
International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 1
ISSN 2250-3153

www.ijsrp.org

English & Persian Document Categorization based on a

Novel Hybrid Algorithm

Vahid Behravesh
1
, S.M.R. Farshchi

2

* Department of Electrical Engineering, Islamic Azad University, Bardaskan Branch, Bardaskan, Iran

** Department of Electrical Engineering, Islamic Azad University, Bardaskan Branch, Bardaskan, Iran

 Abstract- This paper describes automatic document

categorization based on large text hierarchy. We handle the large

number of features and training examples by taking into account

hierarchical structure of examples and using feature selection for

large text data. We experimentally evaluate feature subset

selection on real-world text data collected from the existing Web

hierarchy named Yahoo. In our learning experiments naive

Bayesian classifier was used on text data using feature vector

document representation that includes word sequences (n-grams)

instead of just single words (unigrams). Experimental evaluation

on real-world data collected form the Web shows that our

approach gives promising results and can potentially be used for

document categorization on the Web. Additionally the best result

on our data is achieved for relatively small feature subset, while

for larger subset the performance substantially drops. The best

performance among six tested feature scoring measure was

achieved by the feature scoring measure called Odds ratio that is

known from information retrieval.

 Index Terms- text mining; text related mining; vector based

normalization; text categorizer

I. INTRODUCTION

n the last 10 years content-based document management tasks

(collectively known as information retrieval—IR) have gained

a prominent status in the information systems field, due to the

increased availability of documents in digital form and the

ensuing need to access them in flexible ways. Text categorization

(TC — a.k.a. Text classification, or topic spotting), the activity

of labeling natural language hierarchical catalogues of Web

resources, and in general any application requiring document

organization or selective and adaptive document dispatching.

 Until the late 80's the most popular approach to TC, at least

in the ―operational‖ (i.e., real-world applications) community,

was a knowledge engineering (KE) one, consisting in manually

defining a set of rules encoding expert knowledge on how to

classify documents under the given categories. In the 90's this

approach has increasingly lost popularity (especially in the

research community) in favor of the machine learning (ML)

paradigm, according to which a general inductive process

automatically builds an automatic text classifier by learning,

from a set of preclassified documents, the characteristics of the

categories of interest. The advantages of this approach are

accuracy comparable to that achieved by human experts, and a

considerable savings in terms of expert labor power, since no

intervention from either knowledge engineers or domain experts

is needed for the construction of the classifier or for its porting to

a different set of categories. It is the ML approach to TC that this

paper concentrates on.

 Current-day TC is thus a discipline at the crossroads of ML

and IR, and as such it shares a number of characteristics with

other tasks such as information / knowledge extraction from texts

and text mining [1]. There is still considerable debate on where

the exact border between these disciplines lies, and the

terminology is still evolving. ―Text mining‖ is increasingly being

used to denote all the tasks that, by analyzing large quantities of

text and detecting usage patterns, try to extract probably useful

(although only probably correct) information. According to this

view, TC is an instance of text mining.

 TC enjoys quite a rich literature now, but this is still fairly

scattered. Although two international journals have devoted

special issues to this topic [2-3], there are no systematic

treatments of the subject: there are neither textbooks nor journals

entirely devoted to TC yet, and Manning and Schutze [4] is the

only chapter-length treatment of the subject. As a note, we

should warn the reader that the term ―automatic text

classification‖ has sometimes been used in the literature to mean

things quite different from the ones discussed here. Aside from

(i) the automatic assignment of documents to a predefined set of

categories, which is the main topic of this paper, the term has

also been used to mean (ii) the automatic identification of such a

set of categories (e.g.,[5]), or (iii) the automatic identification of

such a set of categories and the grouping of documents under

them (e.g., Merkl at [6]), a task usually called text clustering, or

(iv) any activity of placing text items into groups, a task that has

thus both TC and text clustering as particular instances [7].

 A number of statistical classification and machine learning

techniques has been applied to text categorization, including

regression models, nearest neighbor classifiers, decision trees,

Bayesian classifiers, Support Vector Machines (SVM), rule

learning algorithms, relevance feedback, voted classification, and

neural networks.

 Document classification, requires encoding Persian &

English documents into numerical vectors. A corpus which is a

collection of documents is mapped into a list of words as the

feature candidates. Among the candidates, only some are selected

as the features. For each document, a numerical value is assigned

to each of the selected features, depending on the importance and

presence of each feature. However, encoding documents so

causes the two main problems: huge dimensionality and sparse

distribution [6].

 In order to solve the two main problems, this research uses

the novel method that documents should be encoded into string

vectors. A string vector refers to a finite set of strings which are

I

International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 2

ISSN 2250-3153

www.ijsrp.org

words in context of a natural language. In numerical vectors

representing documents, words are given as features, while in

string vectors, words are given as feature values. Features of

string vectors are defined very variously as properties of words

with respect to their posting, lexical category, and statistical

properties, but in this research, the highest frequent word, the

second highest frequent one, and so on are defined as features of

string vectors for easy implementation.

 By encoding documents into string vectors, we can avoid

completely the two main problems: huge dimensionality and

sparse distribution.

 We proposed the competitive neural text categorizer, as the

approach to text categorization and proposed the application of it

to multi-language documents categorization. Before creating the

proposed neural network, traditional neural networks, such as

MLP (Multi Layers Perceptron) with BP (Back Propagation)

receives numerical vectors as its input data. Differently from the

traditional neural networks, the proposed neural network receives

string vectors. It has the two layers as its architecture: the input

layer and the competitive layer. It is expected for the proposed

model to improve the performance of multi-language text

categorization by solving the two main problems.

 This paper is organized as follows. In Section 2 we formally

define TC and we review its most important and popular

applications. Section 3 describes the main ideas of proposed

neural network. The simulation result and experiment was

mentioned in section 4. Section 5 concludes, discussing open

issues and possible avenues of further research for TC.

II. TEXT CATEGORIZATION

a) Formal Description

 Text Categorization is the task of assigning a Boolean value

to each pair
CDicjd  ,

, where D is a domain of

documents and
},...,,{ ||ccccC 21

 is a set of predefined

categories. A value of T assigned to
 icjd ,

indicates a

decision to file jd
under ic

while a value of F indicates a

decision not to file jd
under ic

. More formally the task is to

approximate the unknown target function
},{: FTCD  (that describes how documents ought to be

classified) by means of a function
},,{: FTCD 

called

the classifier.

b) Related Work

 In this section, we will survey previous works relevant to

this research, and point out their limitations. There exist other

kinds of approaches to text categorization than machine learning

based ones: heuristic and rule based approaches. Heuristic

approaches were already applied to early commercial text

categorization systems [9]. However, we count out the kind of

approaches in our exploration, since they are rule of thumbs.

Since rule based approaches have poor recall and require a time

consuming job of building rules manually as mentioned in the

previous section, they are not covered in this article, either.

Therefore, this article counts only machine learning based

approaches to text categorization considered as state of the art

ones.

 Typical machine learning algorithms applied traditionally

to text categorization are KNN (K Nearest Neighbor), NB (Naïve

Bayes), SVM (Support Vector Machine), and BP (Back

Propagation). The four approaches to text categorization have

been used more popularly in previous literatures on text

categorization than any other traditional approaches. Among

them, the simplest approach is KNN. KNN is a classification

algorithm where objects are classified by voting several labeled

training examples with their smallest distance from each object.

KNN was initially applied to classification of news articles by

Massand et al, in 1992 [13]. Yang compared 12 approaches to

text categorization with each other, and judged that KNN is one

of recommendable approaches, in 1999 [21]. KNN is evaluated as

a simple and competitive algorithm with Support Vector

Machine for implementing text categorization systems by

Sebastiani in 2002 [19]. Its disadvantage is that KNN costs very

much time for classifying objects, given a large number of

training examples because it should select some of them by

computing the distance of each test object with all of the training

examples.

 Another popular and traditional approach to text

categorization is NB. Differently from KNN, it learns training

examples in advance before given unseen examples. It classifies

documents based on prior probabilities of categories and

probabilities that attribute values belong to categories. The

assumption that attributes are independent of each other underlies

on this approach. Although this assumption violates the fact that

attributes are dependent on each other, its performance is feasible

in text categorization [14]. Naïve Bayes is used popularly not

only for text categorization, but also for any other classification

problems, since its learning is fast and simple [4].

 In 1997, Mitchell presented a case of applying NB to text

categorization in his textbook [14]. He asserted that NB was a

feasible approach to text categorization, although attributes of

numerical vectors representing documents were dependent on

each other; this fact contradicts with the assumption underlying

in NB. In 1999, Mladenic and Grobellink evaluated feature

selection methods within the application of Naïve Bayes to text

categorization [15]. Their work implied that NB is one of

standard and popular approaches to text categorization.

Androutsopoulos et al adopted NB for implementing a Spam mail

filtering system as a real system based on text categorization in

2000 [1]. It requires encoding documents into numerical vectors

for using NB to text categorization.

 Another popular and traditional approach to text

categorization is SVM. Recently, this machine learning algorithm

becomes more popular than the two previous machine learning

algorithms. Its idea is derived from a linear classifier,

Perceptron, which is an early neural network. Since the neural

network classifies objects by defining a hyper-plane as a

boundary of classes, it is applicable to only linearly separable

distribution of training examples. The idea of SVM is that if a

distribution of training examples is not linearly separable, these

examples are mapped into another space where their distribution

International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 3

ISSN 2250-3153

www.ijsrp.org

is linearly separable, as illustrated in the left side of figure 1.

SVM optimizes the weights of the inner products of training

examples and its input vector, called Lagrange multipliers [2],

instead of those of its input vector, itself, as its learning process.

It defines two hyper-planes as a boundary of two classes with a

maximal margin, as illustrated in the left side of figure 1. Refer

to [8] or [2], for more detail description on SVM.

 The advantage of SVM is that it is tolerant to huge

dimensionality of numerical vectors; it addresses the first

problem. Its advantage leads to make it very popular not only in

text categorization, but also any other classification problems [2].

In 1998, it was initially applied to text categorization by

Joachims [10]. He validated the classification performance of

SVM in text categorization by comparing it with KNN and NB.

Drucker et al adopted SVM for implementing a Spam mail

filtering system and compared it with NB in implementing the

system in 1999 [3]. They asserted empirically that SVM was the

better approach to Spam mail filtering than NB. In 2000,

Cristianini and Shawe-Taylor presented a case of applying SVM

to text categorization in their textbook [2]. In 2002, Sebastiani

asserted in his survey paper that SVM is most recommendable

approach to text categorization by collecting experimental results

on the comparison of SVM with other approaches from previous

works [19]. In spite of the advantage of SVM, it has two

demerits. One is that it is applicable to only binary classification;

if a multiple classification problem is given, it should be

decomposed into several binary classification problems for using

SVM. The other is that it is fragile to the problem in representing

documents into numerical vectors, sparse distribution, since the

inner products of its input vector and training examples generates

zero values very frequently.

 The third popular and traditional approach to text

categorization is BP. It is most popular supervised neural

network and used for not only classification tasks but also

nonlinear regression tasks [6]. It is also derived Perceptron,

together with SVM. When a distribution of training examples is

not linearly separable, in SVM, the given space is changed into

another space where the distribution is linearly separable,

whereas in back propagation, a quadratic boundary is defined by

adding one more layer, called hidden layer [7][6], as illustrated in

the right side of figure 1. More detail explanation about back

propagation is included in [7] or [6].

Figure 1. Mapping Vector Space in SVM.

 In 1995, BP was initially applied to text categorization by

Wiener in his master thesis [20]. He used Reuter 21578 [24] as

the test bed for evaluating the approach to text categorization and

shown that back propagation is better than KNN in the context of

classification performance. In 2002, Ruiz and Srinivasan applied

continually back propagation to text categorization [18]. They

used a hierarchical combination of BPs, called HME

(Hierarchical Mixture of Experts), to text categorization, instead

of a single BP. They compared HME of BPs with a flat

combination of BPs, and observed that HME is the better

combination of BPs. Since BP learns training examples very

slowly, it is not practical, in spite of its broad applicability and

high accuracy, for implementing a text categorization system

where training time is critical.

 Research on machine learning based approaches to text

categorization has been progressed very much, and they have

been surveyed and evaluated systematically. In 1999, Yang

evaluated 12 approaches to text categorization including machine

learning based approaches directly or indirectly in text

categorization [21]. She judged the three approaches, LLSF

(Linear Least Square Fit), K Nearest Neighbor, and Perceptron,

worked best for text categorization. In 2002, Sebastiani surveyed

and evaluated more than ten machine learning based approaches

to text categorization [19]. He asserted that Support Vector

Machine is best approach to text categorization with respect to

classification performance. All approaches which were surveyed

and evaluated in these literatures require encoding documents

into numerical vectors in spite of the two problems.

 We explored and presented previous cases of applying one

of the four traditional machine learning algorithms to text

categorization. Although the traditional approaches are feasible

to text categorization, they accompany with the two main

problems from representing documents into numerical vectors. In

the previous works, dimension of numerical vectors should

reserve, at least, several hundred for the robustness of text

categorization systems. In order to mitigate the second problem,

sparse distribution, a task of text categorization was decomposed

into binary classification tasks in applying one of the traditional

approaches. This requires classifiers as many as predefined

categories, and each classifier judges whether an unseen

document belongs to its corresponding category or not.

 There is a previous trial to solve the two problems. In 2002,

Lodhi et al proposed a string kernel for applying Support Vector

Machine to text categorization [11]. In their solution, documents

as raw data are used directly for text categorization without

representing them into numerical vectors. String kernel is a

function computing an inner product between two documents

given as two long strings. An additional advantage of the

solution is to process documents independently of a natural

language in which documents are written. However, their

solution was not successful in that it took far more time for

computing string kernel of two documents and the version of

SVM using the string kernel was not better than the traditional

version.

 As presented in section 5, this research will be a successful

attempt to solve the two problems by proposing competitive text

classifier with string vectors.

III. STRATEGIES OF ENCODING DOCUMENTS

 Since documents are unstructured data by themselves, they

cannot be processed directly by computers. They need to be

encoded into structured data for processing them for text

categorization. This section will describe the two strategies of

International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 4

ISSN 2250-3153

www.ijsrp.org

encoding documents with the two subsections: the traditional

strategy and the proposed strategy. The first subsection describes

the former and points out its demerits, and the second subsection

describes the latter and mentions its merits.

a) Numerical Vector

 A traditional strategy of encoding documents for tasks of

text mining, such as text categorization is to represent them into

numerical vectors. Since input vectors and weight vectors of

traditional neural networks such as back propagation and RBF

(Radial Basis Function) are given as numerical vectors, each

document should be transformed into a numerical vector for

using them for text categorization. Therefore, this subsection will

describe the process of encoding documents into numerical

vectors and what are their attributes and values.

 Figure 2 illustrates the process of extracting feature

candidates for numerical vectors from documents. If more than

two documents are given as the input, all strings of documents

are concatenated into a long string. The first step of this process

is tokenization where the string is segmented into tokens by

white space and punctuations. In the second step, each token is

stemmed into its root form; for example, a verb in its past is

transformed into its root form, and a noun in its plural form is

transformed into its singular form. Words which function only

grammatically with regardless of a content are called stop words

[5], and they correspond to articles, conjunctions, or pronouns. In

the third step, stop words are removed for processing documents

more efficiently and reliably for text categorization. Through the

three steps illustrated in figure 2, a collection of words are

generated as feature candidates.

Figure 2. Flowchart of feature extraction of documents.

 Since the number of the generated feature candidates is

usually too big, using all of them is not feasible as features of

numerical vectors. Therefore, only some of them are used as

features of numerical vectors for efficiency. A scheme of

defining criteria for selecting some of them as features is called

feature selection method [15]. Generally, features are selected

from the generated collection by their frequencies in the corpus.

Therefore, candidates with highest frequencies are used as

features of numerical vectors. The number of selected candidates

as features becomes the dimension of numerical vectors. There

are other feature selection methods than the frequency based one,

and they are described in detail in [15] and [19]. However,

although only some of the candidates are used as features, the

number of features is still large for robust text categorization.

 The selected features are given as attributes of numerical

vectors and numerical information about attributes become

elements of numerical vectors. In this article, we mention the

three ways of defining elements as the representative ones,

although others may exist. The first way is to assign a binary

value indicating absence or presence of the corresponding word

in the given document; one indicates its presence and zero

indicates its absence. The second way is to define elements as

frequencies of corresponding words in the given document; the

elements become integers which are greater than or equal to zero.

The third way is to assign weights computed from equation (1) to

elements of numerical vectors; elements are real values.

(1) 1))df(wLogD(wk)(logtf)W(w k22ik 

Where
)(wktf i is the frequency of words, kw

, D is the total

number of document categories in corpus.

 As we mentioned above, the process, indexing, is the

conversion of text into a list of words as structured form. In this

process, a text is given as the input. A string of the text is

partitioned into tokens by white space and punctuation mark.

Each token is to the basic form based on stemming rules; the

word, ―studied‖ is transformed to the basic form, ―study‖, and

the plural form of a noun is changed to its singular form. Among

them, stop words, which function only grammatically and are

irrelevant with the content of the text, are removed after

stemming step.

 The collection of texts is also transformed into a bag of

words by applying the union operation to all texts. Among union

of bags of words, words with higher frequency are selected as

attributes of numerical vector, since stop words with higher

frequency are removed in the process of indexing texts. If a text

is represented into a numerical vector, its attributes are selected

words and their values are binary value indicating the presence of

the word corresponding to the attribute, integer indicating its

frequency in the text, or real value indicating its weight. This

article adopted the numerical vector representing a text with

binary values.

 Note that numerical vectors encoding documents have two

main problems as mentioned in section 1. The first problem is

that the dimension of numerical vectors is still large. This

problems leads to high cost of time for processing each encoded

document for training a classifier and to requirement of a very

large number of training examples proportionally to the

dimension. The second problem is that each numerical vector

includes zero values, dominantly. Since the discrimination

among numerical vectors over categories is lost, categorization

performance is degraded.

b) String Vector

 An alternative strategy of encoding documents for text

categorization is to represent them into string vectors. In this

subsection, we describe this strategy and its advantage in detail.

However, this strategy is applicable to only proposed competitive

neural text categorizer, while the previous one is applicable to

any traditional machine learning algorithm.

International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 5

ISSN 2250-3153

www.ijsrp.org

 A string vector is defined as a finite ordered set of words.

In other words, a string vector is a vector whose elements are

words, instead of numerical values. Note that a string vector is

different from a bag of words, although both of them are similar

as each other in their appearance. A bag of words is an infinite

unordered set of words; the number of words is variable and they

are independent of their positions. In string vectors, words are

dependent on their positions as elements, since words correspond

to their features. Features of string vectors will be described in

detail in the next paragraph.

 Features of string vectors are defined as properties of words

to the given document. The features are classified into the three

types: linguistic features, statistical features, and positional

features. Linguistic features are features defined based on

linguistic knowledge about words in the given document: the

first or last noun, verb, and adjective, in a paragraph, title, or full

text. Statistical features are features defined based statistical

properties of words in the given documents; the highest frequent

word and the highest weighted word using equation (1).

Positional features are features defined based on positions of

words in a paragraph or the full text: a random word in the first

or last sentence or paragraph, or the full text. We can define

features of string vectors by combining some of the three types,

such as the first noun in the first sentence, the highest frequent

noun in the first paragraph, and so on.

 We can define features of string vectors in various ways as

mentioned above, but in this work, features of string vectors are

defined based on only frequencies of words for implementing

easily and simply the module of encoding documents into string

vectors (see follow). A formal description of string vector is

defined as a set of words which is ordered and has its fixed size.

It is denoted by where denotes by
],...,,[dsss 21 where

is
denotes a string, and there are d elements. For example,

[computer system information] is an instance of a three

dimensional string vector. Note that the string vector, [computer

system information] is different from the string vector [system

computer information], since elements are dependent on their

positions like the case in every numerical vector.

 Properties of words may be set as features of string vectors.

Features of string vectors are defined in one or combined one of

three views. In the first views, features are defined based on

posting information of words: a random word in the first

sentence, a random word in the last sentence, and a random word

in the first paragraph. In the second view, they are defined based

on linguistic properties of words, such as first noun, first verb,

last noun, and last verb. In the third view, they are defined based

on their frequencies, such as the most frequent word, the second

most frequent word, and the third most frequent word, and so on.

As we mentioned above, in this research, the third way of

defining features of string vectors is adopted; a strong vector

consists of words in the descending order of their frequencies.

The reason of defining features of string vectors so is to

implement easily and simply the encoder of a text clustering

system.

 When representing documents into string vectors, their

sizes are fixed with d, and it is called the dimension of string

vectors. A d dimensional string vector consists of d words in the

descending order of their frequencies in the given entire full text;

the first element is the highest frequent word, the second element

is the second highest frequent word, and the last element is the d

the highest frequent word. Figure 3 illustrates the process of

encoding a document into its string vector with the simple

definition of features. In the first step of figure 3, a document is

indexed into a list of words and their frequencies. Its detail

process of the first step is illustrated in figure 3. If the dimension

of string vectors is set to d, d highest frequent words are selected

from the list, in the second step. In the third step, the selected

words are sorted in the descending order of their frequencies.

This ordered list of words becomes a string vector representing

the document given as the input.

Figure 3. The process of mapping a document into a string

vector [2].

 Table 1 illustrate differences between string vectors and

numerical vectors. The first difference is that numerical values

are given as elements in numerical vectors, while strings are

given as elements in string vectors. The second difference is that

the similarity measure between two numerical vectors is the

cosine similarity or the Euclidean distance, while that between

two string vectors is the semantic average similarity. The third

difference between the two types of structured data is that

features for encoding documents into numerical vectors are

words, while those for encoding them into string vectors are

statistical linguistic and posting properties of words. Therefore, a

string vector is the vector where numerical values are replaced by

strings in a numerical vector.

Table 1．Numerical vectors versus string vectors

 Numerical Vector String Vector

Element Numerical value String

Similarity

Measure

Inner products,

Euclidean distance

Semantics

similarity

Attributes Words Property of words

 The differences between string vectors and bags of words

are illustrated in table 2. Both types of structured data have

strings as their elements. As the similarity measure, cardinality of

intersection of two bags of words is used while the average

semantic similarity is used in string vectors. A bag of words is

defined as an unordered infinite set of words, while a string

International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 6

ISSN 2250-3153

www.ijsrp.org

vector is defined as an ordered finite set of words. Although a

bag of words and a string vector look similar as each other, they

should be distinguished from each other, based on table 2.

Table 2. Bag of words versus string vectors

 Numerical Vector String Vector

Element String

Similarity

measure

Number of shared

words

Semantics

similarity

Set Unordered infinite set Ordered finite set

 We use an inverted index is used as the basis for the

operation on string vectors as expressed in equation (4). An

inverted index is defined as a list of words each of which is

linked with a list of documents including it. A list of words is

implemented with a hash table, while a list of documents which

including a word is implemented with an array. A semantic

similarity between two words is computed based on a number of

documents where both words are collocated with each other. The

more documents including both words, the higher semantic

similarity between them is. From the inverted index, two lists of

document identifiers corresponding to the two words are

retrieved. The intersection is taken from the two lists of

document identifiers as a list of documents including both words.

In the next section we define the Semantic similarity.

c) Semantic Similarity

 The proposed text categorizer needs to compute the

similarity between two string vectors and update a weight vector.

Weight vectors are updated by substituting its elements by inter-

words (see [31]). So it is necessary to define operations on string

vectors. This section will describe two operators necessary for

training. A similarity matrix should be built from the given

collection of texts before defining two operators on string

vectors. Each entry in the matrix indicates the semantic similarity

between two words based on their collocation and weights in a

text.

 The similarity matrix is defined word by word from the

given collection of texts [33]. It is expressed by the symmetry

function and square matrix shown in equation (2).





















NNNN

N

N

N

sss

s

sss

sss

S

...

.........

...

...

21

3

22221

11211

),(jijiij ttsimss 

(2)

 An element,
,ijs
of the similarity matrix, S, indicates the

similarity between two words, it and jt
. It is computed by

equation (3) (see [32]).

 



 









i j

ji

ji

ji

Dd Dd

dd

DDd

dd

ij
ww

ww

s

)(

(3)

 where iD
is the set of documents including the word,

ji Dt ,
is the set of documents including the word jt

, idw
is the

weight of the word,
,it in document, d and jdw

 is the weight of

the word,
,jt
 in document, d. As illustrated in the equation (3),

the similarity between two words is based on their collocation in

same document.

 If a similarity matrix is built from the corpus with equation

(2), we can compute the similarity between two string vectors,

denoted by
],...,,[21 idiii tttx 

and
].,...,,[21 jdjjj tttx 

The

similarity
),(jkik ttsim
 between two words, ikt

and jkt
is indicated

by the entry, ijs
of the row and column corresponding to such

words or its reverse, ijs
in the similarity matrix. The similarity

between two string vectors ix
and jx

denoted by
),(ji xxsim

is

computed by equation (4).






d

k

jkikji ttsim
d

xxsim

1

),(
1

),(

(4)

 Given two words it and jt
. An inter-word tk is a word

presenting a higher similarity to both it and jt
than the similarity

between it and
.jt
Such similarity is defined by the similarity

matrix built from the given corpus. First, we find the similarity

between two words from the similarity matrix to find inter-words

between them. And we extract words with higher similarity with

both of them from the similarity matrix. The set of inter-words

between two words denoted by it and
,jt
denoted by ijI

is

expressed by equation (5).

),(),(),(),(|{

),(

ijkjjikikk

jiij

ttsttsttsttstt

ttII





(5)

IV. COMPETITIVE NEURAL TEXT CATEGORIZER

 This section describes the proposed competitive neural

network, in detail, with respect to its architecture, training,

classification, and properties.

 The Self-Organizing Map (SOM), [28] proposed by

Kohonen, provides a competitive learning principle of nodes

such that adjacent nodes tend to have similar weight vectors. The

SOM is an artificial neural network model that is well suited for

mapping high- dimensional data into a two-dimensional

representation space. The training process is based on the weight

vector adoption with respect to the input vectors. The SOM has

International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 7

ISSN 2250-3153

www.ijsrp.org

shown to be a highly effective tool for data visualization in a

broad spectrum of application domains. Especially the utilization

of the SOM for information retrieval purposes in large free form

document collections has gained wide interest in the last few

years. The general idea is to display the contents of a document

library by representing similar documents in similar regions of

the map. Without knowledge of the type of and the organization

of the documents it is difficult to get satisfying results without

multiple training runs using different parameter settings, which

obviously is extremely time consuming given the high-

dimensional data representation.

 In contrast to another traditional neural network model

[30], the main characteristics of SOM are two-fold, namely

dimension reduction and topology preservation. Using SOM, a

high-dimensional data space will be mapped to some low-

dimensional space [27]. SOMs have recently been used to

archive over 7 million documents [26]. Not only have SOMs

been shown to scale up to very large document collections, these

maps also allow for a novel mode of navigating through a large

collection of text documents. As we mentioned above, the entire

text collection is presented to a user as a two-dimensional map,

where each node in the map is associated to a set of documents

that are likely to be composed of similar terms and phrases. In

addition to the classification of documents at the node level there

is also classification of nodes. That is, the closer two nodes are in

the map, the more similar are their associated documents.

 While many studies have been devoted to automatic

document clustering, our work is based on the rule learning

approach. This approach generates a set of classification rules

from labeled (pre-classified) training data. The greatest

advantage of using rules is its comprehensibility. Rules are

relatively easy to understand and modify. Thus, it is particularly

helpful for end users to organize personalized URL repositories

(bookmarks or hotlists).

 As a baseline algorithm, we used the rule learning

algorithm RIPPER (Repeated Incremental Pruning to Produce

Error Reduction) [1],[2]. RIPPER is an efficient, noise-tolerant

rule learning algorithm based on the separate-and-conquer

strategy, and its algorithm is summarized as follows. The training

data is partitioned into two subsets, a growing set and a pruning

set. Using these two subsets, RIPPER builds up a rule set by

repeatedly adding rules to an empty rule set. The rule-growing

algorithm begins with an empty conditions, and greedily adds

conditions until the rule no longer makes incorrect prediction on

the growing set. Here, each condition represents the appearance

of a particular word w in a document d. Next, the learned rule is

simplified by deleting conditions so as to improve performance

of the rule on the pruning set. All examples covered by the

formed rule are then removed from the training set and a new

rule is learned in the same way until all examples are covered by

the rule set.

 An example of a rule set constructed by RIPPER is below

(using Prolog-like notation):

Painting :- WORDS ~ "watercolor".

Painting :- WORDS ~ "art", WORDS ~ "museum".

Painting :- WORDS ~ "author", WORDS ~ "picture".

 This rule set means that a document d is considered to be in

the category "Painting" if and only if

(word "watercolor" appears in d) OR

(word "art" appears in d AND word "museum" appears in d) OR

(word "author" appears in d AND word "picture" appears in d).

 That is, rule conditions checks whether a keyword (e.g.

"watercolor", "art", "museum", etc.) appears in a document.

 One weakness with the RIPPER algorithm is that it does

not create a condition for a keyword which appears in more than

two categories. To take a simple example, let us consider

document categories: "Painting", "Photography" and "Sports". In

the training data, the word "gallery" may occur frequently in

categories "Painting" and "Photography". Thus, the following

rules are never created because these rules contradict each other.

Painting :- WORDS ~ "gallery".

Photography :- WORDS ~ "gallery".

 However, an appearance of the word "gallery" strongly

indicates that the document is not the "Sports" category but it is

the "Painting" category or the "Photography" category. In order

to achieve high-precision document categorization, it is desirable

to use as many keywords as possible.

 To avoid the problem, we extended the RIPPER algorithm

to automatically introduce hierarchical categories in a rule set.

We describe how the extended algorithm works by taking a

simple example. First, in the rule growing phase, a rule is grown

by simply adding conditions using the growing set. This phase

may create contradictory rules. Assume here that the following

rule set is created:

Painting :- WORDS ~ "gallery".

Painting :- WORDS ~ "watercolor".

Photography :- WORDS ~ "gallery".

Photography :- WORDS ~ "photo".

 In this rule set, the first and third rules are contradictory.

Then, we examine the frequencies

 Freq(gallery, Painting)

 Freq(gallery, Photography)

that word "gallery" occurs in the "Painting" or "Photography"

category. If these frequencies exceeds a predetermined threshold,

a new category will be created for word "gallery".

In this way, we finally obtain the following rule set:

Arts :- CATEGORY ~ Painting.

Arts :- CATEGORY ~ Photography.

Arts :- WORDS ~ "gallery".

Painting :- WORDS ~ "watercolor".

Photography :- WORDS ~ "photo".

 The new category "Arts" covers both of the category

"Painting" and "Photography" and a document d is considered to

be in the category "Arts" if the word "gallery" appears in d. (We

use the category name "Arts" for the sake of convenience. In

practice, category names are automatically generated by a

program.) The following figure illustrates this rule set.

International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 8

ISSN 2250-3153

www.ijsrp.org

Fig.4 Hierarchical categories

V. DISCUSSION & CONCLUSION

 Motivated by an increased interest in automatically

categorizing the World Wide Web documents, we proposed a

new method for document categorization based on the RIPPER

rule learning algorithm, and obtained encouraging results. As

future research, we intend to elaborate the method by combining

different categorization methods such as probabilistic classifiers.

 This research used a full inverted index as the basis for the

operation on string vectors, instead of a restricted sized similarity

matrix. It was cheaper to build an inverted index from a corpus

than a similarity matrix, as mentioned in section 1. In the

previous attempt, a restricted sized similarity matrix was used as

the basis for the operation on string vectors. Therefore,

information loss from the similarity matrix degraded the

performance of the modified version. This research addresses the

information loss by using a full inverted index, instead of a

restricted sized similarity matrix.

 Note that there is trade-off between the two bases for the

operation on string vectors. Although it is cheaper to build an

inverted index from a corpus, note that it costs more time

interactively for doing the operation expressed in equation (3).

Let's the numbers of words, documents, and elements in each

string vector be N ,M , and d . In using the inverted index, the

complexity for doing the operation is
d)O(M

2

 in worst case,

while in using the similarity matrix, the complexity is O(d) .

When we try to compute semantic similarities of all possible

pairs, the complexity is
d)MO(N

22

, whether we use a similarity

matrix or an inverted index.

 Experiments in the previous section showed that the

proposed method works better than traditional networks, with

respect to classification performance and classification time on

binary or multi label classification corpus. This study implies that

the representation of texts into string vectors is more appropriate

than the representation into numerical vectors for text

classification. The significance of this study is to address two

main problems from the traditional representation of texts, by

proposing a new unsupervised neural network using string

vectors as its weight vectors and input vectors.

 Other machine learning algorithms such as Naïve Bayes

and back propagation are considered to be modified into their

adaptable versions to string vectors. The operation may be

insufficient for modifying other machine learning algorithms. For

example, it requires the definition of a string vector which is

representative of string vectors corresponding to a mean vector in

numerical vectors for modifying a k-means algorithm into the

adaptable version. Various operations on string vectors should be

defined in a future research for modifying other machine learning

algorithms.

 On the other hand as mentioned in previous sections, the

proposed method requires the construction of a similarity matrix

to perform operations on string vectors. The experiment for the

evaluation of classification time did not count the time for

building the similarity matrix. Actually, it took very much time

to build it.

 To make our proposed method more practical, it is

necessary to address the high cost of building the similarity

matrix from the collection of texts. If all the words are used to

build it other than stop words, it costs very much time to do that.

We can consider three solutions to this problem for future

research. The first solution consists of building a similarity

matrix with only keywords from texts. The second solution

consists of replacing the construction of the similarity matrix by

word sense acquisition. The third solution consists of performing

such operations on string vectors directly in the collection of

texts. As a result, firstly, we need define the string vector for

another neural network, and then address the problem of

similarity matrix building with one of these solutions.

VI. REFERENCES

[1] G. Attardi, S. Dimarco, D. Salvi, ―Categorization by context‖, Journal of
Universal Computer Science, Vol.4, pp.719-736, 1998.

[2] N. Cristianini, J. Shawe-Taylor, Support Vector Machines and Other
Kernel-based Learning Methods, Cambridge University Press, 2000.

[3] H. Drucker, D. Wu, V. N. Vapnik, ―Support vector machines for Spam
categorization‖, IEEE Transaction on Neural Networks, Vol.10, No.5,
pp.1048-1054, 1999.

[4] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, John Wiley &
Sons, Inc, 2001.

[5] V. I. Frants, J. Shapiro, V. G. Voiskunskii, Automated Information
Retrieval: Theory and Methods, Academic Press, 1997.

[6] F. Gabriel Pui Cheong, J. Yu, ―Text classification without negative
examples revisit‖, IEEE Transaction on Knowledge and Data Engineering,
Vol.18, No.1, pp.6-20, 2006.

[7] S. Haykin, Neural Networks: Comprehensive Foundation, Macmillan
College Publishing Company, 1994.

[8] M. Hearst, ―Support vector machines‖, IEEE Intelligent Systems, Vol.13,
No.4, pp.18-28, 1998.

[9] P. Jackson, I. Mouliner, Natural Language Processing for Online
Applications: Text Retrieval, Extraction and Categorization, John
Benjamins Publishing Company, 2002.

[10] T. Joachims, ―Text categorization with support vector machines: learning
with many relevant features‖, The Proceedings of 10th European
Conference on Machine Learning, pp.143-151, 1998.

[11] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, C. Watkins, Text
Classification with String Kernels, Journal of Machine Learning Research,
Vol.2, No.2, pp.419-444, 2002.

[12] T. Martin, H. B. Hagan, H. Demuth, M. Beale, Neural Network Design,
PWS Publishing Company, 1995.

[13] B. Massand, G. Linoff, D. Waltz, ―Classifying news stories using memory
based reasoning‖, The Proceedings of 15th ACM International Conference
on Research and Development in Information Retrieval, pp.59-65, 1992.

[14] T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.

[15] D. Mladenic, M. Grobelink, ―Feature selection for unbalanced class
distribution and Naïve Bayes‖, The Proceedings of International Conference
on Machine Learning, pp.256-267, 1999.

[16] J. C. Platt, ―Sequential minimal optimization: a fast algorithm for training
support vector machines‖, Technical Report MSR-TR-98-14, 1998.

International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 9

ISSN 2250-3153

www.ijsrp.org

[17] J. Rennie, ―Improving multi-class text classification with support vector
machine‖, Master's thesis, Massachusetts Institute of Technology, 2001.

[18] M.E. Ruiz, P. Srinivasan, ―Hierarchical text categorization using neural
networks‖, Information Retrieval, Vol.5, No.1, pp.87-118, 2002.

[19] F. Sebastiani, ―Machine learning in automated text categorization‖, ACM
Computing Survey, Vol.34, No.1, pp.1-47, 2002.

[20] E. D. Wiener, ―A neural network approach to topic spotting in text‖, The
Thesis of Master of University of Colorado, 1995.

[21] Y. Yang, ―An evaluation of statistical approaches to text categorization‖,
Information Retrieval, Vol.1, No.1-2, pp.67-88, 1999.

[22] L. Man, Chew, T. Lim, ―Supervised and traditional term weighting methods
for automatic text categorization‖, IEEE Transaction on Pattern Analysis
and Machine Intelligence, Vol.31, No.4, pp.721-735, 2010.

[23] V. Lertnattee, T. Theeramunkong, ―Multidimensional text classification for
drug information‖, IEEE Transaction on Information Technology in
Biomedicine, Vol.8, No.3, pp.306-312, 2008.

[24] http://www.research.att.com/~lewis/Reuters21578.html.

[25] D. Isa, L. Lee, ―Text document preprocessing with the Bayes formula for
classification using the support vector machine‖, IEEE Transaction on
Knowledge and Data Engineering, Vol.20, No.9, pp.1264-1272, 2008.

[26] The GHSOM Architecture and Training Process,
http://www.ifs.tuwien.ac.at/~andi/ghsom/description.html

[27] M. P¨ oll¨ a, T. Honkela, and T. Kohonen, ―Bibliography of self-organizing
map (SOM) papers: 2002-2005 addendum‖, Information and Computer
Science, Helsinki University of Technology, Espoo, Finland, Tech. Rep.
TKK-ICS-R24, 2009.

[28] T. Kohonen, Self-Organizing Maps. Berlin: Springer-Verlag, 1997.

[29] Y. Liu, X. Wang, and C. Wu, ―ConSOM: A conceptional self-organizing
map model for text clustering‖, Neurocomputing, Vol. 71, No. 4-6, pp.
857–862, 2008.

[30] Chih-Wei Hsu and Chih-Jen Lin, ―A comparison of methods for multi-class
support vector machines‖, IEEE Transactions on Neural Networks, Vol.13,
No. 2, pp. 415–425, 2002.

[31] S. Wermter, ―Neural Network Agents for Learning Semantic Text
Classification‖, Information Retrieval, Vol. 3, No. 2, pp.87-103, 2000.

[32] A. Budanitsky, G. Hirst, ―Evaluating wordnet-based measures of lexical
semantic relatedness‖, Computational Linguistics, Vol. 32, No. 1, pp. 13-
47, 2006.

[33] C. Yu, B. Cui, S. Wang, J. Su, ―Efficient index-based knn join processing
for high-dimensional data‖, Information Software Technol., Vol. 49, No. 4,
pp. 332–344, 2007.

AUTHORS

First Author – Vahid Behravesh, Department of Electrical

Engineering, Islamic Azad University, Bardaskan Branch,

Bardaskan, Iran, Email: vahidbehravesh@yahoo.com.

Second Author – S.M.R. Farshchi, Department of Electrical

Engineering, Islamic Azad University, Bardaskan Branch,

Bardaskan, Iran, Email: shiveex@gmail.com.

http://www.research.att.com/~lewis/Reuters21578.html

