
International Journal of Scientific and Research Publications, Volume 4, Issue 12, December 2014 1
ISSN 2250-3153

www.ijsrp.org

A Timetable Prediction for Technical Educational System

Using Genetic Algorithm – An Over View

Asif Ansari
1
, Prof Sachin Bojewar

2

1PG Scholar, Alamuri Ratnamala Institute of Engineering & Technology, Mumbai, India

2Associate Professor, Vidyalankar Institute of Engineering & Technology, Mumbai, India

Abstract- In this paper we glance through the various approaches

used by the researchers to develop an automatic timetable using

Genetic algorithms. The optimized genetic algorithm can be used

with the heuristic approach to design and develop the timetable

of an institute. At stake during the process of development, the

stakeholders are the professors and the students. The efficient

utilization of the infrastructure is the main aim of the authors.

The crossover, mutation and the fitness function is to be

calculated for the implementation. In genetic algorithm every

individual are characterized by a fitness function. After analysis

if there is higher fitness then it means better solution and then

after based on their fitness, parents are selected to reproduce

offspring for a new generation where fitter individuals have more

chance to reproduce. The objective of the work is to create a

model used to generate the acceptable schedule using

probabilistic operators.

Index Terms- Rule-Based agents, Genetic Algorithm, fitness

function, Timetable Generator, Heuristic approach.

I. INTRODUCTION

lanning timetable is one of the most complex and error

prone application. There are still serious problems like

generation of high cost time table are occurring while

scheduling and these problems are repeating frequently. [6]

Therefore there is a great requirement for an application

distributing the course evenly and without collisions. The

aim is here to develop a simple, easily understandable,

efficient and portable application which could automatically

generate good quality time table with in a second. [10] The

outline of this paper is as follows: Active rules are

described for the knowledge of intelligent agents (i.e.

Constraints), GAs are described and their use in optimizing rule

based agent is proposed, methods are apply to the problem

of optimizing some results of this application are presented and

finally, some conclusion and possible direction for future

research are presented. A lecture timetable problem is concerned

with finding the exact time allocation within limited time

period of number of events (courses-lectures) and assigning to

them number of resources (teachers, students and Lecture Halls)

while satisfying some constraints. The constraints are classified

into Hard Constraints and Soft constraints. Hard constraints are

those that must be adhered to, while soft Constraints can be

violated if necessary [2,3].

 The advantage of GA is that they can explore the solution

space in multiple directions at once [4].

Therefore, if one path turns out to be a dead end, they can easily

eliminate it and continue work on more promising avenues,

giving them a greater chance each run of finding the optimal

solution

II. STRUCTURE OF THE AUTOMATED TIME TABLE

GENERATOR

 The structure of time table generator consist Input Date

Module, relation between the input data module, time

interval, time slots module, applying active rules and GA

module then extract the reports.

Figure 1: Time Table presented as 3 D Structure [1]

III. GENETIC ALGORITHM [5]

 Genetic algorithms are methods of solving problems based

upon an abstraction of the process of Natural Selection. They

attempt to mimic nature by evolving solutions to problems rather

than designing them. Genetic algorithms work by analogy with

Natural Selection as follows. First, a population pool of

chromosomes is maintained. The chromosomes are strings of

symbols or numbers. There is good precedence for this since

humans are defined in DNA using a four-symbol alphabet. The

chromosomes are also called the genotype (the coding of the

solution), as opposed to the phenotype (the solution itself). In

the Genetic algorithm, a pool of chromosomes is maintained,

which are strings. These chromosomes must be evaluated for

fitness. Poor solutions are purged and small changes are

made to existing solutions and then allow "natural selection" to

P

International Journal of Scientific and Research Publications, Volume 4, Issue 12, December 2014 2

ISSN 2250-3153

www.ijsrp.org

take its course, evolving the gene pool so that steadily better

solutions are discovered.

 The basic outline of a Genetic Algorithm is as follows: [8]

Initialize pool randomly

For each generation

{

Select good solutions to breed new population

Create new solutions from parents

Evaluate new solutions for fitness

Replace old population with new ones

}

 The randomly assigned initial pool is presumably pretty

poor. However, successive generations improve, for a number of

reasons:

 1) Selection: During each successive generation, a

proportion of the existing population is selected to breed a new

generation. Individual solutions are selected through a fitness-

based process, where fitter solutions (as measured by a fitness

function) are typically more likely to be selected [12]

 2) Mutation: It allow the algorithm to avoid local

minima by preventing the population of chromosomes from

becoming too similar to each other, thus slowing or even

stopping evolution.[14]

for each gene inindividual{

if(p(Random)< pm){

gene = get random value from

possible values list;

}

}

Figure 2: Mutation for Indiviual[1]

 3) Crossover: It combines the genetic material from parents

order to produce children, during breeding. Since only the good

solutions are picked for breeding, during the selection

procedure, the crossover operator mixes the genetic material,

in order to produce children with even greater fitness.

Figure 3: Crossover Indiviual[1]

 For example, assume single point crossover at position 3

two binary chromosomes with values (000000, 111111) will

produce (000111, 111000) as children. Moreover, there can be

multiple point crossover.[8]

 What propose here, is an “automatic” way of selecting the

best action to execute upon an event occurring? The action is

selected by a genetic algorithm. For the moment conditions are

supported by active rules when an event has occurred the system

can take several actions. For each of possible events, the system

holds an ordered set of possible actions that can be taken when

the event occurs. The first action is always selected, but a genetic

algorithm running in parallel may dynamically change the order

of the actions. [10]

 Since the genetic algorithm controls the way the agents

(constraints) respond to events, the reactive behavior of the agent

is controlled by the genetic algorithm. But there can also be

another "level" (the "rational" level) to control the agent,

especially if a architecture is part of an agent built partially

using another method and controlled partially by the constructs

this method provides. Actions will be selected for execution

using the traditional approach, but some others using the

GA approach. This rational part of the agent can also

control several parameters of the GA, restart it when needed,

or schedule it to be run. This architecture can also be embedded

in more complex systems. When an event/action language is

necessary for the building of an agent type system, this

method can be used for a subset of the events and the

actions of the system. This simplifies the design and reduces

testing and maintenance times when compared to a deterministic

rule set with many conditions and checks. [5]

Figure 4: Generation of conflicts and bounds [1]

IV. CONCLUSION

 The GA in timetabling framework has been shown to

be successful on several real problems .It has been shown

that the genetic algorithm perform better in finding areas of

interest even in a complex, real-world scene. [13] This paper

described how set of active rules can be used to express the

knowledge of intelligent and how a genetic algorithm can be

used to dynamically prioritize rules in the face of dynamically

evolving environments. One could argue that the genetic

algorithm can find a local optimum and then stop. This is

always a danger with a genetic algorithm, but again it depends

on the search space. In this time table generation approach, there

International Journal of Scientific and Research Publications, Volume 4, Issue 12, December 2014 3

ISSN 2250-3153

www.ijsrp.org

are many good solutions and the genetic algorithm will find one

of them.

 In extreme cases where there is only one good solution the

genetic algorithm may fail, but again it can be restarted by the

Active Rules with many chances to find a better solution.

[8] One could also argue that this architecture is not powerful

enough since it does not work based on an event/action

language. However there is nothing to prevent this

architecture from being a subset of a rich and powerful

event/action language. In such a case it can be used to pick the

rule to be fired when there are no other criteria available for

rule selection. In other cases it maybe better to let the genetic

algorithm pick the rule to be fired, instead of having many

conditions which will complicate the active rule set and

consequently increase design, test and maintenance times. The

benefits of this approach are simplified design and reduced

development and maintenance times of rule-based agents in the

face of dynamically evolving environments. [11]

V. FUTURE SCOPE

 For Further work there is need to explore different types of

genetic algorithms, like heuristic approach to develop the

application. for example ones with overlapping populations

such as steady state or incremental GAs. In such cases, a

small replacement percentage, so that the GA could be used for

driving the nodes at real time (once an initial good state

has been reached) and not just training themFor plan to

investigate other methods for finding the optimum rule set

(for example, neural networks or other heuristic search

methods like simulated annealing) and to formally compare

the results with theoretical results obtained by a statistical

analysis of the network. [11]

REFERENCES

[1] Solving Timetable Scheduling Problem by Using Genetic Algorithms
Branimir Sigl, Marin Golub, Vedran Mornar Faculty of Electrical
Engineering and Computing, University of Zagreb Unska 3, 10000 Zagreb,
Croatia

[2] J. J. Grefenstette, editor. Proceedings of the First International
Conference on Genetic Algorithms and their Applications.Practice and

Theory of Automated Timetabling VI Proceedings of The 6th International
Conference on the Practice and Theory of Automa.

[3] J. J. Grefenstette, editor. Proceedings of the Second International
Conference on Genetic Algorithms and their Applications. Practice and
Theory of Automated Timetabling VI Proceedings of The 6th International
Conference on the Practice and Theory of Auto.

[4] N. R. Jennings.Coordination Techniques for Distributed Artificial
Intelligence. University of London Mile End Rd.London E1 4NS UK,
1995.

[5] Om Prakash Shukla, Amit Bahekar, Jaya Vijayvergiya, ”Effective
Fault Diagnosis and Maintenance Optimization by Genetic Algorithm”
Available : http://researchjournals.in/documents/published/2204.pdf

[6] Leon Bambrick Supervisor Dr B Lovell “Lecture Timetabling Using
Genetic Algorithms” Available : http://secretgeek.net/content/bambrilg.pdf

[7] Alberto Colorni, Marco Dorigo “A Genetic Algorithm to solve the
time table problem” Available : http://citeseerx.ist.psu.edu

[8] Sanjay R. Sutar , Rajan S. Bichkar “University Timetabling based on
Hard Constraints using Genetic Algorithm” Available :
http://research.ijcaonline.org/ volume42/number15/ pxc3877964.pdf

[9] Eng. Ahmed Hamdi Abu ABSA, Dr. Sana'a Wafa Al-Sayegh, ”
Elearning Timetable Generator Using Genetic Algorithms” Available :
https://uqu.edu.sa/files2/tiny_mce/plugins /filemanager/files/30/papers/f18
9.pdf

[10] Leon Bambrick, “Lecture Timetabling Using Genetic Algorithms”
Available : http://secretgeek.net /content/bambrilg.pdf

[11] Evaggelos Nonas, Alexandra Poulovassilis, ”optimisation of active rule
agents using a genetic algorithm approach pdf” Available :
http://ebookbrowse.com/optimisation-of-active-rule-agentsusing-a-genetic-
algorithm-approach-pdf-d381872402

[12] Cite Seerx , Optimisation of Active Rule Agents using a Genetic
Algorithm approach, Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.2599

[13] Wikipedia, Selection (genetic algorithm), Available:
http://en.wikipedia.org /wiki/Genetic_algorithm

[14] Genetic Algorithms, Conclusion and Future Work Available:
http://www.doc.ic.ac.uk/~nd /surprise_96/journal/vol4/tcw2/report.html

[15] Wikipedia,Mutation (genetic algorithm) Available: http://en.wikipedia.org
/wiki/Mutation_%28 genetic_algorithm%29

AUTHORS

First Author – Asif Ansarn, PG Scholar, Alamuri Ratnamala

Institute of Engineering & Technology, Mumbai, India,

ansariasif23@gmail.com

Second Author – Prof Sachin Bojewar, Associate Professor,

Vidyalankar Institute of Engineering & Technology, Mumbai,

India, sachin.bojewar@vit.edu.in

