gr-compactness in topological spaces

K. Vithyasangaran1, J. Sriranganesan2 and S. Sathaananthan3

Department of Mathematics, Faculty of Science, Eastern University, Sri Lanka

Abstract

In this paper, we introduce the new concepts gr-compactness in topological spaces and obtain some of their properties using gr-closed sets.

Keywords: gr-closed sets, gr-continuous maps and gr-compactness.

1 Introduction

The notions of compactness is useful and fundamental notions of not only general topology but also of other advanced branches of mathematics. Many researchers [1-7] have analyzed the basic properties of compactness. The notions of compactness resulted in motivating mathematicians to generalize these notions further.

Bhattacharya S. [8] introduced and studied the properties of gr-closed sets in topological spaces. The aim of this paper is to study gr-compactness using gr-closed set and also discuss some of their properties

2 Preliminaries

Throughout this paper (X, τ), (Y, σ) (or simply X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of (X, τ), cl(A) and Int(A) denote the closure of A and interior of A respectively.

Definition 2.1. Let (X, τ) be a topological space. Then, a subset A of (X, τ) is called gr-closed set [8] if rcl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).

The complement of the above mentioned gr-closed set is gr-open set.

Definition 2.2. A function f : (X, τ) → (Y, σ) is called

(i) gr-continuous [9] if the inverse image of every closed set in (Y, σ) is gr-closed in (X, τ).
(ii) gr-irresolute [9] if the inverse image of every gr-closed set in (Y, σ) is gr-closed in (X, τ).

*Corresponding author: E-mail: vithyasangaran@esn.ac.lk
3

gr-compactness

Definition 3.1. A collection \(\{A_i : i \in I\} \) of gr-open sets in a topological space \(X \) is called a gr-open cover of a subset \(B \) of \(X \) if \(B \subseteq \bigcup \{A_i : i \in I\} \) holds.

Definition 3.2. A topological space \(X \) is gr-compact if every gr-open cover of \(X \) has a finite subcover.

Definition 3.3. A subset \(B \) of a topological space \(X \) is said to be gr-compact relative to \(X \) if, for every collection \(\{A_i : i \in I\} \) of gr-open subsets of \(X \) such that \(B \subseteq \bigcup \{A_i : i \in I\} \) there exists a finite subcover \(I_0 \) of \(I \) such that \(B \subseteq \bigcup \{A_i : i \in I_0\} \).

Definition 3.4. A subset \(B \) of a topological space \(X \) is said to be gr-compact if \(B \) is gr-compact as a subspace of \(X \).

Theorem 3.1. Every gr-closed subset of a gr-compact space \(X \) is gr-compact relative to \(X \).

Proof. Let \(A \) be gr-closed subset of gr-compact space \(X \). Then, \(A^* \) is gr-open in \(X \). Let \(M = \{G_\alpha : \alpha \in I\} \) be a cover of \(A \) by gr-open sets in \(X \). Then, \(M^* = M \cup A^* \) is a gr-open cover of \(X \). Since \(X \) is gr-compact, \(M^* \) is reducible to a finite subcover of \(X \), say \(X = G_{\alpha_1} \cup G_{\alpha_2} \cup \ldots \cup G_{\alpha_m} \cup A^* \), \(G_{\alpha_k} \in M \). But, \(A \) and \(A^* \) are disjoint hence \(A \subseteq G_{\alpha_1} \cup G_{\alpha_2} \cup \ldots \cup G_{\alpha_m} \), \(G_{\alpha_k} \in M \), which implies that any gr-open cover \(M \) of \(A \) contains a finite subcover. Therefore, \(A \) is gr-compact relative to \(X \). Thus, every gr-closed subset of gr-compact space \(X \) is gr-compact. \(\Box \)

Theorem 3.2. Every gr-compact space is compact.

Proof. Let \(X \) be a gr-compact space. Let \(\{A_i : i \in I\} \) be an open cover of \(X \). Then \(\{A_i : i \in I\} \) is a gr-open cover of \(X \) as every open set is gr-open set. Since \(X \) is gr-compact, the gr-open cover \(\{A_i : i \in I\} \) of \(X \) has a finite subcover, say \(\{A_i : i = 1, \ldots, n\} \) for \(X \). Hence \(X \) is compact. \(\Box \)

Definition 3.5. A function \(f : X \longrightarrow Y \) is said to be gr-continuous [9] if \(f^{-1}(F) \) is gr-closed in \(X \) for every closed set \(F \) of \(Y \).

Definition 3.6. A function \(f : X \longrightarrow Y \) is said to be gr- irresolute [9] if \(f^{-1}(F) \) is gr-closed in \(X \) for every gr-closed set \(F \) of \(Y \).

Theorem 3.3. Let \(f : X \rightarrow Y \) be surjective, gr-continuous function. If \(X \) is gr-compact, then \(Y \) is compact.

Proof. Let \(\{A_i : i \in I\} \) be an open cover of \(Y \). Since \(f \) is gr-continuous function, then \(\{f^{-1}(A_i) : i \in I\} \) is gr-open cover of \(X \) has a finite subcover, say \(\{f^{-1}(A_i) : i = 1, \ldots, n\} \). Therefore, \(X = \bigcup_{i=1}^{n} f^{-1}(A_i) \) which implies \(f(X) = \bigcup_{i=1}^{n} f(A_i) \). Since \(f \) is surjective, \(Y = \bigcup_{i=1}^{n} f(A_i) \). Thus, \(\{A_1, A_2, \ldots, A_n\} \) is a finite subcover of \(\{A_i : i \in I\} \) for \(Y \). Hence \(Y \) is compact. \(\Box \)

Theorem 3.4. If a map \(f : X \rightarrow Y \) is gr- irresolute and a subset \(B \) of \(X \) is gr-compact relative to \(X \), then the image \(f(B) \) is gr-compact relative to \(Y \).

Proof. Let \(\{A_\alpha : \alpha \in I\} \) be any collection of gr-open subsets of \(Y \) such that \(f(B) \subseteq \bigcup \{A_\alpha : \alpha \in I\} \). Then, \(B \subseteq \bigcup \{f^{-1}(A_\alpha) : \alpha \in I\} \) holds. From the hypothesis, \(B \) is gr-compact relative to \(X \). Then, there exists a finite subset \(I_0 \) of \(I \) such that \(B \subseteq \bigcup \{f^{-1}(A_\alpha) : \alpha \in I_0\} \). Therefore, we have \(f(B) \subseteq \bigcup \{A_\alpha : \alpha \in I_0\} \), which shows that \(f(B) \) is gr-compact relative to \(Y \). \(\Box \)

4 Conclusion

In this paper, we have introduced gr-compactness in the topological spaces by using gr-closed sets and their properties were studied.
References

