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    Abstract- This paper describes automatic document 

categorization based on large text hierarchy. We handle the large 

number of features and training examples by taking into account 

hierarchical structure of examples and using feature selection for 

large text data. We experimentally evaluate feature subset 

selection on real-world text data collected from the existing Web 

hierarchy named Yahoo. In our learning experiments naive 

Bayesian classifier was used on text data using feature vector 

document representation that includes word sequences (n-grams) 

instead of just single words (unigrams). Experimental evaluation 

on real-world data collected form the Web shows that our 

approach gives promising results and can potentially be used for 

document categorization on the Web. Additionally the best result 

on our data is achieved for relatively small feature subset, while 

for larger subset the performance substantially drops. The best 

performance among six tested feature scoring measure was 

achieved by the feature scoring measure called Odds ratio that is 

known from information retrieval. 

 

    Index Terms- text mining; text related mining; vector based 

normalization; text categorizer 

 

I. INTRODUCTION 

n the last 10 years content-based document management tasks 

(collectively known as information retrieval—IR) have gained 

a prominent status in the information systems field, due to the 

increased availability of documents in digital form and the 

ensuing need to access them in flexible ways. Text categorization 

(TC — a.k.a. Text classification, or topic spotting), the activity 

of labeling natural language hierarchical catalogues of Web 

resources, and in general any application requiring document 

organization or selective and adaptive document dispatching. 

       Until the late 80's the most popular approach to TC, at least 

in the ―operational‖ (i.e., real-world applications) community, 

was a knowledge engineering (KE) one, consisting in manually 

defining a set of rules encoding expert knowledge on how to 

classify documents under the given categories. In the 90's this 

approach has increasingly lost popularity (especially in the 

research community) in favor of the machine learning (ML) 

paradigm, according to which a general inductive process 

automatically builds an automatic text classifier by learning, 

from a set of preclassified documents, the characteristics of the 

categories of interest. The advantages of this approach are 

accuracy comparable to that achieved by human experts, and a 

considerable savings in terms of expert labor power, since no 

intervention from either knowledge engineers or domain experts 

is needed for the construction of the classifier or for its porting to 

a different set of categories. It is the ML approach to TC that this 

paper concentrates on.  

       Current-day TC is thus a discipline at the crossroads of ML 

and IR, and as such it shares a number of characteristics with 

other tasks such as information / knowledge extraction from texts 

and text mining [1]. There is still considerable debate on where 

the exact border between these disciplines lies, and the 

terminology is still evolving. ―Text mining‖ is increasingly being 

used to denote all the tasks that, by analyzing large quantities of 

text and detecting usage patterns, try to extract probably useful 

(although only probably correct) information. According to this 

view, TC is an instance of text mining.  

       TC enjoys quite a rich literature now, but this is still fairly 

scattered. Although two international journals have devoted 

special issues to this topic [2-3], there are no systematic 

treatments of the subject: there are neither textbooks nor journals 

entirely devoted to TC yet, and Manning and Schutze [4] is the 

only chapter-length treatment of the subject. As a note, we 

should warn the reader that the term ―automatic text 

classification‖ has sometimes been used in the literature to mean 

things quite different from the ones discussed here. Aside from 

(i) the automatic assignment of documents to a predefined set of 

categories, which is the main topic of this paper, the term has 

also been used to mean (ii) the automatic identification of such a 

set of categories (e.g.,[5]), or (iii) the automatic identification of 

such a set of categories and the grouping of documents under 

them (e.g., Merkl at [6]), a task usually called text clustering, or 

(iv) any activity of placing text items into groups, a task that has 

thus both TC and text clustering as particular instances [7]. 

       A number of statistical classification and machine learning 

techniques has been applied to text categorization, including 

regression models, nearest neighbor classifiers, decision trees, 

Bayesian classifiers, Support Vector Machines (SVM), rule 

learning algorithms, relevance feedback, voted classification, and 

neural networks.  

       Document classification, requires encoding Persian & 

English documents into numerical vectors. A corpus which is a 

collection of documents is mapped into a list of words as the 

feature candidates. Among the candidates, only some are selected 

as the features. For each document, a numerical value is assigned 

to each of the selected features, depending on the importance and 

presence of each feature. However, encoding documents so 

causes the two main problems: huge dimensionality and sparse 

distribution [6]. 

       In order to solve the two main problems, this research uses 

the novel method that documents should be encoded into string 

vectors. A string vector refers to a finite set of strings which are 

I 
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words in context of a natural language. In numerical vectors 

representing documents, words are given as features, while in 

string vectors, words are given as feature values. Features of 

string vectors are defined very variously as properties of words 

with respect to their posting, lexical category, and statistical 

properties, but in this research, the highest frequent word, the 

second highest frequent one, and so on are defined as features of 

string vectors for easy implementation. 

       By encoding documents into string vectors, we can avoid 

completely the two main problems: huge dimensionality and 

sparse distribution. 

       We proposed the competitive neural text categorizer, as the 

approach to text categorization and proposed the application of it 

to multi-language documents categorization. Before creating the 

proposed neural network, traditional neural networks, such as 

MLP (Multi Layers Perceptron) with BP (Back Propagation) 

receives numerical vectors as its input data. Differently from the 

traditional neural networks, the proposed neural network receives 

string vectors. It has the two layers as its architecture: the input 

layer and the competitive layer. It is expected for the proposed 

model to improve the performance of multi-language text 

categorization by solving the two main problems.  

       This paper is organized as follows. In Section 2 we formally 

define TC and we review its most important and popular 

applications. Section 3 describes the main ideas of proposed 

neural network. The simulation result and experiment was 

mentioned in section 4. Section 5 concludes, discussing open 

issues and possible avenues of further research for TC. 

 

II. TEXT CATEGORIZATION 

a) Formal Description 

         Text Categorization is the task of assigning a Boolean value 

to each pair
CDicjd  ,

, where D is a domain of 

documents and 
},...,,{ ||ccccC 21

 is a set of predefined 

categories. A value of T assigned to
 icjd ,

indicates a 

decision to file jd
under ic

while a value of F indicates a 

decision not to file jd
under ic

. More formally the task is to 

approximate the unknown target function 
},{: FTCD  (that describes how documents ought to be 

classified) by means of a function
},,{: FTCD 

called 

the classifier. 

 

b) Related Work 

         In this section, we will survey previous works relevant to 

this research, and point out their limitations. There exist other 

kinds of approaches to text categorization than machine learning 

based ones: heuristic and rule based approaches. Heuristic 

approaches were already applied to early commercial text 

categorization systems [9]. However, we count out the kind of 

approaches in our exploration, since they are rule of thumbs. 

Since rule based approaches have poor recall and require a time 

consuming job of building rules manually as mentioned in the 

previous section, they are not covered in this article, either. 

Therefore, this article counts only machine learning based 

approaches to text categorization considered as state of the art 

ones.  

         Typical machine learning algorithms applied traditionally 

to text categorization are KNN (K Nearest Neighbor), NB (Naïve 

Bayes), SVM (Support Vector Machine), and BP (Back 

Propagation). The four approaches to text categorization have 

been used more popularly in previous literatures on text 

categorization than any other traditional approaches. Among 

them, the simplest approach is KNN. KNN is a classification 

algorithm where objects are classified by voting several labeled 

training examples with their smallest distance from each object. 

KNN was initially applied to classification of news articles by 

Massand et al, in 1992 [13]. Yang compared 12 approaches to 

text categorization with each other, and judged that KNN is one 

of recommendable approaches, in 1999 [21]. KNN is evaluated as 

a simple and competitive algorithm with Support Vector 

Machine for implementing text categorization systems by 

Sebastiani in 2002 [19]. Its disadvantage is that KNN costs very 

much time for classifying objects, given a large number of 

training examples because it should select some of them by 

computing the distance of each test object with all of the training 

examples.    

         Another popular and traditional approach to text 

categorization is NB. Differently from KNN, it learns training 

examples in advance before given unseen examples. It classifies 

documents based on prior probabilities of categories and 

probabilities that attribute values belong to categories. The 

assumption that attributes are independent of each other underlies 

on this approach. Although this assumption violates the fact that 

attributes are dependent on each other, its performance is feasible 

in text categorization [14]. Naïve Bayes is used popularly not 

only for text categorization, but also for any other classification 

problems, since its learning is fast and simple [4].   

         In 1997, Mitchell presented a case of applying NB to text 

categorization in his textbook [14]. He asserted that NB was a 

feasible approach to text categorization, although attributes of 

numerical vectors representing documents were dependent on 

each other; this fact contradicts with the assumption underlying 

in NB. In 1999, Mladenic and Grobellink evaluated feature 

selection methods within the application of Naïve Bayes to text 

categorization [15]. Their work implied that NB is one of 

standard and popular approaches to text categorization. 

Androutsopoulos et al adopted NB for implementing a Spam mail 

filtering system as a real system based on text categorization in 

2000 [1]. It requires encoding documents into numerical vectors 

for using NB to text categorization. 

         Another popular and traditional approach to text 

categorization is SVM. Recently, this machine learning algorithm 

becomes more popular than the two previous machine learning 

algorithms.  Its idea is derived from a linear classifier, 

Perceptron, which is an early neural network. Since the neural 

network classifies objects by defining a hyper-plane as a 

boundary of classes, it is applicable to only linearly separable 

distribution of training examples. The idea of SVM is that if a 

distribution of training examples is not linearly separable, these 

examples are mapped into another space where their distribution 



International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012               3 

ISSN 2250-3153  

www.ijsrp.org 

is linearly separable, as illustrated in the left side of figure 1. 

SVM optimizes the weights of the inner products of training 

examples and its input vector, called Lagrange multipliers [2], 

instead of those of its input vector, itself, as its learning process. 

It defines two hyper-planes as a boundary of two classes with a 

maximal margin, as illustrated in the left side of figure 1. Refer 

to [8] or [2], for more detail description on SVM. 

         The advantage of SVM is that it is tolerant to huge 

dimensionality of numerical vectors; it addresses the first 

problem. Its advantage leads to make it very popular not only in 

text categorization, but also any other classification problems [2]. 

In 1998, it was initially applied to text categorization by 

Joachims [10]. He validated the classification performance of 

SVM in text categorization by comparing it with KNN and NB. 

Drucker et al adopted SVM for implementing a Spam mail 

filtering system and compared it with NB in implementing the 

system in 1999 [3]. They asserted empirically that SVM was the 

better approach to Spam mail filtering than NB. In 2000, 

Cristianini and Shawe-Taylor presented a case of applying SVM 

to text categorization in their textbook [2]. In 2002, Sebastiani 

asserted in his survey paper that SVM is most recommendable 

approach to text categorization by collecting experimental results 

on the comparison of SVM with other approaches from previous 

works [19]. In spite of the advantage of SVM, it has two 

demerits. One is that it is applicable to only binary classification; 

if a multiple classification problem is given, it should be 

decomposed into several binary classification problems for using 

SVM. The other is that it is fragile to the problem in representing 

documents into numerical vectors, sparse distribution, since the 

inner products of its input vector and training examples generates 

zero values very frequently.    

         The third popular and traditional approach to text 

categorization is BP. It is most popular supervised neural 

network and used for not only classification tasks but also 

nonlinear regression tasks [6]. It is also derived Perceptron, 

together with SVM. When a distribution of training examples is 

not linearly separable, in SVM, the given space is changed into 

another space where the distribution is linearly separable, 

whereas in back propagation,  a quadratic boundary is defined by 

adding one more layer, called hidden layer [7][6], as illustrated in 

the right side of figure 1. More detail explanation about back 

propagation is included in [7] or [6]. 

 

 
Figure 1.  Mapping Vector Space in SVM. 

 

         In 1995, BP was initially applied to text categorization by 

Wiener in his master thesis [20]. He used Reuter 21578 [24] as 

the test bed for evaluating the approach to text categorization and 

shown that back propagation is better than KNN in the context of 

classification performance. In 2002, Ruiz and Srinivasan applied 

continually back propagation to text categorization [18]. They 

used a hierarchical combination of BPs, called HME 

(Hierarchical Mixture of Experts), to text categorization, instead 

of a single BP. They compared HME of BPs with a flat 

combination of BPs, and observed that HME is the better 

combination of BPs. Since BP learns training examples very 

slowly, it is not practical, in spite of its broad applicability and 

high accuracy, for implementing a text categorization system 

where training time is critical. 

         Research on machine learning based approaches to text 

categorization has been progressed very much, and they have 

been surveyed and evaluated systematically. In 1999, Yang 

evaluated 12 approaches to text categorization including machine 

learning based approaches directly or indirectly in text 

categorization [21]. She judged the three approaches, LLSF 

(Linear Least Square Fit), K Nearest Neighbor, and Perceptron, 

worked best for text categorization. In 2002, Sebastiani surveyed 

and evaluated more than ten machine learning based approaches 

to text categorization [19]. He asserted that Support Vector 

Machine is best approach to text categorization with respect to 

classification performance. All approaches which were surveyed 

and evaluated in these literatures require encoding documents 

into numerical vectors in spite of the two problems. 

         We explored and presented previous cases of applying one 

of the four traditional machine learning algorithms to text 

categorization. Although the traditional approaches are feasible 

to text categorization, they accompany with the two main 

problems from representing documents into numerical vectors. In 

the previous works, dimension of numerical vectors should 

reserve, at least, several hundred for the robustness of text 

categorization systems. In order to mitigate the second problem, 

sparse distribution, a task of text categorization was decomposed 

into binary classification tasks in applying one of the traditional 

approaches. This requires classifiers as many as predefined 

categories, and each classifier judges whether an unseen 

document belongs to its corresponding category or not. 

         There is a previous trial to solve the two problems. In 2002, 

Lodhi et al proposed a string kernel for applying Support Vector 

Machine to text categorization [11]. In their solution, documents 

as raw data are used directly for text categorization without 

representing them into numerical vectors. String kernel is a 

function computing an inner product between two documents 

given as two long strings. An additional advantage of the 

solution is to process documents independently of a natural 

language in which documents are written. However, their 

solution was not successful in that it took far more time for 

computing string kernel of two documents and the version of 

SVM using the string kernel was not better than the traditional 

version.  

         As presented in section 5, this research will be a successful 

attempt to solve the two problems by proposing competitive text 

classifier with string vectors.  

 

III. STRATEGIES OF ENCODING DOCUMENTS 

         Since documents are unstructured data by themselves, they 

cannot be processed directly by computers. They need to be 

encoded into structured data for processing them for text 

categorization. This section will describe the two strategies of 
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encoding documents with the two subsections: the traditional 

strategy and the proposed strategy. The first subsection describes 

the former and points out its demerits, and the second subsection 

describes the latter and mentions its merits. 

 

a) Numerical Vector 

         A traditional strategy of encoding documents for tasks of 

text mining, such as text categorization is to represent them into 

numerical vectors. Since input vectors and weight vectors of 

traditional neural networks such as back propagation and RBF 

(Radial Basis Function) are given as numerical vectors, each 

document should be transformed into a numerical vector for 

using them for text categorization. Therefore, this subsection will 

describe the process of encoding documents into numerical 

vectors and what are their attributes and values.  

         Figure 2 illustrates the process of extracting feature 

candidates for numerical vectors from documents. If more than 

two documents are given as the input, all strings of documents 

are concatenated into a long string. The first step of this process 

is tokenization where the string is segmented into tokens by 

white space and punctuations. In the second step, each token is 

stemmed into its root form; for example, a verb in its past is 

transformed into its root form, and a noun in its plural form is 

transformed into its singular form. Words which function only 

grammatically with regardless of a content are called stop words 

[5], and they correspond to articles, conjunctions, or pronouns. In 

the third step, stop words are removed for processing documents 

more efficiently and reliably for text categorization. Through the 

three steps illustrated in figure 2, a collection of words are 

generated as feature candidates. 

 

 
Figure 2.  Flowchart of feature extraction of documents. 

 

         Since the number of the generated feature candidates is 

usually too big, using all of them is not feasible as features of 

numerical vectors. Therefore, only some of them are used as 

features of numerical vectors for efficiency. A scheme of 

defining criteria for selecting some of them as features is called 

feature selection method [15]. Generally, features are selected 

from the generated collection by their frequencies in the corpus. 

Therefore, candidates with highest frequencies are used as 

features of numerical vectors. The number of selected candidates 

as features becomes the dimension of numerical vectors. There 

are other feature selection methods than the frequency based one, 

and they are described in detail in [15] and [19]. However, 

although only some of the candidates are used as features, the 

number of features is still large for robust text categorization. 

         The selected features are given as attributes of numerical 

vectors and numerical information about attributes become 

elements of numerical vectors. In this article, we mention the 

three ways of defining elements as the representative ones, 

although others may exist. The first way is to assign a binary 

value indicating absence or presence of the corresponding word 

in the given document; one indicates its presence and zero 

indicates its absence. The second way is to define elements as 

frequencies of corresponding words in the given document; the 

elements become integers which are greater than or equal to zero. 

The third way is to assign weights computed from equation (1) to 

elements of numerical vectors; elements are real values. 

(1) 1))df(wLogD(wk)(logtf)W(w k22ik 
 

Where 
)(wktf i is the frequency of words, kw

, D is the total 

number of  document categories in corpus. 

         As we mentioned above, the process, indexing, is the 

conversion of text into a list of words as structured form. In this 

process, a text is given as the input. A string of the text is 

partitioned into tokens by white space and punctuation mark. 

Each token is to the basic form based on stemming rules; the 

word, ―studied‖ is transformed to the basic form, ―study‖, and 

the plural form of a noun is changed to its singular form. Among 

them, stop words, which function only grammatically and are 

irrelevant with the content of the text, are removed after 

stemming step.  

         The collection of texts is also transformed into a bag of 

words by applying the union operation to all texts. Among union 

of bags of words, words with higher frequency are selected as 

attributes of numerical vector, since stop words with higher 

frequency are removed in the process of indexing texts. If a text 

is represented into a numerical vector, its attributes are selected 

words and their values are binary value indicating the presence of 

the word corresponding to the attribute, integer indicating its 

frequency in the text, or real value indicating its weight. This 

article adopted the numerical vector representing a text with 

binary values.  

         Note that numerical vectors encoding documents have two 

main problems as mentioned in section 1. The first problem is 

that the dimension of numerical vectors is still large. This 

problems leads to high cost of time for processing each encoded 

document for training a classifier and to requirement of a very 

large number of training examples proportionally to the 

dimension. The second problem is that each numerical vector 

includes zero values, dominantly. Since the discrimination 

among numerical vectors over categories is lost, categorization 

performance is degraded.  

 

b) String Vector 

         An alternative strategy of encoding documents for text 

categorization is to represent them into string vectors. In this 

subsection, we describe this strategy and its advantage in detail. 

However, this strategy is applicable to only proposed competitive 

neural text categorizer, while the previous one is applicable to 

any traditional machine learning algorithm.  
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         A string vector is defined as a finite ordered set of words. 

In other words, a string vector is a vector whose elements are 

words, instead of numerical values. Note that a string vector is 

different from a bag of words, although both of them are similar 

as each other in their appearance. A bag of words is an infinite 

unordered set of words; the number of words is variable and they 

are independent of their positions. In string vectors, words are 

dependent on their positions as elements, since words correspond 

to their features. Features of string vectors will be described in 

detail in the next paragraph. 

         Features of string vectors are defined as properties of words 

to the given document.  The features are classified into the three 

types: linguistic features, statistical features, and positional 

features. Linguistic features are features defined based on 

linguistic knowledge about words in the given document: the 

first or last noun, verb, and adjective, in a paragraph, title, or full 

text. Statistical features are features defined based statistical 

properties of words in the given documents; the highest frequent 

word and the highest weighted word using equation (1). 

Positional features are features defined based on positions of 

words in a paragraph or the full text: a random word in the first 

or last sentence or paragraph, or the full text. We can define 

features of string vectors by combining some of the three types, 

such as the first noun in the first sentence, the highest frequent 

noun in the first paragraph, and so on. 

         We can define features of string vectors in various ways as 

mentioned above, but in this work, features of string vectors are 

defined based on only frequencies of words for implementing 

easily and simply the module of encoding documents into string 

vectors (see follow). A formal description of string vector is 

defined as a set of words which is ordered and has its fixed size. 

It is denoted by where denotes by 
],...,,[ dsss 21 where 

is
denotes a string, and there are d elements. For example, 

[computer system information] is an instance of a three 

dimensional string vector. Note that the string vector, [computer 

system information] is different from the string vector [system 

computer information], since  elements are dependent on their 

positions like the case in every numerical vector. 

         Properties of words may be set as features of string vectors. 

Features of string  vectors are defined in one or combined one of 

three views.  In the first views, features are defined based on 

posting information of words: a random word in the first 

sentence, a random word in the last sentence, and a random word 

in the first paragraph. In the second view, they are defined based 

on linguistic properties of words, such as first noun, first verb, 

last noun, and last verb. In the third view, they are defined based 

on their frequencies, such as the most frequent word, the second 

most frequent word, and the third most frequent word, and so on. 

As we mentioned above, in this research, the third way of 

defining features of string vectors is adopted; a strong vector 

consists of words in the descending order of their frequencies. 

The reason of defining features of string vectors so is to 

implement easily and simply the encoder of a text clustering 

system.  

         When representing documents into string vectors, their 

sizes are fixed with d, and it is called the dimension of string 

vectors.  A d dimensional string vector consists of d words in the 

descending order of their frequencies in the given entire full text; 

the first element is the highest frequent word, the second element 

is the second highest frequent word, and the last element is the d 

the highest frequent word. Figure 3 illustrates the process of 

encoding a document into its string vector with the simple 

definition of features. In the first step of figure 3, a document is 

indexed into a list of words and their frequencies. Its detail 

process of the first step is illustrated in figure 3. If the dimension 

of string vectors is set to d, d highest frequent words are selected 

from the list, in the second step. In the third step, the selected 

words are sorted in the descending order of their frequencies. 

This ordered list of words becomes a string vector representing 

the document given as the input.  

 
Figure 3.  The process of mapping a document into a string 

vector [2]. 

 

         Table 1 illustrate differences between string vectors and 

numerical vectors. The first difference is that numerical values 

are given as elements in numerical vectors, while strings are 

given as elements in string vectors. The second difference is that 

the similarity measure between two numerical vectors is the 

cosine similarity or the Euclidean distance, while that between 

two string vectors is the semantic average similarity. The third 

difference between the two types of structured data is that 

features for encoding documents into numerical vectors are 

words, while those for encoding them into string vectors are 

statistical linguistic and posting properties of words. Therefore, a 

string vector is the vector where numerical values are replaced by 

strings in a numerical vector. 

 

Table 1．Numerical vectors versus string vectors 

 Numerical Vector String Vector 

Element Numerical value String 

Similarity 

Measure 

Inner products, 

Euclidean distance 

Semantics 

similarity 

Attributes Words Property of words 

 

         The differences between string vectors and bags of words 

are illustrated in table 2. Both types of structured data have 

strings as their elements. As the similarity measure, cardinality of 

intersection of two bags of words is used while the average 

semantic similarity is used in string vectors. A bag of words is 

defined as an unordered infinite set of words, while a string 
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vector is defined as an ordered finite set of words. Although a 

bag of words and a string vector look similar as each other, they 

should be distinguished from each other, based on table 2. 

 

Table 2. Bag of words versus string vectors 

 

 Numerical Vector String Vector 

Element String 

Similarity 

measure 

Number of shared 

words 

Semantics 

similarity 

Set Unordered infinite set Ordered finite set 

 

         We use an inverted index is used as the basis for the 

operation on string vectors as expressed in equation (4). An 

inverted index is defined as a list of words each of which is 

linked with a list of documents including it. A list of words is 

implemented with a hash table, while a list of documents which 

including a word is implemented with an array. A semantic 

similarity between two words is computed based on a number of 

documents where both words are collocated with each other. The 

more documents including both words, the higher semantic 

similarity between them is. From the inverted index, two lists of 

document identifiers corresponding to the two words are 

retrieved. The intersection is taken from the two lists of 

document identifiers as a list of documents including both words. 

In the next section we define the Semantic similarity. 

 

c) Semantic Similarity 

         The proposed text categorizer needs to compute the 

similarity between two string vectors and update a weight vector. 

Weight vectors are updated by substituting its elements by inter-

words (see [31]). So it is necessary to define operations on string 

vectors. This section will describe two operators necessary for 

training. A similarity matrix should be built from the given 

collection of texts before defining two operators on string 

vectors. Each entry in the matrix indicates the semantic similarity 

between two words based on their collocation and weights in a 

text.   

         The similarity matrix is defined word by word from the 

given collection of texts [33]. It is expressed by the symmetry 

function and square matrix shown in equation (2). 





















NNNN

N

N

N

sss

s

sss

sss

S

...

.........

...

...

21

3

22221

11211

 
 

               
),( jijiij ttsimss 
 

 

 

(2) 

         An element, 
,ijs
of the similarity matrix, S, indicates the 

similarity between two words, it  and jt
. It is computed by 

equation (3) (see [32]). 
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

 
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




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ji
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Dd Dd

dd

DDd

dd

ij
ww

ww

s
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(3) 

 

         where iD
is the set of documents including the word, 

ji Dt ,
is the set of documents including the word jt

, idw
is the 

weight of the word, 
,it in document, d and jdw

 is the weight of 

the word, 
,jt
 in document, d. As illustrated in the equation (3), 

the similarity between two words is based on their collocation in 

same document.  

         If a similarity matrix is built from the corpus with equation 

(2), we can compute the similarity between two string vectors, 

denoted by 
],...,,[ 21 idiii tttx 

and 
].,...,,[ 21 jdjjj tttx 

The 

similarity
),( jkik ttsim
 between two words, ikt

and jkt
is indicated 

by the entry, ijs
of the row and column corresponding to such 

words or its reverse, ijs
in the similarity matrix. The similarity 

between two string vectors ix
and jx

denoted by 
),( ji xxsim

is 

computed by equation (4). 

        






d

k

jkikji ttsim
d

xxsim

1

),(
1

),(

 

 

(4) 

 

         Given two words it and jt
. An inter-word tk is a word 

presenting a higher similarity to both it and jt
than the similarity 

between it and 
.jt
Such similarity is defined by the similarity 

matrix built from the given corpus. First, we find the similarity 

between two words from the similarity matrix to find inter-words 

between them. And we extract words with higher similarity with 

both of them from the similarity matrix. The set of inter-words 

between two words denoted by it and 
,jt
denoted by ijI

is 

expressed by equation (5). 

 

),(),(),(),(|{

),(

ijkjjikikk

jiij

ttsttsttsttstt

ttII





 

 

(5) 

 

IV. COMPETITIVE NEURAL TEXT CATEGORIZER 

         This section describes the proposed competitive neural 

network, in detail, with respect to its architecture, training, 

classification, and properties.  

         The Self-Organizing Map (SOM), [28] proposed by 

Kohonen, provides a competitive learning principle of nodes 

such that adjacent nodes tend to have similar weight vectors. The 

SOM is an artificial neural network model that is well suited for 

mapping high- dimensional data into a two-dimensional 

representation space. The training process is based on the weight 

vector adoption with respect to the input vectors. The SOM has 
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shown to be a highly effective tool for data visualization in a 

broad spectrum of application domains. Especially the utilization 

of the SOM for information retrieval purposes in large free form 

document collections has gained wide interest in the last few 

years. The general idea is to display the contents of a document 

library by representing similar documents in similar regions of 

the map. Without knowledge of the type of and the organization 

of the documents it is difficult to get satisfying results without 

multiple training runs using different parameter settings, which 

obviously is extremely time consuming given the high-

dimensional data representation.   

         In contrast to another traditional neural network model 

[30], the main characteristics of SOM are two-fold, namely 

dimension reduction and topology preservation. Using SOM, a 

high-dimensional data space will be mapped to some low-

dimensional space [27]. SOMs have recently been used to 

archive over 7 million documents [26]. Not only have SOMs 

been shown to scale up to very large document collections, these 

maps also allow for a novel mode of navigating through a large 

collection of text documents. As we mentioned above, the entire 

text collection is presented to a user as a two-dimensional map, 

where each node in the map is associated to a set of documents 

that are likely to be composed of similar terms and phrases. In 

addition to the classification of documents at the node level there 

is also classification of nodes. That is, the closer two nodes are in 

the map, the more similar are their associated documents.  

         While many studies have been devoted to automatic 

document clustering, our work is based on the rule learning 

approach. This approach generates a set of classification rules 

from labeled (pre-classified) training data. The greatest 

advantage of using rules is its comprehensibility. Rules are 

relatively easy to understand and modify. Thus, it is particularly 

helpful for end users to organize personalized URL repositories 

(bookmarks or hotlists).  

         As a baseline algorithm, we used the rule learning 

algorithm RIPPER (Repeated Incremental Pruning to Produce 

Error Reduction) [1],[2]. RIPPER is an efficient, noise-tolerant 

rule learning algorithm based on the separate-and-conquer 

strategy, and its algorithm is summarized as follows. The training 

data is partitioned into two subsets, a growing set and a pruning 

set. Using these two subsets, RIPPER builds up a rule set by 

repeatedly adding rules to an empty rule set. The rule-growing 

algorithm begins with an empty conditions, and greedily adds 

conditions until the rule no longer makes incorrect prediction on 

the growing set. Here, each condition represents the appearance 

of a particular word w in a document d. Next, the learned rule is 

simplified by deleting conditions so as to improve performance 

of the rule on the pruning set. All examples covered by the 

formed rule are then removed from the training set and a new 

rule is learned in the same way until all examples are covered by 

the rule set.  

 

         An example of a rule set constructed by RIPPER is below 

(using Prolog-like notation):  

 

Painting :- WORDS ~ "watercolor".  

Painting :- WORDS ~ "art", WORDS ~ "museum".  

Painting :- WORDS ~ "author", WORDS ~ "picture".  

 

         This rule set means that a document d is considered to be in 

the category "Painting" if and only if  

(word "watercolor" appears in d) OR  

(word "art" appears in d AND word "museum" appears in d) OR  

(word "author" appears in d AND word "picture" appears in d). 

 

         That is, rule conditions checks whether a keyword (e.g. 

"watercolor", "art", "museum", etc.) appears in a document.  

         One weakness with the RIPPER algorithm is that it does 

not create a condition for a keyword which appears in more than 

two categories. To take a simple example, let us consider 

document categories: "Painting", "Photography" and "Sports". In 

the training data, the word "gallery" may occur frequently in 

categories "Painting" and "Photography". Thus, the following 

rules are never created because these rules contradict each other.  

Painting :- WORDS ~ "gallery".  

Photography :- WORDS ~ "gallery".  

 

         However, an appearance of the word "gallery" strongly 

indicates that the document is not the "Sports" category but it is 

the "Painting" category or the "Photography" category. In order 

to achieve high-precision document categorization, it is desirable 

to use as many keywords as possible.  

         To avoid the problem, we extended the RIPPER algorithm 

to automatically introduce hierarchical categories in a rule set. 

We describe how the extended algorithm works by taking a 

simple example. First, in the rule growing phase, a rule is grown 

by simply adding conditions using the growing set. This phase 

may create contradictory rules. Assume here that the following 

rule set is created:  

Painting :- WORDS ~ "gallery".  

Painting :- WORDS ~ "watercolor".  

Photography :- WORDS ~ "gallery".  

Photography :- WORDS ~ "photo".  

 

         In this rule set, the first and third rules are contradictory. 

Then, we examine the frequencies  

                 Freq(gallery, Painting)  

                 Freq(gallery, Photography) 

 

that word "gallery" occurs in the "Painting" or "Photography" 

category. If these frequencies exceeds a predetermined threshold, 

a new category will be created for word "gallery".  

 

In this way, we finally obtain the following rule set:  

Arts :- CATEGORY ~ Painting.  

Arts :- CATEGORY ~ Photography.  

Arts :- WORDS ~ "gallery".  

Painting :- WORDS ~ "watercolor".  

Photography :- WORDS ~ "photo".  

 

         The new category "Arts" covers both of the category 

"Painting" and "Photography" and a document d is considered to 

be in the category "Arts" if the word "gallery" appears in d. (We 

use the category name "Arts" for the sake of convenience. In 

practice, category names are automatically generated by a 

program.) The following figure illustrates this rule set.  
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Fig.4  Hierarchical categories 

 

  

V. DISCUSSION & CONCLUSION 

         Motivated by an increased interest in automatically 

categorizing the World Wide Web documents, we proposed a 

new method for document categorization based on the RIPPER 

rule learning algorithm, and obtained encouraging results. As 

future research, we intend to elaborate the method by combining 

different categorization methods such as probabilistic classifiers.  

         This research used a full inverted index as the basis for the 

operation on string vectors, instead of a restricted sized similarity 

matrix. It was cheaper to build an inverted index from a corpus 

than a similarity matrix, as mentioned in section 1. In the 

previous attempt, a restricted sized similarity matrix was used as 

the basis for the operation on string vectors. Therefore, 

information loss from the similarity matrix degraded the 

performance of the modified version. This research addresses the 

information loss by using a full inverted index, instead of a 

restricted sized similarity matrix.  

         Note that there is trade-off between the two bases for the 

operation on string vectors. Although it is cheaper to build an 

inverted index from a corpus, note that it costs more time 

interactively for doing the operation expressed in equation (3). 

Let's the numbers of words, documents, and elements in each 

string vector be N ,M , and d . In using the inverted index, the 

complexity for doing the operation is 
d)O(M

2

 in worst case, 

while in using the similarity matrix, the complexity is O(d) . 

When we try to compute semantic similarities of all possible 

pairs, the complexity is
d)MO(N

22

, whether we use a similarity 

matrix or an inverted index.    

         Experiments in the previous section showed that the 

proposed method works better than traditional networks, with 

respect to classification performance and classification time on 

binary or multi label classification corpus. This study implies that 

the representation of texts into string vectors is more appropriate 

than the representation into numerical vectors for text 

classification. The significance of this study is to address two 

main problems from the traditional representation of texts, by 

proposing a new unsupervised neural network using string 

vectors as its weight vectors and input vectors. 

         Other machine learning algorithms such as Naïve Bayes 

and back propagation are considered to be modified into their 

adaptable versions to string vectors. The operation may be 

insufficient for modifying other machine learning algorithms. For 

example, it requires the definition of a string vector which is 

representative of string vectors corresponding to a mean vector in 

numerical vectors for modifying a k-means algorithm into the 

adaptable version. Various operations on string vectors should be 

defined in a future research for modifying other machine learning 

algorithms. 

         On the other hand as mentioned in previous sections, the 

proposed method requires the construction of a similarity matrix 

to perform operations on string vectors. The experiment for the 

evaluation of classification time did not count the time for 

building the similarity matrix. Actually, it took very much time 

to build it.  

         To make our proposed method more practical, it is 

necessary to address the high cost of building the similarity 

matrix from the collection of texts. If all the words are used to 

build it other than stop words, it costs very much time to do that. 

We can consider three solutions to this problem for future 

research. The first solution consists of building a similarity 

matrix with only keywords from texts. The second solution 

consists of replacing the construction of the similarity matrix by 

word sense acquisition. The third solution consists of performing 

such operations on string vectors directly in the collection of 

texts. As a result, firstly, we need define the string vector for 

another neural network, and then address the problem of 

similarity matrix building with one of these solutions. 
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