Text Extraction from Image and Displaying its Related Information

N.K. Gundu¹, S.M. Jadhav², T.S. Kulkarni³, A.S. Kumbhar⁴

¹ Computer Engineering, MMIT, Pune.

Abstract- In this project we combine the best ideas from the text extraction with the help of character description and stroke configuration, web context search and web mining with the help of semantic web and synaptic web at low entropy. First, we design a discriminative character descriptor. Second, we model character structure at each character class by designing stroke configuration maps. With the help of web context search, the extracted text is searched over the net. In the proposed approach we have extended the context of user’s interest and developed an unsupervised algorithm to find the items of interest for the user. Web mining is the application of data mining technique to automatically discover and gather information from web documents. It is used to find out the relevant and efficient results from the web. Semantic-Synaptic web mining interlinks the web of data to different data sources at low entropy.

Index Terms- Character descriptors, stroke configuration, SWT, interest-item matching, Semantic Web, Synaptic Web, meta-data, entropy.

I. INTRODUCTION

This paper aims at making a Mobile Application Which recognize the text from an image capture from a mobile camera and gives information related to it. This is done using Character Descriptor and Structure Configuration. Extracting text directly from natural scene image or videos is a challenging task because of diverse text patterns and variant background interferences. Previously proposed algorithms are applied to obtain text regions from scene image only. The best word recognition rate for scene images was only about 41.2%. To extract text information by mobile devices from natural scene, automatic and efficient scene text detection and recognition algorithms are essential. However, extracting scene text is a challenging task due to two main factors:

1) Cluttered backgrounds with noise and non-text outliers, and
2) Diverse text patterns such as character type, fonts, and size.

To solve these problems, scene text extraction is divided into two processes: text detection and text extraction. Extracting text from natural scene and displaying information related to it will help to know the surrounding environment. This application will help tourist who did not know local languages of particular country/area he will get information with the help of this application. This application will also help to know the information related to any hand-held objects. As we will embed this application in a smart phone, there will be more mobility.

II. RELATED WORK

Extracting text from image is a difficult task. To perform this task various techniques have been implemented before. Cluster classification [1] is one of the techniques which have high accuracy in detecting text area and non-text area. There is new trend towards content based document image retrieval technique without going through OCR process [2]. There is another technique named as sliding window detection which has high accuracy of detecting text in natural scene.

This paper uses different techniques for text extraction, web context search and web mining. Different techniques used are character descriptor and stroke configuration [4] for text detection and extraction, item ranking based on users interest [6] for web context search and semantic and synaptic web mining at low entropy for retrieving most relevant data from the web [7].

III. SYSTEM ARCHITECTURE

Objective of this system is the extraction of text from any image and then displaying its related information on the mobile screen. Main goal of this system is that if a person doesn’t have or know any specific thing then he/she could get its information with the help of this android application. Different modules used in this system are as follows:

A. Text Extraction:

In text extraction feature text is being extracted from the natural scene or an image. Heretext extraction is done with the help of character description and stroke configuration [1]. Firstly the text will be detected, understood and then recognized.
B. Searching:
In searching process extracted text is being searched over net or in database. Here searching is done with the help of item ranking according to the item of interest. It basically derives meta data information about the item of interest by extending the user’s given interest.

C. Web Mining:
In this mining process required information is retrieved from the web or from database in an efficient manner. This is done with the help of Semantic and Synaptic web mining at low entropy [7]. After retrieving the information successfully it is displayed on the mobile screen.

IV. ALGORITHM AND FLOWCHART

Figure 2: System Flowchart

SWT: Computes per pixel, width of the most likely stroke containing pixel [8].

(b)

Figure 3: Stroke Width Transform

1. Initially set SWT = ∞
2. Find edge by canny edge detector.
3. Follow the ray \(r=p+n\cdot dp \), \(n>0 \) until another edge is found.
4. If \(dq=-dp \pm \Pi/6 \) then SWT = \(|p - q| \) and dp++ else discard the ray.
5. If SWT ratio \(\leq 3 \) then group neighbouring pixels.
6. If two letters are having similar stroke width, they can be grouped.
7. The output is a set of rectangles designating bounding boxes for detected words.
8. Search the text on web or in database.
9. Match the word, and retrieve the related information.
10. Display retrieved information on mobile screen.

V. TECHNICAL SPECIFICATION

Advantages:
1) Tilt text is detected.
2) High accuracy in natural scene.
3) Requires less text extraction database.
4) Most relevant and accurate data is retrieved from the web.

Disadvantages:
1) Handwritten text cannot be accurately recognized.

Application:
1) Analysis of documents can be easily done.
2) Industrial automation.

VI. CONCLUSION
Thus this paper achieves the objective of text extraction from image and displaying its information on android platform, with the help of text extraction algorithm, web context search algorithm and web mining algorithm.

GLOSSARY:
1) HOG - It models character structure feature and cross correlation analysis of character similar from text recognition and detection.
2) Meta-data - A set of data that describes and gives information about other data.
3) Semantic Web - It is a technique to manage content and process with creation and use of semantic metadata.
4) Synaptic Web - Synapse is a biological term, it is the connection between different neurons in the brain, same as in the synaptic web like the human brain the synaptic connections between objects (Content/Information) are more important than the object themselves makes the smarter web.
5) Entropy - In information theory the term generally refers to the Shannon entropy, is a measurement of uncertainty and inconsistency in random variable, which evaluate the information content in a message.

ACKNOWLEDGMENT
We would like to express our gratitude to all those who helped us to complete this work. We want to thank our guide Mrs. D. J. Bonde for her continuous help and generous assistance. She helped in a broad range of issues from giving us direction, helping to find the solutions, outlining the requirements and
always having the time to see us.

We have furthermore to thank Prof. P. M. Daflapurkar, Head of the Department of Computer Engineering, to encourage us to go ahead and for continuous guidance. We also want to thank Prof. S. A. Agrawal for all his assistance on Text Extraction and guidance for preparing report.

We would like to thank Prof. D. B. Satre and our colleagues who helped us time to time from preparing report and giving good suggestions. We also extend sincere thanks to all the staff members of Department of Computer Engineering and Information Technology for helping us in various aspects.

Last but not least we are grateful to our parents for all their support and encouragement.

REFERENCES

AUTHORS

First Author – Nilesh K. Gundu, BE Computer (Appeared), MMIT and Email ID: gundu.nilesh@gmail.com.

Second Author – Shwetarani M. Jadhav, BE Computer (Appeared), MMIT and Email ID: shwetaranijadhav@gmail.com.

Third Author – Tushar S. Kulkarni, BE Computer (Appeared), MMIT and Email ID: avinashkumbhar95@gmail.com.

Fourth Author – Avinash S. Kumbhar, BE Computer (Appeared), MMIT and Email ID: tskulkarni25@gmail.com.

Correspondence Author – Tushar S. Kulkarni, Email ID: tskulkarni25@gmail.com.nilesh.gundu@gmail.com.

Contact number: 8983064518.