Abstract. Motivated by some results on derivations on rings, and the generalizations of BCK and BCI algebras, in this paper, we define f-derivations on BP-algebras and investigate some important results.

Key Words: BP-algebras, derivations on BP-algebras, f-derivations on BP-algebras.

Subject Classification: AMS(2000) 06F35, 03G25, 06D99, 03B47

1. Introduction

BCK and BCI algebras are two new classes of algebras based on propositional calculi or logic introduced by Imai and Isaki[5]. In [6] K.Isaki and K.Tanaka introduced the theory of BCK-algebras. In [3,4] Q.P.Hu and X.Li and introduced a wider class of abstract algebras BCH-algebras. The class of BCI-algebras is a proper subclass of the class BCH-algebras. J.Neggers and H.S.Kim [9] introduced the notion of d-algebras which is another generalization of BCK-algebras.

In S.S.Ahn and J.S.Han [1] introduce the notion of a BP-algebras. In 2004 Y.B.Jun and X.L..Xin [7] introduced the notion of derivations of BCI-algebras, which was motivated from a lot of workdone on derivations of rings. Since then many authors worked on the notion of derivations on several algebras such as d-algebras and TM-algebras [2,8] motivated by this paper introduce the notion of f-derivations on BP-algebras.

2. Preliminaries

In this section we recall some basic definitions that are required in our work.

Definition 2.1. [6] Let X be a set with a binary operation $*$ and a constant 0. Then $(X, *, 0)$ is called a BCK-algebras if it satisfies the following axioms:

1. $x * x = 0$
2. $0 * x = 0$
3. $((x * y) * (x * z)) * (z * y) = 0$
4. $(x * (x * y)) * y = 0$
5. $x * y = 0$ and $y * x = 0$ imply $x = y$ for all $x, y, z \in X$

Definition 2.2. [7] Let X be a set with a binary operation $*$ and a constant 0. Then $(X, *, 0)$ is called a BCI-algebra if it satisfies the following axioms:
(1) \((x \star y) \star (x \star z)) \star (z \star y) = 0\)
(2) \((x \star (x \star y)) \star y = 0\)
(3) \(x \star x = 0\)
(4) \(x \star y = 0 \text{ and } y \star x = 0 \Rightarrow x = y \forall x, y, z \in X\)

Definition 2.3. Let \(x\) be a BCI-algebra. Two elements \(x\) and \(y\) in \(X\) are said to be comparable if \(x \leq y\) or \(y \leq x\). Here \(x \leq y\) if and only if \(x \star y = 0\). Also we define \(y \star (y \star x)\) by \(x \wedge y\).

Definition 2.4. \([9]\) A \(d\)-algebra is a non-empty set \(X\) with a constant 0 and binary operation \(\ast\) satisfying the following axioms:

(1) \(x \ast x = 0\)
(2) \(0 \ast x = 0\)
(3) \(x \ast y = 0 \text{ and } y \ast x = 0 \Rightarrow x = y\). \(\forall x, y, z \in X\)

Definition 2.5. \([1]\) Let \(X\) be a set with a binary operation \(\ast\) and a constant 0. Then \((X, \ast, 0)\) is called a BP-algebra if it satisfies the following axioms.

(1) \(x \ast x = 0\)
(2) \(x \ast (x \ast y) = y\)
(3) \((x \ast z) \ast (y \ast z) = x \ast y\) for any \(x, y, z \in X\).

Definition 2.6. \([9]\) Let \(X\) be a \(d\)-algebra and \(I\) be a subset of \(X\), then \(I\) is called \(d\)-ideal of \(X\) if it satisfies the following conditions.

(1) \(0 \in I\)
(2) \(x \ast y \in I \text{ and } y \in I \Rightarrow x \in I\)
(3) \(x \in I \text{ and } y \in X \Rightarrow x \ast y \in I\) (ie) \(I \ast X \subseteq I\)

Example 2.7. Let \(X = \{0, 1, 2, 3\}\), \((X, \ast, 0)\) be a set with the following cayley table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X, \ast, 0)\) is a BP-algebra.

Definition 2.8. Let \(X\) be a \(d\)-algebra. A map \(\theta : X \rightarrow X\) is a left - right derivation (briefly, \((l, r)\)-derivation) on \(X\), if it satisfies the identity
\[\theta(x \ast y) = (\theta(x) \ast y) \wedge (x \ast \theta(y))\] for all \(x, y \in X\).

If \(\theta\) satisfies the identity
\[\theta(x \ast y) = (x \ast \theta(y)) \wedge (\theta(x) \ast y)\] for all \(x, y \in X\), then \(\theta\) is called a right-left derivation (briefly, \((r, l)\)-derivation) on \(X\).

If \(\theta\) is both an \((l, r)\) and an \((r, l)\)-derivation, then \(\theta\) is called a derivation on \(X\).

3. \(f\)-DERIVATIONS ON BP-ALGEBRA

In this section, we define the notion of \(f\)-derivations and regular of \(f\)-derivations on BP-algebras and prove some results. Throughout this section we assume that \(f\) is an endomorphism of the BP-algebra \((X, \ast, 0)\).
Definition 3.1. Let X be a BP-algebra. By a left - right f - derivation (briefly, (l,r) - f - derivation) on X, we mean a self map θ_f of X satisfies the identity
\[\theta_f(x \ast y) = (\theta_f(x) \ast f(y)) \land (f(x) \ast \theta_f(y)) \]
for all $x, y \in X$.
If θ_f satisfies the identity
\[\theta_f(x \ast y) = (f(x) \ast \theta_f(y)) \land (\theta_f(x) \ast f(y)) \]
then it is said that θ_f is a right - left f - derivation (briefly, (r,l) - f - derivation) of X. If θ_f is both an (r,l) - and an (l,r) - f - derivation, then θ_f is said to be a f - derivation.

Example 3.2. Let $X = \{0, 1, 2, 3\}$ be a BP-algebra with the following cayley table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(1) Define an endomorphism f of X by $f(0)=0, f(1)=3, f(2)=2,$ and $f(3)=1.$
and a self map $\theta_f : X \rightarrow X$ by $\theta_f(0)=1, \theta_f(1)=0, \theta_f(2)=3,$ and $\theta_f(3)=2.$
Then it is easily checked that θ_f is a (l,r) - f - derivation of X.
(2) Define an endomorphism f of X by $f(0)=0, f(1)=3, f(2)=2,$ and $f(3)=1.$
and a self map $\theta_f : X \rightarrow X$ by $\theta_f(0)=2, \theta_f(1)=1,$ and $\theta_f(3)=3.$
Then it is easily checked that θ_f is a (r,l) - f - derivation of X.

Definition 3.3.
An f - derivation θ_f on a BP-algebra X is said to be regular if
$\theta_f(0) = 0$.

Proposition 3.4.
Every (r,l) - f - derivation (l,r) - f - derivation) of a BP-algebra is regular.

Proof:
Let X be a BP-algebra and θ_f be a (r,l) - f - derivation on X. Then for all $x \in X,$
we have
\[\theta_f(0) = \theta_f(x \ast x) \]
\[= (f(x) \ast \theta_f(x)) \land (\theta_f(x) \ast f(x)) \]
\[= (f(x) \ast \theta_f(x)) \ast ((\theta_f(x) \ast f(x)) \ast (f(x) \ast \theta_f(x))) \]
\[= f(x) \ast \theta_f(x) \]
\[\because x \ast x = 0 \]
\[= 0. \]

Let θ_f be a (l,r) - f - derivation on X.
Then for all $x \in X$, we have
\[\theta_f(0) = \theta_f(x \ast x) \]
\[= (\theta_f(x) \ast f(x)) \land (f(x) \ast \theta_f(x)) \]
\[= (f(x) \ast \theta_f(x)) \ast ((f(x) \ast \theta_f(x)) \ast (\theta_f(x) \ast f(x))) \]
\[= \theta_f(x) \ast f(x) \]
\[= 0. \]
One can easily prove that the following result gives a necessary and sufficient condition for the derivation θ_f to be regular.

Proposition 3.5.

Let θ_f be a self map of a BP-algebra on X, then the following hold:

1. If θ_f is an $(l,r)-f$-derivation on X, then $\theta_f(x) = \theta_f(x) \wedge f(x)$ for all $x \in X$ if and only if $\theta_f(0) = 0$.

2. If θ_f is an $(r,l)-f$-derivation on X, then $\theta_f(x) = f(x) \wedge \theta_f(x)$ for all $x \in X$ if and only if $\theta_f(0) = 0$.

Proposition 3.6.

Let θ_f be a $(l,r)-f$-derivation on a BP-algebra X. Then $\theta_f(x) = \theta_f(0) \ast (0 \ast f(a))$, for all $a \in X$.

Proof: Let θ_f be an $(l,r)-f$-derivation on a BP-algebra X.

Now,

$$\theta_f(a) = \theta_f(0 \ast (0 \ast a)) \; (\because 0 \ast (0 \ast x) = x)$$

$$= (\theta_f(0) \ast f(0 \ast a)) \wedge (f(0) \ast \theta_f(0 \ast a))$$

$$= (f(0) \ast \theta_f(0 \ast a)) \ast ((f(0) \ast \theta_f(0 \ast a)) \ast (\theta_f(0) \ast f(0 \ast a)))$$

$$= \theta_f(0) \ast f(0 \ast a)$$

$$= \theta_f(0) \ast (f(0) \ast f(a))$$

$$= \theta_f(0) \ast (0 \ast f(a))$$

$$\therefore \theta_f(a) = \theta_f(0) \ast (0 \ast f(a)).$$

Proposition 3.7.

Let θ_f be a self map on a BP-algebra X and θ_f be an $(r,l)-f$-derivation on X. Then $\theta_f(x) = f(x)$, for all $x \in X$ if and only if $\theta_f(0) = 0$.

Proof: Let θ_f be an $(r,l)-f$-derivation on X.

Assume that $\theta_f(0) = 0$.

Now,

$$\theta_f(x) = \theta_f(x \ast 0) \; (\because x \ast 0 = x)$$

$$= (f(x) \ast \theta_f(0)) \wedge (\theta_f(x) \ast f(0))$$

$$= (\theta_f(x) \ast f(0)) \ast ((\theta_f(x) \ast f(0)) \ast (f(x) \ast \theta_f(0)))$$

$$= f(x) \ast \theta_f(0)$$

$$= f(x).$$
Coversely, assume that \(\theta_f(x) = f(x) \).

Now,
\[
\theta_f(0) = \theta_f(x \ast x) \\
= (f(x) \ast \theta_f(x)) \land (\theta_f(x) \ast f(x)) \\
= (\theta_f(x) \ast f(x)) \ast ((\theta_f(x) \ast f(x)) \ast (f(x) \ast \theta_f(x))) \\
= f(x) \ast \theta_f(x) \\
= f(x) \ast f(x) \quad (\therefore \theta_f(x) = f(x)) \\
= 0.
\]

\(\therefore \theta_f(0) = 0. \)

Definition 3.8.

An ideal \(A \) on a BP-algebra \(X \) is said to be an \(f \)-ideal if \(f(A) \subseteq A \).

Example 3.9. Let \(X = \{0, 1, 2, 3\} \) be a BP-algebra with the following cayley table.

Consider the ideal \(A = \{0, 3\} \) of \(X \).

\[
\begin{array}{cccc}
* & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 1 & 3 \\
1 & 1 & 0 & 3 & 2 \\
2 & 2 & 3 & 1 & 0 \\
3 & 3 & 1 & 2 & 0 \\
\end{array}
\]

If \(\theta_f : X \to X \) is defined by \(\theta_f(0) = 0, \ \theta_f(1) = 2, \ \theta_f(2) = 1, \ \theta_f(3) = 3 \) and define an endomorphism \(f \) of \(X \) by \(\theta_f(x) = f(x) \).

Since \(f(0) = 0, f(3) = 3, f(A) \subseteq A \) proving that \(A \) is an \(f \)-ideal on \(X \).

Definition 3.10.

Let \(\theta_f \) be a self map of a BP-algebra \(X \). An \(f \)-ideal on \(X \) is said to be \(\theta_f \)-invariant if \(\theta_f(A) \subseteq A \).

Example 3.11.

Example(3.9), \(\theta_f(0) \in A \) and \(\theta_f(3) = 3 \in A \).

Hence \(\theta_f(A) \subseteq A \), showing that \(A \) is \(\theta_f \)-invariant.

Theorem 3.12.

Let \(\theta_f \) be a regular \((r,l) - f \)-derivation on a BP-algebra \(X \). Then \(f \)-ideal \(A \) on \(X \) is \(\theta_f \) invariant.

proof:

Let \(\theta_f \) be a regular \((r,l) - f \)-derivation on \(X \).

Now,
\[
\theta_f(x) = \theta_f(x \ast 0) \\
= (f(x) \ast \theta_f(0)) \land (\theta_f(x) \ast f(0)) \\
= (f(x) \ast 0) \land (\theta(x) \ast 0) \\
= f(x) \land \theta_f(x) \\
= \theta_f(x) \ast (\theta_f(x) \ast f(x)) \\
= f(x), \forall x \in X.
\]
Let \(y \in \theta_f(A) \) then \(y = \theta_f(x) \) for some \(x \in A \).

It follows that \(y \ast f(x) = \theta_f(x) \ast f(x) = 0 \in A \).

Since \(x \in A \), then \(f(x) \in f(A) \subseteq A \) as \(A \) is an \(f \)-ideal.

It follows that \(y \in A \) since \(A \) is an ideal on \(X \).

Hence \(\theta_f(A) \subseteq A \).

Thus \(A \) is \(\theta_f \)-invariant.

4. Composition of \(f \)-derivation

Definition 4.1.

Let \(X \) be a BP-algebra and \(\theta_f, \theta'_f \) be two self maps on \(X \). We define

\[\theta_f \circ \theta'_f : X \to X \]

as

\[(\theta_f \circ \theta'_f)(x) = \theta_f(\theta'_f(x)) \text{ for all } x \in X. \]

Proposition 4.2.

Let \(X \) be a BP-algebra and \(\theta_f, \theta'_f \) are the \((l,r)\)-\(f \)-derivations on \(X \).

Let \(f^2 = f \circ f = f \), then \(\theta_f \circ \theta'_f \) is also a \((l,r)\)-\(f \)-derivation on \(X \).

Proof:

Let \(X \) be a BP-algebra, and \(\theta_f \) and \(\theta'_f \) are the \((l,r)\)-\(f \)-derivations on \(X \).

\[
(\theta_f \circ \theta'_f)(x \ast y) = \theta_f(\theta'_f(x \ast y))
\]

\[
= \theta_f[(\theta'_f(x) \ast f(y)) \land (f(x) \ast \theta'_f(y))]
\]

\[
= \theta_f[(f(x) \ast \theta'_f(y)) \ast ((f(x) \ast \theta'_f(y)) \ast \theta'_f(x) \ast f(y))]
\]

\[
= \theta_f(\theta'_f(x) \ast f(y)) \quad (\because y \ast (y \ast x) = x)
\]

\[
= (\theta_f(\theta'_f(x)) \ast f^2(y)) \land (f(\theta'_f(x)) \ast \theta_f(f(y)))
\]

\[
= \theta_f(\theta'_f(x)) \ast f^2(y)
\]

\[
(\theta_f \circ \theta'_f)(x \ast y) = (\theta_f(\theta'_f(x)) \ast f(y))
\]

\[
= (f(x) \ast \theta_f(\theta'_f(y))) \ast ((f(x) \ast \theta_f(\theta'_f(y))) \ast \theta_f(\theta'_f(x) \ast f(y))]
\]

\[
= (f(x) \ast (\theta_f \circ \theta'_f)(y) \ast
\]

\[
[([f(x) \ast (\theta_f \circ \theta'_f)(y)] \ast (\theta_f \circ \theta'_f)(x) \ast f(y)]
\]

\[
= (\theta_f \circ \theta'_f)(x) \ast f(y) \land (f(x) \ast (\theta_f \circ \theta'_f)(y)).
\]

Which implies that \((\theta_f \circ \theta'_f) \) is a \((l,r)\)-\(f \)-derivation on \(X \).

One can easily prove that the following proposition.

Proposition 4.3.

Let \(X \) be a BP-algebra, \(\theta_f \) and \(\theta'_f \) are the \((r,l)\)-\(f \)-derivations on \(X \) such that \(f^2 = f \circ f = f \). Then \(\theta_f \circ \theta'_f \) is also a \((r,l)\)-\(f \)-derivation on \(X \).
Thus we have for all x,y. But θf is also a f-derivation on X.

One can easily prove that the following proposition that the composition of derivations is commutative.

Proposition 4.5.

Let X be a BP-algebra and θ_f, θ'_f be two f-derivations on X such that $f \circ \theta_f = \theta_f \circ f$, $\theta'_f \circ f = f \circ \theta'_f$. Then $\theta_f \circ \theta'_f = \theta'_f \circ \theta_f$.

Proof:

Let X be a BP-algebra and θ_f, θ'_f be the f-derivations on X.

Since θ'_f is a (l,r) - f-derivation on X, then for all $x, y, \in X$.

\[
(\theta_f \circ \theta'_f)(x \ast y) = \theta_f(\theta'_f(x \ast y)) = \theta_f((\theta'_f(x) \ast f(y)) \land (f(x) \ast \theta'_f(y))) = \theta_f(\theta'_f(x) \ast f(y))
\]

But θ_f is a (r,l) - f-derivation on X.

\[
(\theta_f \circ \theta'_f)(x \ast y) = \theta_f((\theta'_f(x) \ast f(y)) = (f(\theta'_f(x)) \ast \theta_f(f(y))) \land (\theta_f(\theta'_f(x)) \ast f^2(y)) = (f(\theta'_f(x)) \ast \theta_f(f(y))) = (f \circ \theta'_f)(x) \ast (\theta_f \circ f)(y)
\]

Thus we have for all $x, y \in X$, $(\theta_f \circ \theta'_f)(x \ast y) = (f \circ \theta'_f)(x) \ast (\theta_f \circ f)(y)$.

Also since θ_f is a (r,l) - f-derivation on X then for all $x, y \in X$.

\[
(\theta'_f \circ \theta_f)(x \ast y) = \theta'_f(\theta_f(x \ast y)) = \theta'_f((f(x) \ast \theta_f(y)) \land (\theta_f(x) \ast f(y))) = \theta'_f(\theta_f(x) \ast f(y))
\]

But θ'_f is a (l,r) - f-derivation on X.

\[
(\theta_f \circ \theta'_f)(x \ast y) = (\theta'_f(f(x)) \ast f(\theta_f(y))) \land (f^2(x) \ast \theta'_f(\theta_f(y))) = (\theta'_f(f(x)) \ast f(\theta_f(y))) = (\theta'_f \circ f)(x) \ast (\theta_f \circ f)(y) = (f \circ \theta'_f)(x) \ast (\theta_f \circ f)(y)
\]

Thus we have for all $x, y \in X$, $(\theta'_f \circ \theta_f)(x \ast y) = (f \circ \theta'_f)(x) \ast (\theta_f \circ f)(y)$.

From (1) and (2) we get for all $x, y \in X$, $(\theta_f \circ \theta'_f)(x \ast y) = (\theta'_f \circ \theta_f)(x \ast y)$.

By putting $y = 0$ we get for all $x \in X$,

\[
(\theta_f \circ \theta'_f)(x) = (\theta'_f \circ \theta_f)(x)
\]

which implies that $(\theta_f \circ \theta'_f) = (\theta'_f \circ \theta_f)$.
Definition 4.6. \(X \) be a BP-algebra and \(\theta_f, \theta'_f \) be two self maps on \(X \). We define \(\theta_f \cdot \theta'_f : X \rightarrow X \) as
\[
(\theta_f \cdot \theta'_f)x = \theta_f(x) \cdot \theta_f(x) \quad \text{for all} \quad x \in X.
\]

Proposition 4.7. \(X \) be a BP-algebra and \(\theta_f, \theta'_f \) are \(f \)-derivations on \(X \). Then
\[
(f \circ \theta'_f) \cdot (\theta_f \circ f) = (\theta_f \circ f) \cdot (f \circ \theta'_f)
\]

Proof: \(X \) be a BP-algebra and \(\theta_f, \theta'_f \) be two derivations on \(X \). Since \(\theta'_f \) is a \((l,r)\) - \(f \)-derivation on \(X \). Then for all \(x,y \in X \).
\[
(\theta_f \circ \theta'_f)(x \cdot y) = \theta_f(\theta'_f(x \cdot y))
\]
\[
= \theta_f(\theta'_f(x) \cdot f(y)) \land (f(x) \cdot \theta'_f(y)))
\]
\[
= \theta_f(\theta'_f(x) \cdot f(y))
\]

But \(\theta_f \) is a \((r,l)\) - \(f \)-derivation on \(X \).
\[
\theta_f(\theta'_f(x) \cdot f(y)) = (f(\theta'_f(x)) \cdot \theta_f(f(y))) \land (\theta_f(\theta'_f(x)) \cdot f^2(y))
\]
\[
= (f(\theta'_f(x)) \cdot \theta_f(f(y)))
\]
\[
= (f \circ \theta'_f)(x) \cdot (f \circ f)(y)
\]
\[
(\theta_f \circ \theta'_f)(x \cdot y) = (f \circ \theta'_f)(x) \cdot (f \circ f)(y) \quad \text{for all} \quad x,y \in X \cdot \cdot \cdot (1)
\]
Also we have that \(\theta'_f \) is a \((r,l)\) - \(f \)-derivation on \(X \), then for all \(x,y \in X \).
\[
(\theta_f \circ \theta'_f)(x \cdot y) = \theta_f(\theta'_f(x \cdot y))
\]
\[
= \theta_f[(f(x) \cdot \theta'_f(y)) \land (\theta'_f(x) \cdot f(y))]
\]
\[
= \theta_f(f(x) \cdot \theta'_f(y))
\]

But \(\theta_f \) is a \((l,r)\) - \(f \)-derivation on \(X \).
\[
\theta_f(f(x) \cdot \theta'_f(y)) = (\theta_f(f(x)) \cdot f(\theta'_f(y))) \land (f^2(x) \cdot \theta_f(\theta'_f(y)))
\]
\[
= (\theta_f(f(x)) \cdot f(\theta'_f(y)))
\]
\[
(\theta_f \circ \theta'_f)(x \cdot y) = (\theta_f \circ f)(x) \cdot (f \circ \theta'_f)(y), \forall x,y \in X \cdot \cdot \cdot (2).
\]
From (1) and (2) we get for all \(x \in X \) (By putting \(y = x \))
\[
(f \circ \theta'_f)(x) \cdot (f \circ f)(x) = (\theta_f \circ f)(x) \cdot (f \circ \theta'_f)(x)
\]
\[
(f \circ \theta'_f) \cdot (f \circ f)(x) = (\theta_f \circ f) \cdot (f \circ \theta'_f)(x)
\]

which implies that \((f \circ \theta'_f) \cdot (f \circ f) = (\theta_f \circ f) \cdot (f \circ \theta'_f) \)

Notation: \(\text{Der}_f (X) \) denotes the set of all \(f \)-derivations on \(X \).
Definition 4.8.
Let $\theta_f, \theta'_f \in \text{Der}_f(X)$. Define the binary operation \wedge as
$$(\theta_f \wedge \theta'_f)(x) = \theta_f(x) \wedge \theta'_f(x).$$

Proposition 4.9.
Let X be a BP-algebra and θ_f, θ'_f are (l,r) - f - derivations on X. Then $\theta_f \wedge \theta'_f$ is also a (l,r) - f - derivation on X.

Proof:
Let X be a BP-algebra and θ_f, θ'_f are (l,r) - f - derivations on X. We have

$$(\theta_f \wedge \theta'_f)(x \ast y) = \theta_f(x \ast y) \wedge \theta'_f(x \ast y)$$

$$= \{(\theta_f(x) \ast f(y)) \wedge (f(x) \ast \theta_f(y))\} \wedge \{(\theta'_f(x) \ast f(y)) \wedge (f(x) \ast \theta'_f(y))\}$$

$$= (\theta_f(x) \ast f(y)) \wedge (\theta'_f(x) \ast f(y))$$

$$= (\theta_f(x) \ast \theta'_f(x)) \ast f(y)$$

$$= (\theta_f(x) \wedge \theta'_f(x)) \ast f(y)$$

$$= (f(x) \ast (\theta_f(x) \wedge \theta'_f(x))) \ast f(y)$$

$$= ((\theta_f \wedge \theta'_f)(x) \ast f(y)) \wedge (f(x) \ast (\theta_f \wedge \theta'_f)(y))$$

This shows that $(\theta_f \wedge \theta'_f)$ is a (l,r) - f - derivation on X. This completes the proof.

In the similar fashion, we can establish the following.

Proposition 4.10.
Let X be a BP-algebra and θ_f, θ'_f are (r,l) - f - derivations on X. Then $\theta_f \wedge \theta'_f$ is also a (r,l) - f - derivation on X.

Theorem 4.11.
If $\theta_f, \theta'_f \in \text{Der}_f(X)$, $\theta_f \wedge \theta'_f \in \text{Der}_f(X)$. Also $(\theta_f \wedge (\theta_f \wedge \theta'_f))(x \ast y) = ((\theta_f \wedge \theta'_f)(x) \wedge (\theta_f \wedge \theta'_f)(y))(x \ast y)$.

Proof:
If $\theta_f, \theta'_f \in \text{Der}_f(X)$, then θ_f is both a (l,r) and a (r,l) derivation. Similarly θ'_f is both a (l,r) and a (r,l) derivation. By proposition (4.9) and (4.10), we observe that $\theta_f \wedge \theta'_f$ is both a (l,r) and a (r,l) derivation. Hence $\theta_f \wedge \theta'_f \in \text{Der}_f(X)$.

www.ijsrp.org
To show the associativity, choose $\theta_f, \theta'_f, \theta''_f \in Der_f (X)$.

\[
((\theta_f \land \theta'_f) \land \theta''_f)(x \ast y) = (\theta_f \land \theta'_f)(x \ast y) \land (\theta''_f)(x \ast y) \\
= ((\theta''_f)(x \ast y)) \ast ((\theta''_f)(x \ast y)) \ast \\
((\theta_f \land \theta'_f)(x \ast y)) \\
= (\theta_f \land \theta'_f)(x \ast y) \\
= (\theta_f)(x \ast y) \land (\theta'_f)(x \ast y) \\
= [(\theta_f(x) \ast f(y)) \land (f(x) \ast \theta_f(y))] \land \\
[(\theta'_f(x) \ast f(y)) \land (f(x) \ast \theta'_f(y))] \\
= (\theta_f(x) \ast f(y)) \land (\theta'_f(x) \ast f(y)) \\
= (\theta_f(x) \ast f(y))
\]

Also,

\[
(\theta_f \land (\theta'_f \land \theta''_f))(x \ast y) = (\theta_f(x \ast y) \land (\theta'_f \land \theta''_f)(x \ast y) \\
= \theta_f(x \ast y) \land [(\theta'_f(x \ast y) \land \theta''_f(x \ast y)] \\
= \theta_f(x \ast y) \land (\theta'_f)(x \ast y) (x \ast (x \ast y) = y) \\
= [(\theta_f(x) \ast f(y)) \land (f(x) \ast \theta_f(y))] \land \\
[(\theta'_f(x) \ast f(y)) \land (f(x) \ast \theta'_f(y))] \\
= (\theta_f(x) \ast f(y)) \land (\theta'_f(x) \ast f(y)) \\
= (\theta_f(x) \ast f(y))
\]

This shows that,

\[
((\theta_f \land \theta'_f) \land \theta''_f)(x \ast y) = (\theta_f \land (\theta'_f \land \theta''_f))(x \ast y)
\]

which implies that \(((\theta_f \land \theta'_f) \land \theta''_f) = (\theta_f \land (\theta'_f \land \theta''_f)

From the above theorem, we conclude that $Der_f (X)$ is closed under the binary composition \land defined in (4.8) which is also associative. Hence we have the following theorem.

Theorem 4.12.

$Der_f (X)$ is a semigroup under the binary composition \land.

ACKNOWLEDGEMENT

Authors are thankful to Dr. M. Chandramouleeswaran, Associate Professor and Head of Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai, for their support and encouragement of our Research work.
REFERENCES

AUTHORS

First Author – Kandaraj N, Associate Professor, Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai.
E-mail address:n.kandarajsbkc1998@gmail.com

Second Author – Arul Devi A, Assistant Professor, Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai.
E-mail address:aruldevika.22@gmail.com