Numbers; Alpha – Omega – The Natural Numbers

Mudabbir Gill

DOI: 10.29322/IJSRP.8.8.2018.p8073 http://dx.doi.org/10.29322/IJSRP.8.8.2018.p8073

Abstract

The paper focus on the newly found numbers which shows the actual numbers in spite of present numbers 0,1,2,3,4,5,6,7,8,9,10. These newly found numbers are α alpha and Ω omega. α alpha means beginning and Ω omega means ending in reference to numbers α alpha can be meant as the beginning of numbers and Ω can be meant as ending of the numbers. If we take simple series of numbers 0,1,2,3,4,5,6,7,8,9,10 and other series of numbers 4,5,6,7,8,9,10 in actual starts from α alpha because α alpha means the beginning therefore it is α , 0,1,2,3,4,5,6,7,8,9,10 and in second series it is α alpha 4,5,6,7,8,9,10. The number Ω omega cannot be put before α alpha but can be put as 0,1,2,3,4,5,6,7,8,9,10 Ω omega and in second series 4,5,6,7,8,9,10 Ω omega

There is α alpha before 0 or any number so Ω omega can not be put before α alpha because α alpha is beginning of numbers and Ω is ending of numbers

Simply natural numbers can be written as

 α , 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Ω

Where α is alpha (the beginning)

0, 1, 2, 3, 4, 5, 6, 7, 8, 10 are numbers

Where Ω is omega (the ending)

OR

Simply natural numbers can be written as

 α , 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, Ω

Where α is (the beginning) containing numbers like -2 , -1 , 0 , 1 , 2 , 3

4, 5, 6, 7, 8, 9, 10 are numbers

Where Ω omega (the ending) contains 11, 12, 13, 14, 15 and so on

Keywords

 α alpha, numbers, natural numbers, counting, Ω omega

Introduction

 α alpha and Ω omega are already present in nature as numbers α alpha beginning of numbers Ω omega as ending of numbers but were not noticed

Description

Currently when we write numbers we start from 0, 1, 2, 3, 4, 5, 6, 7 and so on , neglecting the numbers before 0. and neglect α alpha(the beginning) which is present in nature but not written anywhere. Currently when we continue numbers after like 7, 8, 9, 10, 11 we say numbers are infinite but neglect Ω omega (the ending) which is present in nature but not written anywhere

 α alpha: The number α alpha means the beginning in reference to mathematics it is generally there before zero when we move into the negative – or minus side and decimal side before 0 zero but positive number and decimal and whole numbers after 0 can also be put in α alpha but by one rule that is **BEFORE** Ω **OMEGA**, α alpha can not be put after Ω omega is has to stay before Ω omega. α alpha is there before 0 zero the beginning of numbers

There are types of numbers before 0 zero

Type 1 : Type 1 is the decimal before 0 that is 0.1, 0.2, 0.3 and so on all these are before zero and can be represented by α alpha

Type 2: Type 2 is the negative or minus before 0 that is -1 , -2 , -3 , -4 and so on all these are before zero and can be represented by α alpha

 Ω omega: The number Ω means the ending in reference to mathematics it is generally there after α alpha or 0 zero or any positive number greater than α alpha but by one rule that is Ω omega always comes after α alpha. All numbers after α alpha may fall in Ω omega because it shows ending

Example Cases for α alpha and Ω omega

Following are few cases how α alpha and Ω omega can be used

```
Case 1:
```

```
We can write numbers as
```

 α - Ω

 α alpha and Ω omega

It would include all numbers from beginning till ending

When we open it

It becomes

 α alpha, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, Ω omega

 α alpha the beginning

Then

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Then

 Ω omega the ending

Case 2:

We can also write it as

 α , 7, 8, 9, 10, Ω

Where

-3, -2, -1, 0, 1, 2, 3, 4, 5, 6,

fall in α alpha (the beginning)

Then

7,8,9,10

fall in numbers Then 11, 12, 13, 14, 15 fall in Ω omega (the ending)

When α alpha is put before a number it would mean all the numbers and beginning before that specific number Example: α , 3, 4, 5 means – 3, -2, -1, 0, 1, 2, all the numbers before 3 and beginning When Ω omega is put after a number it would mean all the numbers and ending following that specific number Example: 10, 11, 12, Ω omega means 13, 14, 15, 16, 17, 18 all the numbers after 12 and ending

OMEGA CAN NOT BE PUT BEFORE ALPHA ALPHA CAN NOT BE PUT AFTER OMEGA

It is up to us how much we open alpha or omega Example : the numbers are α , 0 , 1 , 2 , 3, Ω We open α upto 3 places it becomes -3 , -2 , -1 Then α OR 0.3 , 0.2 , 0.1 We open Ω upto 3 places it becomes 4 , 5 , 6

α alpha, Ω omega and mathematical operators DMAS

Mathematical operators like Division , Multiplication , Addition and Subtraction does not effect α alpha and Ω omega because when we write α alpha and Ω omega many values like 0.1, 0.2, 0.3, -2, -1 , may come in single number α alpha similarly values like 4 , 5 , 6 , 7 and others may get included in Ω omega exact value is not there so it is difficult to apply mathematical operations on α alpha and Ω omega

Conclusion

 α alpha is a number which means the beginning Ω omega is a number which means the ending If we write counting it should start from α , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , Ω alpha contains all the numbers before 0 zero and the beginning Ω omega contains all the numbers after 10 ten and the ending The beginning of counting / numbers is α alpha The ending of counting / numbers is Ω omega

References

- 1) Numbers Wikipedia https://en.wikipedia.org/wiki/Number
- 2) Counting Wikipedia https://en.wikipedia.org/wiki/Counting
- 3) Alpha Wikipedia https://en.wikipedia.org/wiki/Alpha
- 4) Omega Wikipedia https://en.wikipedia.org/wiki/Omega

Author

Mudabbir Gill , Bachelors (economics and politics) , Islamia University Bahawalpur , Pakistan. Email: mudabbir_gill@yahoo.com

Correspondence Author

Mudabbir Gill, mudabbir_gill@yahoo.com, +923077746628, +923017988789