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Abstract

The ability of composite materials to withstand fire is a crucial factor in both construction and manufacturing. For centuries,
different materials have been used to improve the fire-resistance properties of lignocellulosic materials and other composites.
Several fire prediction models have been developed over the years as a result of efforts to model fire behavior, which begins in the
1970s. These models are useful for predicting the fire behavior of materials under different conditions and are helpful for choosing
and refining next-generation fire-retardant materials. This study examines how fire prediction models have changed over the
previous few decades, paying special attention to more recent developments made possible by machine learning (ML) and artificial

intelligence (AI) technologies.
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Introduction

Fire resistance is an important aspect of the materials used in construction and manufacturing [1]. Over the years various
developments have been made in this field. Research has been conducted on lignocellulosic materials as construction materials [2].
Considering the fire-prone behavior of wood, chemicals, barriers, and other methods, such as modification of fibers, are carried out
to improve the fire resistance of lignocellulosic materials [3]. Technologies have been developed to check these improvements in
fire behavior and to analyze the fire resistance properties of wood and wood-based composites through various tests and standards
[1]. In addition to these standard tests, the heat release rate (HRR), limiting oxygen index (LOI), and calorimetry tests also provide

insight into the fire behavior of materials.

Numerous physical and chemical changes happens in wood and its composites under heat or fire [4]. The chemical processes

include softening, melting, pyrolysis, volatilization, growth, and oxidation of char. The physical processes include matrix cracking,
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delamination, internal pressure buildup during volatiles, thermal expansion, and contraction. The heat generated and absorbed from
the breakdown of the polymer matrix, heat conduction through the composite, etc., are thermal processes in the fire event. Most of
these processes are interconnected, and do not occur separately. Studying these changes enables detailed analysis of the fire
resistance and reaction-to-fire characteristics of composite materials [5]. Different fire testing methods have been employed to

evaluate the specific material characteristics that change when exposed to fire.

However, there are some challenges to traditional fire testing. All these tests are performed under laboratory conditions, and are
expensive and time consuming [6]. Laboratory scale or full-scale fire testing is mostly limited to single scenarios, such as current
weather conditions and, ventilation. It is also impossible to predict the fire behavior in different scenarios [7]. If fire-retardant
materials are used, only the test results of the different compositions of these materials can provide insights into the fire resistance

parameters. Furthermore, the composition of the fire retardant was optimized. In addition, fire testing can be harmful or dangerous.

Given the challenges associated with safety, performance under varying fire scenarios, optimization of fire-retardant materials, and
time and cost constraints, fire prediction modelling offers a valuable alternative to address the limitations inherent in conventional
fire testing methods [6]. A fire prediction model simulates different Characteristics of a material in various scenarios and predicts
the fire behavior of the material. Various Machine Learning (ML) algorithms, including Support Vector Machines (SVM),
Convolutional Neural Networks (CNN), and ensemble methods, have been employed to analyze fire behavior in lignocellulosic
materials [8], [9], [10]. It uses physical, computational, and mathematical tools to predict fire behavior in a material. Fire modelling
of composites involves simulating combustion parameters such as limiting oxygen index (LOI), heat release rate (HRR), and total
heat release rate (THRR) [11]. The key challenges in modelling composites in fire are the complexity of the chemical, thermal,
physical, and failure processes of polymer laminates. Some studies have been conducted on the fire modelling of wood-based
composites [12]. Because pyrolysis is an important step in the degradation of lignocellulosic materials, several pyrolysis-based
models have been developed to analyze fire models. However, there are other considerable changes that occur in composites during

fire catching.

In earlier fire prediction models, numerical and analytical methods based on physics and materials science were used. These are
physics-based equations (such as Fourier’s Law, Arrhenius kinetics) and are governed by thermodynamics, heat transfer, and
pyrolysis theory. Finite element methods (FEM) [13], ThermaKin are examples of such models. Analytical and finite element-based
models were increasingly used in the 1970s when carbon fiber materials were used in different applications, and it was necessary to
predict their performance under different fire scenarios, such as the application in the internal lining of solid rocket motors. In the
1990s, glass fiber-based composites required prediction models in various scenarios [1]. Computational Fluid Dynamics modelling)
is another model used for numerical computational methods for predictions [14]. CFD methods have emerged as analytical tools for
fluid flow problems, including fire. These partial differential equations assert conservation of mass, momentum, and energy within
the fire and throughout the space surrounding it [15]. Over the past five decades, many efforts have been made to develop detailed
pyrolysis models that can properly describe the concomitant effects of the main transport phenomena and relevant chemical kinetics.
Di Blasi [16] reviewed the most important achievements in the modelling chemical and physical processes of biomass pyrolysis.
More recently, Anca-Couce [17] highlighted the multi-scale nature of this problem, that is, in pyrolysis, understanding the physical

and chemical changes of the material during the process is very important.

Currently, Artificial Intelligence (Al)/computer-based models are being developed for fire prediction. These are data-driven, based
on machine learning algorithms such as Artificial Neural Network (ANN), SVM, XGBoost [18], and SISSO etc. [19]. These were
trained with historical or material-specific datasets. Currently, ANN networks are widely used for this purpose. It has been suggested
that the integration of optimization techniques with neural networks can lead to better predictive capabilities in the context of

material ignitability [20]. In a recent study, a thermal model for wood pyrolysis that incorporates temperature-dependent
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thermophysical parameters were successfully developed. The Experimental model used finite element software (Abaqus 6.14) and
finite volume software (OpenFOAM 5.0) to simulate the three-dimensional temperature profiles within the wood. This simulation
helps to visualize the change in temperature of the wood during the thermal process [21]. A new computational framework
(bioSMOKE) was developed using OpenFOAM software for advanced simulations of thermal decomposition models. This model

addresses the anisotropic behavior of lignocellulosic materials and how the orientation of fibers affects the thermal behavior [22].

Accurate Fire modelling will be helpful for rapidly assessing the fire resistance of new design options. These models reduce the
need for expensive fire testing. These models can be used to understand the fire behavior of in-use polymers and the development

of new fire-resistant materials. However, experimental backing is required to draw conclusions about these models [1].

In this review paper, the development of fire prediction models throughout the last few decades is discussed from basic numerical

and computational methods to current data-driven AI/ML-based models.
Fire models based on Pyrolysis, Thermal Expansion and other Processes

Pyrolysis is an important aspect that occurs during fire events. Polymer materials degrade and are reduced to carbon residues in this
process. Earlier fire models considered charring as the main change in the material during a fire event. Owing to the limited research
on other material transformations during fire exposure, pyrolysis-based models were predominantly used. Although some additional
fire-related processes have been considered in predictive modelling, these approaches have not gained widespread attention. Some
of these studies include thermal expansion-based models developed by Florio et al. [23], Sullivan et al.[24], McManus and
Springer[25], and volatile flow-based models studied by Henderson et al. [26], [27], Dimitrienko [28], and Boyer & Thomas [29].

Some of the earlier fire models are discussed in this section.

A mathematical model was developed based on Darc’s law of gas flow, mass and energy conservation, and kinetic expressions for
the reaction involved in pyrolysis [30]. Wood samples were heated in a Pyrex reactor, and different heat flux levels of 80 kW/m2
and 130 kW/m2 were applied. Thermocouples assembled in the sample provided data on the change in temperature during pyrolysis.
The developed mathematical model predicted that the temperature profiles and product yield were almost similar to the experimental
data. It is notable that the most accurate prediction comes for low heat flux (80 kW/m2) applications [24]. The post-fire mechanical
properties of the composites of carbon, Glass and Kevlar fibers with epoxy, polyester, and phenolics were analyzed using analytical

equations. In this study, researchers combined the Charred and Un Charred properties of a composite [31].

Numerical modelling of the gas-phase combustion process (ignition, flame spread, and extinction) has been developed to understand
the evolution of gas during combustion and its reaction with solid fuels [32]. The interaction between chemical reactions and

physical processes on thermal degradation is vital for the accurate modelling of combustion using this method.

Kansa et al. [33] developed a one-dimensional mathematical model to simulate the charring pyrolysis of wood. This model includes
various factors of pyrolysis, such as physical properties, time-dependent surface radiant flux, and global Arrhenius reaction. This
model addresses how the direction of the heat flow relative to the wood grain affects the movement of gases within the wood by
incorporating Darcy’s law. The biochar, tar, and gas yields under different pyrolysis conditions were predicted using a simulation
technique [34]. In comparison with the experimental data, this simulation showed high accuracy in the prediction of the pyrolysis
process. The temperature dependence of the reaction rates and their influence on the overall pyrolysis behavior of wood was also

analyzed in this study.

A numerical one direction model used to make a fire model of multilayer wood based composite contain PVC(Polyvinyl chloride)-
Kydex (polymethyl methacrylate-polyvinyl chloride alloy) and wood[35]. Fire scenario in both pyrolysis and combustion are
analyses in this study.
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A detailed computational model showed that the pyrolysis rate of wood primarily depends on the radiant surface temperature and
size of the wood particles. That is, a higher temperature and smaller particles led to faster pyrolysis rates. The moisture content also
has an influence on pyrolysis, but it is secondary compared to the temperature and size of the wood particles. [36]. In another study,
coupled simulations that integrated gas-phase fire phenomena (using computational fluid dynamics (CFD)) with solid pyrolysis
were developed [37]. This dual approach allows for a more comprehensive understanding of the fire dynamics involving polymer

composites.

A numerical model has been developed based on 3D finite element model for cross laminated panels (CLT) [38]. Abaqus software
was employed for this study and user subroutine (custom routine for specialized task) “Umatht” has been implemented in Abaqus.
Predicted results verified the effectiveness of “Umatht”. A constitutive model (Wood>T) developed by combining various mechanics
based submodels used for making mechanical and fire prediction model [39]. This model is capable of simulating themo-mechanical

response by fire and force on LVL beam and glulam connection. Modeling and testing results show only 10% difference.

An open-source platform OpenSees used for modelling of timber structures under realistic fire conditions [40]. Developed model
has been validated by testing on cross laminated timber beams under ambient temperature and fire furnace. A concrete - timber
composite also used for experiment in this model and OpenSees shows the suitability of making such models for timber-based

construction materials.

Pyrolysis and fire behaviour of different wood composites like Oriented strand board (OSB), Plywood, particle board (PB), Low
density fiber board (LDF), Medium-density fiber board (MDF) and high-density fiber board (HDF) are studied [41]. Cone
calorimetry testing data of these composites are used to make a CFD fire modelling. Numerical, Kinetic model-based experiments

based on TGA result are also conducted.

It is suggested that moisture content, wood density, and temperature are key parameters in the burning behavior of wood. Various
scenarios were created to evaluate the effects of these parameters and changes in the combustion process. The simulation process
was supported by experimental data [42]. Many previous models have not considered the variability and diversity of lignocellulosic

materials that are inherently or process-induced [43].

Al, ML and other data driven Models

Artificial Intelligence and machine learning have been incorporated into different fields of scientific studies. Biology [44], Forest
Fire prediction [45][46][47] etc., are some of the areas where Al has been successfully studied. Nguyen et al. [8] compiled the use
of artificial intelligence and ANN to predict the performance of different construction materials, such as concrete [48], steel[49][50],
and timber [51] etc. There have been some studies on fire modelling of lignocellulosic and lignocellulose-based composite materials.
A Coupled fire structure model combining finite volume and finite element models to predict the structural performance of flax-PP-
based beams has shown promising results [52]. Theoretical models of fire behavior on natural fibers have recently been developed

[53].

An Artificial neural network (ANN) was developed to predict the decomposition behavior of rice husk sewage sludge during co-
pyrolysis [54]. The TGA data were used to analyze the energy change during co-pyrolysis, such as enthalpy, Gibbs free energy, and
change in entropy. The Coasts-Redfern method was employed to analyze the kinetic parameters of the co-pyrolysis process. In this
method, the activation energy is calculated using mass loss data. Statistical data showing the reliability of artificial neural networks

(ANNSs) in predicting mass loss during co-pyrolysis.
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A Two-fluid model (TFM) with predictions from a finite element method (FEM) simulation of heat and mass transfer and chemical
reactions within pine pellet biomass particles was studied [55]. The experimental pyrolizer consisted of a fluidized bed reactor
(FBR). combined TFM and FEM simulation results to predict net bio-oil and char yields in a reactor that align with the outcome of
experimental observations [55]. Fire dynamics were simulated using “PyroSim,” which is a GUI (Graphical user interface), for
computational fluid dynamics (CFD) solver “Fire Dynamics Simulator” (FDS) developed by th e National Institute of Standards
and Technology (NIST), USA.

Integrated multiscale fluid bed pyrolysis model
=

Product yields

%
G

Bio-oil

Reactor scale model
Particle scale model

Pic 1: Graphical representation of FBR method used by Pecha et.al 2018

A self-enforcing deep neural network (SDNN) has been developed to predict the flammability of flame retardants in epoxy resins
[19]. Limiting oxygen index (LOI), Peak Heat Release Rate (PHHR), and Total Heat Release Rate (THR) were used as parameters
for this study. In this study, a small dataset was used for evaluation. Chen et al. [56] employed the SISSO algorithm to screen the
performance of a flame retardant in a PP-based composite. Different Halogenated and Non-halogenated Fire retardants and
parameters such as LOI were used for the analysis. The results show that data-driven analyses will be helpful in the optimization of
flame-retardant use. Another study based on Machine learning showed how historical data analysis of LOI of epoxy resin-based

composite can predict the performance of organo-phosphorus based fire retardants [57].

Machine learning algorithms are also used to predict the flame retardancy index based on cone calorimetry data, such as THR,
pHHR, and Time to Ignition (TTI) [58]. The flame-retardancy index is a value based on a calculation that includes the above-
mentioned parameters[59]. different types of algorithms were used simultaneously for analysis in this experiment. A mechanistic
model was developed to predict the behavior of epoxy-based glass fiber composite materials under fire-loading conditions [60].
This model was combined with a standard diffusion model for heat transfer in the composite to predict the time-dependent failure
of composites subjected to simultaneous one-sided heat flux and compression loading. Khalvandi et al. [61] employed a Deep neural
network to predict the fire behavior of eco-friendly composites made of Abaca fibers. Predictions by this model of the heat release

rate and total smoke production showed excellent results and effectiveness of the DNN network.

ANSYS commercial FEM software was used to simulate various physical phenomena of fire, such as the mass loss rate, HRR and
THR of Vinyl ester-based glass fiber composites. It is Important to note that this is a three-dimensional model [62]. A heat-transfer
modelling developed to predict the behavior of fiber-reinforced polymer-based structures under simultaneous fire and mechanical
loads [63]. All these data-driven models show the potential of AL, Machine learning, and other methods to analyze the fire behavior

of composites.
Conclusion

AI/ML methods have become important in scientific studies. Only a few studies have been conducted on Fire prediction models for
lignocellulose-based composites using these techniques. Some studies have reported promising results. However, various studies
have been conducted in earlier numerical-computational method-based studies. Similar to any new technology, it may take its own

time to be adopted by a large number of scientists. Fire prediction models will be helpful for researchers to analyze the performance
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10.29322/1JSRP.15.09.2025.p16534 Www.ijsrp.org


http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 15, Issue 9, September 2025 292
ISSN 2250-3153

of fire retardance, its optimization, and the combination of different fire retardants and matrices. It is suggested that the
interpretability of ML models in natural fiber composites can hinder their practical use [64] and the effectiveness of ML models is

constrained by the availability and quality of training data, which is necessary for better predictions [65].
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