+x3, x0+x2+x3, x0+x1+x6, x0 

+x2+x5 and x0 +x3+x4. Let us denote 𝓞1, . . . , 𝓞5 these orbits, 

numbered in that order. The permutation  : xi → x5i exchanges 𝓞1 
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and 𝓞2 and permutes circularly the three other orbits. As each 

solvable group is generated by σ and a power of , the part of 

Proposition 7 devoted to solvable groups deduce easily.  

       Let Fi = ∏ x+y+z ϵ 𝓞i(s− (x+ y + z)), for i = 1, 2. As 𝓞1 and 𝓞2 

are fixed by γ
2
, the coefficients of the powers of s in F1 and F2 

are invariants of the solvable group of order 21. Like for quintic, 

we want to use these invariants to express the solution. 

Unfortunately we do not have yet enough invariants, and we 

have to introduce other septics which are invariant for the same 

group. 

       The first such septic is the polynomial F3 whose roots are the 

elements of the orbit of x1 +x2 +x4 −(x3 +x5 +x6) (difference of 

an element of 𝓞1 and an element of 𝓞2 which have no root in 

common). This polynomial do not give sufficiently many new 

invariants. In fact, it will be useful only in some special cases.   

       Recall that we denote by u0, . . . , u6 the Fourier transform of 

the xi and that the image of ui by σ is ui/ ω
i
. With our choice of γ, 

we have γ (ui) = u3i and γ
2
(ui) = u2i (indexes defined modulo 7). 

It follows easily that γ
2
(σ (ui)) = σ 

4
(γ

2
(ui)) which means that the 

orbit of u1+u2+u4 (resp. u3+u5+u6) is left invariant by the action 

of γ
2
. Thus the septics G1 and G2 which have these orbits as roots 

are invariant by the group of order 21. 

       At this point the solving strategy becomes clear: 

       Firstly, given a solvable septic f defined on a field K, 

compute the septics f1, f2, f3,   g1 and g2 which are the 

specialization of F1, F2, F3, G1 and G2. As these septics are not 

invariant under the maximal solvable group, these computations 

will be done over K(√D) the extension of the field of the 

coefficients of  f  by the square root of the discriminant D of f. 

On this field, the Galois group of f  is included in the group of 21 

elements and the coefficients of f1, f2, f3 are thus rational. As the 

definition of g1 and g2 involve the seventh roots of unit, g1 and g2 

are rational on K(√D, ω). In fact we will see that the coefficients 

of f1 + f2, (f1 + f2)√D, f3√D belong to K while those of g1 and g2 

belong to K(√−7D).  

       Secondly, design some polynomials in the ui which are 

invariants under the action of this group, express them as 

functions of the coefficients of f1, . . . and use these expressions 

to compute the ui.  

       5.2 Computing invariant septics f1 and f2 

       From now on, we consider a solvable septic f whose 

coefficients belong to a field K of characteristic different from 2, 

3, 7. W.l.o.g. we suppose that that it is in depressed form, that is 

its coefficient of degree 6 is null. This implies that u0 = 0.  

       To compute f1 and f2, we use Proposition 7. Thus we 

factorize the minimal polynomial of the sum of three roots, 

whose computation has been described in Section 3.2. 

       If the Galois group has the order 21, there are two factors of 

degree 7 which are f1 and f2. It does not matter which is named f1, 

because they are exchanged if we replace σ by σ 
−1

 when 

numbering the roots. 

       If the polynomial of degree 35 has a factor of degree 14 

(group of order 14 or 42), we factorize it over the field K(√D) 

where D is the discriminant of f. This gives two factors of degree 

7 which are f1 and f2. 

       It remains the case of the cyclic group where there are 5 

factors of degree 7. One has to decide which are the 

specialization of f1 and f2. For this we use the following property 

of above defined orbits 𝓞i. 

       Lemma 8. Given any element s of 𝓞1 or 𝓞2, there exists in 

each other orbit exactly one element which has not root in 

common with s. 

       Given an element s of 𝓞3, 𝓞4 or 𝓞5 and another orbit 𝓞j , 

there exist an element t ∈ 𝓞j with no root in common with s if and 

only if j = 1 or 2. In this case there is exactly one such element.   

 

       Proof. By cases enumeration. 

       Proposition 9. Let f an irreducible septic in depressed form, 

and h1 and h2 be two different factors of degree 7 of the minimal 

polynomial of degree 35 of the sum of three roots of f. Then a 

root s1 of h1 and a root s2 of h2 have a root of f as common 

summand if and only if  f(−s1 − s2) ≠0. 

       If the system h1(s1) = h2(s2) = f(−s1−s2) = 0 has a solution, 

then it has exactly 7 solutions 

       Proof. If s1 and s2 have no root of f as a common summand, 

then s1 and s2 involve 6 different roots of f. As the sum of the 

seven roots of f is null, we have thus f(−s1 − s2) = 0. 

       If (s1, s2) is solution of h1(s1) = h2(s2) = f(−s1−s2) = 0, we 

obtain immediately six other solutions by permuting circularly 

the roots of f.  If −s1 − s2 is a root x of f, this defines a linear 

relation c0x0 + · · · + c6x6 = 0 between the roots of f, with non 

negative integer coefficients. As the Galois group of f contains a 

circular permutation of the roots, the roots of f are in the kernel 

of the circulant matrix defined by the vector (c0, . . . , c6). As the 

eigenvalues of this matrix are c0+ ω
i
c1+· · ·+ ω

6i
 for i = 0, . . . , 6 

(where ω is a primitive seventh root of unit) the determinant of 

this matrix is null if and only if either c0 + · · · + c6 = 0 

(eigenvalue for i = 0) or if all the ci are equal (unique equation 

satisfied by a primitive root of unit). As the ci are non negative, 

the first case is excluded, all the ci are equal to 1 and s1 and s2 

have no root of f as a common summand. 

       Corollary 10. Let f be a septic in depressed form whose 

Galois group is cyclic, and let hi, i = 1, . . . , 5 be the factors of 

degree 7 of the minimal polynomial f35 of the sum of three roots. 

Let R(t) be the resultant with respect to s of  f(−s − t) and h1(s).   

       • If the remainder of the Euclidean division of R(t) by hi(t) is 

null for i = 2, 3, 4 then the roots of h1 belong to one of the orbits 

𝓞1 or 𝓞2 

       • If the remainder of the division of R(t) by hi(t) is null for 

exactly two i in {2, 3, 4} then the roots of the two corresponding 

hi belong to the orbits 𝓞1 and 𝓞2. 

       • If the remainder of the division of R(t) by hi(t) is null for 

exactly one i in {2, 3, 4} then the roots of h5 and of this hi belong 

to the orbits 𝓞1 and 𝓞2. 

       Proof. This follows immediately from the preceding results, 

because the remainder is null if and only the system f(−s − t) = 

h1(s) = hi(t) = 0 has a solution (and thus seven).                                                                                                             

       Except in the first case, this corollary allows to choose the 

factors of f35 corresponding to 𝓞1 and 𝓞2. In the first case, the 

lacking orbit may be found by applying the corollary to h2 

instead of h1 

5.3 Other invariant septics 

        Having the invariants polynomials f1 and f2 whose roots are 

the orbits of x0+x1+ x3 and x0 +x2 +x3, we may deduce several 

other septics which are also invariants by the group of 21 

elements. 

       The first one is f3 whose set of roots is the orbit of x1 + x2 + 

x5 − (x3 + x5 + x6). A root of f3 is the difference of a root of f1 
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(orbit 𝓞1) and a root of f2 (orbit 𝓞2), with no common summand. 

It follows from Proposition 9 that, if t is such a root of f3, then 

there exists s1 and s2 such f1(s1) = f2(s2) = f(−s1−s2) = t−s1+s2 = 

0. Moreover s1 and s2 are unique if t is given and every t which 

belongs to a solution of this system is a root of f3. 

       This shows that f3 may be obtained by eliminating s1 and s2. 

There are several ways to do this elimination, the simplest one 

being the following. 

       Proposition 11. The polynomial f3 is the GCD of R1 and R2, 

where R1 (resp. R2) is the resultant of  f(x) and  f1((t − x)/2) (resp. 

f2((−t − x)/2)) with respect to x. 

       Proof. It follows from Proposition 9 that t is a root of this 

GCD if and only if there is a root x of  f, a root s1 of f1 and a root 

s2 of f2 such that s1 = (t − x)/2 and s2 = (−t − x)/2, that is s1 + s2 

= −x and s1 − s2 = t. 

       Remark 12. The computation implied by Proposition 11 

may be viewed as an algorithm. It may also viewed as a formula, 

because a resultant or a GCD of fixed degree (here 7) are both 

polynomial in term of the coefficients of their arguments (for 

GCD, this follows from the subresultant theory). 

       To compute the invariant septics g2 and g3 which have, as 

roots, the orbits under the cyclic group of u1 + u2 + u4 and u3 + 

u5 + u6 respectively, we need a lemma. 

       Lemma 13. If u0, . . . , u6 is the Fourier transform of the 

roots x0, . . . , x6 of an irreducible septic f, then there is a square 

root of −7 such that u1 + u2 + u4 − (u3 + u5 + u6) = (x1 + x2 + x4 

− (x3 + x5 + x6))√−7.  

       Proof. Expand and simplify the definition of the ui.                                       

       This lemma is used in the following way. Let t1, t2, s1, s2 be 

the images under the action of σ
i
, for some i, of, respectively, u1 

+ u2 + u4, u3 + u5 + u6, x1 + x2 + x4 and x3 + x5 + x6. By Lemma 

13, there is a root x of  f such the following relations are 

satisfied: s1 + s2 + x = 0, t1 + t2 = 7 x, t1 − t2 = (s1 − s2)√−7, f(x) 

= 0, f1(s1) = 0 and f2(s2) = 0. Using the three linear equations to 

eliminate, say, s1, s2 and x, we get three equations of degree 7 in 

t1 and t2. Thus like for computing f3,    we get the minimal 

polynomials of g1 and g2 as a GCD of resultants, Proposition 9 

implying that this GCD is exactly of degree 7. 

       However, this way of computing g1 and g2 is not efficient. In 

fact it implies generally to compute in K(√D,√−7), which is an 

extension of degree 4. We present a way for doing this 

elimination, which takes advantage of the symmetry of the 

problem to work on the smaller extension K(√−7D).  

       The basic remark is that, if the discriminant D is not a 

square, then f1 and f2 are conjugate, i.e. they are exchanged if one 

change the sign of √D. It follows that, if f1 and f2 are monic 

(which is obtained by dividing them by their leading coefficient), 

then f+(s1, s2) = f1(s1) + f2(s2) and f−(s1, s2) = (f1(s1) − f2(s2))√D 

are bivariate polynomials whose part depending on √D is 

antisymmetric in s1 and s2, i.e. is a multiple of s1 − s2, while the 

part independent of √D is symmetric. 

       This suggest to use f+ and f− for the elimination, that is, to 

compute g1 (resp. g2) as the GCD of the resultants with respect to 

t2 (resp. t1) of f((t1 + t2)/7) and 

where f± is f+ for the first 

resultant and f− for the second. 

       With this way to proceed the elimination, the polynomials 

involved in the resultant computation have their coefficients in 

the extension of the base field by √−7D. It is useful to remark 

that this may also be obtained by replacing √−D by √−7 in the 

definition of f−. This has the advantage to have smaller 

coefficients if D is large. 

       It should be noted that the computation of g1 and g2 is a 

critical step in the computation of the roots: On typical examples, 

one needs around 30 seconds to compute the roots with an 

elimination starting from f1 and f2, while only 3 seconds are 

needed with the elimination starting from f+ and f−. 

 

5.4 Computing u1, u2, u4  

       Let g1 = t
7
 + b3 t

4
 + b4 t

3
 + b5 t

2
 + b6 t + b7 be the 

polynomial computed in the preceding section, which has, as 

roots, u1+u2+u4 and its images under the action of the powers of 

σ. The fact that the coefficients of degree 5 and 6 are null is a 

consequence of the nullity of the sum of the roots of f. This may 

be proved by computing g1 in the case of the generic polynomial 

Π
6
i=0(x − xi).  

       The bi are invariants of the group of 21 elements. It appears 

that every invariant of this group, which is constructed from u1, 

u2, u4, may be expressed in term of the bi. 
3
 In fact, the method of 

Section 2.1 shows   
3
 This has not been proved, but it is true for 

all invariants we have constructed from 

 
 

       This system of equation allows to compute u1, u2 and u4. 

Before proceeding further, let us first remark that u1, u2 and u4 

may be arbitrarily permuted circularly: this amounts to use σ
2
 

instead of σ to label the roots. Similarly, u1, u2, u4 and u3, u5, u6 

may be exchanged. This is equivalent to exchange f1 and f2 and 

thus also g1 and g2. This amounts to replace σ by σ
3
 to label the 

roots. 

       This system of equations allows to compute u1 and to 

express rationally u2 and u4 in term of u1. However several cases 

have to be considered. 

       If b3 = 0, one of u1, u2, u4 is null. As we have choice for 

labeling the ui, we chose u4 = 0, and Equations 7, 8, 9 become 

u1u2
3
 = −b4/7, u1

3
u2

2
 = −b5/14, u1

5
u2 = −b6/7. Thus either b4 = b5 

= b6 = 0, another ui is null and the last one is given by Equation 

10 or none of b4, b5, b6 is null and u1 and u2 are not null and may 

be computed from Equation 7, 8 only. 

 

       Thus the different cases are the following ones. 

       • b3 = b4 = b7 = 0. This implies b5 = b6 = 0 and u1 = u2 = u4 

= 0. This does    not allow to express u3, u5, u6 in term of u1. 

Thus, in this case we exchange f1    and f2 and also g1 and g2. 

After this exchange we are no more in this case: if we    were, all 

the ui and thus all the roots of the septic would be equal to 0. 

       • b3 = b4 = 0, b7 ≠0.We choose u2 = u4 = 0 and Equation 10 

gives u1 =  

       • b3 = 0, b4 ≠ 0. We choose u4 = 0. Thus u1 and u2 are not 

null. It is easy to    deduce from Equations 7, 8 and 9 that 
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       • b3 ≠  0. This general case needs more attention than the 

preceding ones and will    be detailed in the next paragraphs.   

       The elementary symmetric functions in u1
7
, u2

7
 and u4

7
 are 

invariant under the action of the group of order 21, and are 

function of the bi. The sum and the product have already be 

computed as Equations 10 and 6. The last elementary symmetric 

function u1
7
u2

7
 + u2

7
u4

7
 + u4

7
u1

7
 may be computed by the method 

of Section 2.1. This allows to express u1 as the seventh root of a 

root of a cubic polynomial, but does not allows to express 

rationally u2 and u4 in term of u1. Therefore we use another 

method to solve Equations 6 to 10. 

       As we have supposed u3 ≠0, Equation 6 may be solved in u4 

and its solution may 

 

u1, u2, u4. 
4
 There several possible formulas.These seem among the 

simplest ones. 

 

       be substituted in Equations 7 to 10 to get four polynomial 

equations in u1, u2 and the bi. 

       The Grobner basis of this system, for the total degree 

ordering, may be computed in MAPLE with the option 

method=fgb in about 15 second and contains 474 polynomials, 

too much for our purpose. However, if we add the equation t b3 − 

1 = 0 to confirm that b3 ≠ 0, then the Grobner basis eliminating t 

is computed in 1.5 seconds and contains 154 polynomials which 

are independent of  t. Starting from it, a Grobner basis for an 

ordering eliminating u2 (in MAPLE, lexdeg([u2], [u1, b7, b6, b5, 

b4, b3]), method=fgb) gives three relations between the bi, a 

polynomial of degree 3 in u1
7
 with coefficients depending on the 

bi and many polynomials which are linear in u2. Among them the 

fifteenth has the lower degree in u1 and has the shape Au2 + Bu1
2
 

where A and B are linear polynomials in u1
7
 with coefficients 

depending on the bi. 

       These polynomials may be simplified by replacing them by 

their normal form by the Grobner basis of the relations between 

the bi for the lexicographical ordering such b7 > b6 > b5 > b4 > 

b3. The resulting relations are  

 

 
 

       Thus u1 is the seventh root of a root of a cubic equation and 

u2 and u4 are expressed rationally in term of u1 and the same root 

of this cubic equation. However, to avoid division by 0 we have 

to define U1 as a root of the quotient of the right hand side of 

Equation 12 by its GCD with the denominator in Equation 

13. This avoids a division by zero because we will shows that 

Equation 12 never has multiple roots. 

 

       Proposition 14. The discriminant of Equation 12 is the 

square of   

 

   and is not null unless if b3 = b4 = 0.  

        

       It follows that, unless if b3 = b4 = 0, either Equation 12 has 

three distinct roots in K(√−7D) or its right hand side is 

irreducible with cyclic Galois group. 

 

       Proof. The discriminant of Equation 12 is the square of 

(u1
7
−u2

7
) (u2

7
−u4

7
) (u4

7
−u1

7
). To express this in term of the bi, 

we proceed as follows. First compute the Grobner basis G1 of 

Equations 6 to 10 for an elimination ordering eliminating the ui ( 

1/3 second in MAPLE for the ordering lexdeg([u1, u2, u4], [b3, b4, 

b5, b6, b7], method = fgb) and the Grobner basis G2 of the 

elements of G1 which depend only on b3, b4, b5, b6, b7, for the 

lexicographical ordering such that b7>b6>b5>b4>b3. Then 

Polynomial 15 is obtained by taking the normal form by G2 of 

the normal form by G1 of (u1
7
 − u2

7
) (u2

7
 − u4

7
) (u4

7
 − u1

7
). 

       Thus the discriminant of Equation 12 is a square in 

K(√−7D). This implies that, if it is irreducible, then its Galois 

group is cyclic. If the right hand side is factorized in a linear (in 

U1) polynomial and a quadratic one, the quadratic one is not 

irreducible, because its discriminant is a square. In fact, the 

discriminant of a product is the product of the discriminants of 

the factors times the square of their resultants. 

       Thus it remains to prove that the discriminant is not null. 

Suppose that it is null. Then two roots are be equal, say u1
7
 = u2

7
, 

as permuting the indexes of the roots xi permutes also the ui. This 

double root is not null, as we have supposed that at most one of 

the ui is null. If ω is a primitive root of unit, we have thus u2 = ω
i
 

u1 for some i. Substituting this in Equation 6, solving it in u4 and 

substituting the values of u2 and u4 in Equations 7 and 8 gives 

two equations of degree 9 in u1 whose difference has degree 6. 

Thus u1, and thus also u2 and u4 are in an extension L of degree at 

most 6 of K(√−7D). 

       We will prove in next section that either u3, u5, u6 may be 

rationally expressed in term of u1 or Equation 12 has a triple root. 

In the latter case we will prove that u3, u5 and u6 belong to an 

extension of degree at most 6 of  L. Thus, in both cases, all the ui 

belong to an extension of K of degree prime to 7. The same is 

thus true for x0 which is the quotient by 7 of the sum of the ui, 

which proves that the input polynomial is not irreducible.                                                                             

       Corollary 15. The root U1 of Equation 12 belongs either to 

K(√−7D) or to an extension by a cubic root of K(√−3,√−7D).     

 

       Proof. The square root which appears in Cardano’s formula 

for the roots of a cubic equation is the square root of the product 

of the discriminant, a square and −3.  

 

       5.5 Final computation of the roots 
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       As the roots will be obtained by reverse Fourier transform of 

the ui, for computing them we need to express u3, u5, u6 rationally 

in term of u1, u2, u4 and the invariants which have been already 

computed. For this purpose, we consider four invariants of the 

group of order 21, which may be expressed in term of the 

coefficients of f, f1, f2, f3, g1, g2, using the method of Section 2.1.    

       Among these polynomials, f  has its coefficients in K, g1 and 

g2 have their coefficients in K(√−7D), but the other ones have 

coefficients in K(√D). Thus we will consider f
+
 = f1 + f2, which 

has its coefficients in K and f
−
 = (f1 − f2)√−7 which is the 

product by √(−7D) of a septic with coefficients in K. We will 

denote by ai (resp. bi, ci, di
+
 , di

−
 ) the coefficient of degree 7−i of  

f  (resp. g1, g2, f
+
, f

−
). 

       The roots of the septic f3 are the elements of the orbit under 

the cyclic group of x1 + x2 + x4 − x3 − x5 − x6. Thus it changes of 

sign when one changes in it the signs both the variable and √D. 

Thus its coefficients of even degree are the product of an element 

of K by √D. We need only the product by √−7 of its coefficient 

of degree 2 which is thus in K(√−7D) and will be denoted by e5.         

With these notations we get the following relations which are 

linear in u3, u5, u6.    

 

    
        

       Thus, if the determinant of the coefficients of u3, u5, u6 in 

three of these equations is not null, then by solving this linear 

system, one gets a rational expression of u3, u5, u6 in term of u1, 

u2, u4. 

       These four determinants are invariant under the action of the 

group of order 21. Thus, using the method of the proof of 

Proposition 14, we may express them in term of the bi:  

     
 

       It follows that if b3 = b6 = 0 one gets u3, u5, u6 by solving 

Equations 16, 17, 19. If b3 = 0, b6 ≠ 0, the first three equations 

give the result. If b3 ≠ 0, we will shows that the determinant of 

either Equations 16, 17, 18 or Equations 16, 18, 19 is not null.   

 

       Lemma 16. If b3 ≠ 0 and the determinants det(16, 17, 18) 

and det(16, 18, 19) are both null, then u1
7
= u2

7
= u4

7
 

 

       Proof. Let us consider the Grobner basis of the relations 

between the bi, named G2 in the proof of Proposition 14. The 

hypotheses is that we have three more relations 7 b6+b3
2
 = 0, 4 

b4
2
+3 b3 b5= 0 and b3 v−1 = 0, the latter, which introduces a new 

variable, implying that b3 ≠ 0. Adding to G2 the left hand sides of 

these relation, let G3 be the Grobner basis the lexicographical 

ordering v > b7 > b6 > b5 > b4 > b3. The first element of G3 is the 

square of 112 b4
3
+27 b3

4
. Let G4 be the Grobner basis for the 

same ordering of the ideal which is obtained by adding this 

polynomial to G4. This Grobner basis consists in 8 binomials.   

       Now, let us consider Equation 12, which has u1
7
, u2

7
 and u4

7
 

as roots. It has the shape U1
3
 + AU1

2
 + B U1 + C where A,B,C 

are polynomials in the bi. Its three roots are equal if and only if 

3B − A
2
 and 27C − A

3
 are both null. As the normal forms by G4 

of these two polynomials is null the lemma is proved. 

       We are now ready to finish the proof of Proposition 14.     

 

       Proposition 17. If the discriminant of Equation 12 is null 

and b3 ≠0, then the input septic is reducible. 

 

       Proof. We have already proved that u1, u2, u4 belong to an 

extension of K of degree prime to 6. If Equation 12 has a double 

root and a simple one, we have just shown that u3, u5, u6 may be 

expressed rationally in term of u1, u2, u4, and belong to the same 

field. As x0 is the quotient by 7 of the sum of all ui it belongs also 

to this field and the input septic is not irreducible 

       If Equation 12 has a triple root, we need further work. 

       If u1
7
 = u2

7
 = u4

7
 ≠ 0, there are seventh roots of unit ω1 and 

ω4 such that x2 = ω2 u1 and x2 = ω4 u1. Thus Equation 16 

becomes u6 + ω2 u5 + ω4 u3 = h1 for some h1 belonging to the 

field containing u1, u2 and u4. Similarly, the analogous of 

Equations 17 and 18 where u1, u2, u4 and u6, u5, u3 are exchanged, 

become u3
2
 + ω2u6

2
+ ω4 u5

2 
= h2 and u3 u5

2
+ ω4 u6 u5

2
+ ω2 u6 u3

2
 

= h3. Thus we have three equations in u3, u5, u6 of degrees 1, 2, 3. 

B´ezout theorem asserts that, if the number of solutions in an 

algebraically closed extension is finite, then it is at most 6, and 

the solutions belong to an extension of the field containing  h1, 

h2, h3, ω2 and ω4 which of degree at most 6. Thus it remains to 

prove that the number of solutions is finite to get that all the ui, 

and thus x0 belong to an extension of K of degree prime to 7, that 

is that f is not irreducible. 

       To prove that the number of solutions is finite, one may use 

the linear equation to eliminate u6 and obtain two equations in u3, 

u5, ω2, ω4, h1, h2, h3. Considering ω2, ω4, h1, h2, h3 as 

indeterminates, their resultant with respect to u5 is easy to 

compute. It is a polynomial of degree 6 in u3 whose leading 

coefficient is a polynomial in ω2 and ω4, which do not vanishes if 

ω2 and ω4 are substituted by seventh roots of unit. This may be 

proved by computing a Grobner basis , reduced to 1, of the ideal 

generated by this leading coefficient, ω2
7
− 1 and ω4

7
− 1. This 

may also be proved by obtaining 1 as the GCD of ω4
7
− 1 and the 

resultant with respect to ω2 of ω2
7
− 1 and this leading coefficient.                                                                              

       We have now finished to describe how to compute the ui in 

term of radical. The roots may be deduced by computing the 

inverse Fourier transform and, if the term of degree 6 of the input 

septic was not null, adding the mean value of the roots, i.e. −a1/7 

a0 where a1 and a0 are the coefficients of degree 6 and 7 of this 

input septic. 

       Remark 18. To solve the linear system in the u3, u5, u6 the 

best way seems to use Cramer’s rules, because we have a simple 

form of the determinant which is independent from the ui.    
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       Remark 19. The invariant septic f3 is only used in Equation 

19. Thus it is not needed except if b3 = b4 = 0 or b3
2
 + 7 b6 = 0. 

It is thus better to compute it at the end and only if needed. 

       5.6 Conclusion 

        In summary we have proved the following. 

       Theorem 20. A root of a solvable irreducible septic of 

discriminant D defined on a field K of characteristic different 

from 2, 3, 7, may be computed as an element of either an 

extension of  K(√−7D) by a seventh root or as an element an 

extension by a seventh root of an extension of  K(√−3,√−7D) by 

a cubic root. The other  roots belong to the extension of the 

preceding by a primitive seventh of unit, which belongs to an 

extension of  K(√−3,√−7) by a cubic root. 

       This theorem is fully constructive, as we have described how 

to effectively compute the root. This procedure has been 

implemented and tested on various examples for all the cases 

which are considered in the algorithm. The typical time of 

computation is about three seconds. 

       The correctness of the output has been verified by 

substituting the roots in the input polynomial and either 

evaluating numerically the result to zero (floating point with a 

precision of 30 decimal digits) or simplifying it to 0 with 

MAPLE’s instruction evala(convert(expression, RootOf)). 

       For saving space, we do not give explicitly the algorithm, 

but as its description is split on various sections, we summarize it 

as follows.   
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