PHYTOCHEMICAL STUDIES OF ACMELLA CAULIRHIZA AND SPERMACOCE PRINCEAE USED BY POSTPARTUM MOTHERS IN NYAMIRA COUNTY, KENYA

Jesper Nyaboke Onyango¹, Jared Misonge Onyancha,² Dr. Jacksn Odhiambo Onyuka³,⁴ Prof. John Memba Ochora, PhD.⁵ Patrick Ogembo Getonto,⁶ Charles Wambugu Maina

¹ Medical Laboratory Department, Mount Kenya University
² Pharmacognosy Department, Mount Kenya University
³ Medical Laboratory Department, Mount Kenya University
⁴ Botany Department, Jomo Kenyatta University of Agriculture and Technology
⁵ Department of Community Health Nursing, Mount Kenya University
⁶ Muranga County Referral Hospital

Abstract- Introduction: Traditional medicine have been used in health maintenance, disease prevention and treatment for example Acemella caulirhiza used to treat a child’s mouth sores and Spermacoce princeae used to accelerate healing of umbilical cord and to clean the system after birth.

Objective: The main objective of the present study was to determine phytochemical compounds of A. caulirhiza and S. princeae used by postpartum mothers in Nyamira County, Kenya.

Methodology: The study area was Nyamira County where the two plant specimens were collected. Plant materials were identified at East Africa Herbarium. Plant specimens were transported to M.K.U. Pharmacognosy laboratory where processing was done. Phytochemical analysis methods were employed to determine phytochemicals compounds in the crude plant extracts. Data was stored in Excel spread sheet in a personal computer protected with a password. Data was presented using tables and photographs.

Results: Phytochemical examinations revealed that Acemella caulirhiza contains flavonoids, terpenoids, coumarins and sterols compounds. On the other hand, Spermacoce princeae contains flavonoids, terpenoids, tannins, saponin alkaloid and glycoside compounds.

Conclusion and recommendation: The plants may be used in treating puerperal sepsis although commercially available drugs are recommended as they are highly effective. The two plants can be a potent source of complementary and modern medicine. Further research is recommended to isolate and identify pure compounds of the two plants.

Index Terms- Traditional medicine, phytochemical investigation, Asteraceae, Rubiaceae.

I. INTRODUCTION

Traditional medicine has been used in health maintenance, disease prevention and treatment (WHO, 2014). The use of medicinal plants has been known to mankind as the oldest practice of healthcare (Yogayata and Vijay, 2012). Nowadays, isolation and characterization of biologically active compounds from medicinal plants continues and drug discovery techniques have been applied to the standardization of herbal medicines, to elucidate analytical marker compounds (Marcy and Douglas, 2005). Medicinal plants used to manage postpartum complications include; Basella alba plant which belongs to Basallaceae family, is used to manage stomachache, stimulate milk production and is used to remove the placenta after birth (Jeruto et al., 2015). Toddalia asiatica and Pentas longiflora species which belongs to Rutaceae and Rubiaceae family respectively. The leaves of these herbs are used to manage Urinary tract infections (Jeruto et al., 2015).

Acemella caulirhiza is similarly known as Spilanthes acmella. It is a flowering herbal plant, which belongs to Compositae/Asteraceae family (Berhane et al., 2014). It is an annual or perennial herb. Locally it is known as Ekenyunyuntamonwaa (Ekegusii) and Ajuok-olwa Salamatwe (Dholuo) (Kokwaro, 2009). It is used by different communities in Kenya and the rest of Africa to treat various medical conditions. Example in Kenya, its flowers and leaves are used to treat venereal diseases (Jeruto et al., 2015). It is used to relief painful sores of the mouth, gums and throat, as well as stomach ache (Kokwaro 2009). Also it is used to treat decayed teeth, gingivitis or wounds in the mouth, toothache and sore throat (Kipruto et al., 2013). The Zulu people of South Africa use A. caulirhiza as a local analgesic for toothache and to ease sensitivity of gums during dental extractions (Crouch et al., 2005).

Spermacoce princeae is flowering herbal plant which belongs to the family Rubiaceae (Augustin et al., 2015). Locally it is known as Omoutakiebo (Ekegusii), Gakungathe (kikuyu), Murkugwet (kipsigis) and Nyamwoch (Dholuo) (Kokwaro, 2009). It grows in tropical regions and it is used extensively. Normally it is used by different communities in Kenya and the rest of Africa to treat
several diseases. Just to mention a few, leaves and roots are used to treat chronic asthma, cancer, mastitis in cows and venereal diseases by the Nandi people in Kenya (Jeruto et al., 2011). Another study carried out in Vihiga County, Kenya found that, cold infusion is made from leaves and drunk in the treatment of diarrhea (Antony et al., 2016). Leaves and stem are used to treat female infertility in Baham, Cameroon (Telefo et al., 2011). In Cameroon, leaves of *Spermacoce princeae* are warmed on fire, ground and mixed with red oil and salt, then is taken orally in treatment of kidney disease (Focho et al., 2009).

II. MATERIAL AND METHODS

2.1 Study Area

The study site was North Mugirango and West Mugirango constituencies of Nyamira County. The study points in West Mugirango constituency were: Sironga (0° 33’14.8536 S and 34° 58’ 2.4996 E), Bonyunyu (0° 31’36.2532 S and 34° 53’20.4108 E) and miruka (0° 29’13.902 S and 34° 53’20.3208 E) whereas the study point in North Mugirango constituency was; Magong’a (0° 28’ 46.7724 S and 34° 57’6.4836 E) in Nyamira County. In this County, local inhabitants regularly use medicinal plants for personal and domestic animal health. Local inhabitants in this County, follow traditional beliefs and customs. Further, most inhabitants living in this area have a tendency of harvesting the medicinal plants from undisturbed vegetation. This is due to the fact that many plant species grow in the study region (Omwenga et al., 2015). Postnatal mothers use *Acmella caulirhiza* and *Spermacoce princeae* to treat child sores and to clean reproductive system respectively in women after birth. Nyamira County is one of highly populated area with approximately 912.5 Km² with a population of 598,252 and a population density of 656 persons per Km² according to (KNBS, 2009).

2.2 Plant materials collection

Acmella caulirhiza and *Spermacoce princeae* medicinal plant specimen were collected from West Mugirango and North mugirango constituencies in Nyamira County with acceptable bio-conservation methods (WHO, 2003a). Harvesting was done in a dry weather morning after the dew had evaporated (Prajapati et al., 2010). The two specimens were carried separately in gunny bags and transported to Pharmacognosy Laboratory of Mount Kenya University within 72 h hours of collection (WHO, 2003a).

![Fig. 1: The two medicinal plant materials collected](Image)

2.3 Processing of plant materials

Processing was done within 72 hours after collection. Herbarium preparations were established and the voucher specimens were processed in duplicate. They were mounted on herbarium sheets, pressed to flatten, to dry and were labeled. Voucher specimen (Number JN001 and JN002) were identified at East African Herbarium in the National Museums of Kenya on basis of morphological characteristics and compared with the voucher specimens recorded in East Africa Herbarium. Voucher specimen (Number JN001 and JN002) were deposited at Mount Kenya University Botanical Herbarium Laboratory in the school of Pharmacy. The collected materials were washed thoroughly with tap water and then air dried under a shade at room temperature for one week. When dried, the plant materials (*A. caulirhiza* and *S. princeae*) were ground into course powder using a porcelain mortar and pestle (Hena, et al., 2010). The course powder materials were labeled and stored in brown paper bags under a dry condition, away from light at room temperature till the time of extraction and phytochemical screening (Prajapati et al., 2010).

2.4 Plant extraction using organic solvents

Using a top loading Weighing Electronic Balance (Models TP-B 2000), 50 grams of the Kenyan *Acmella caulirhiza* and 50 grams *Spermacoce princeae* each powder was weighed separately and transferred into separate conical flasks, labeled with the
constituency of collection, plant species and date. Then 500mls of 100% Ethyl Acetate (Loba Chemie Company Lot#L157601502) was added to cover each plant materials and covered with a stopper, then macerated in the solvent at room temperature for 48 hours with intermittent agitation. Using a funnel and Whatman filter paper No. 1 the crude extracts from each of the plant materials were strained separately into glass reagent bottles then covered with stoppers. The process was repeated with 500mls of 100% Ethanol (VWR Prolabo Company Batch 12D250511) and Methanol (Loba Chemie Company Lot #B193331604). The filtrates were labeled and concentrated in a rotary evaporator at 40 degree Celsius for Ethyl acetate, 60 degree Celsius for Ethanol and Methanol respectively. Using analytical balance, empty beakers were weighed, the extracts from the distillation flask were transferred into them, labeled appropriately and the solvents were evaporated in an Oven set at appropriate temperature. Quantity of each crude plant extract paste was calculated by the formula: Plant crude residue = (weight of beaker + extract) - (weight of empty beaker). The extracted paste of each plant species examined was kept in beakers covered in a refrigerator a waiting for bioactivity assay (Afolayan et al., 2008).

2.5 Aqueous extraction of crude plant material

Aqueous extracts of *Acmella caulirhiza* and *Spermacoce princeae* was made from crude plant material according to Bibi et al.,(2012) by weighing 20 grams of *Acmella caulirhiza* and 20 grams of *Spermacoce princeae*. They were boiled separately in 400mls distilled water in beakers of 400ml capacity on Hot Plate set at 100°C for 5 minutes. The extracts were cooled, using a funnel and Whatman filter paper (No. 1) they were filtered and freeze dried according to Pikal et al., (2010), to extract dry powders from the aqueous solutions of the two plants. Freeze-drying was done in the following steps; freezing, primary drying and secondary drying. Primary drying involves; evacuating the system, increasing shelf temperature resulting to product temperature 2–3°C below collapse temperature. Secondary drying involves; removing unfrozen water from the solute phase by desorption through raising temperatures. The dry and lyophilized extracts were weighed and stored in a freezer for bioactivity testing (Bibi et al., 2012).

2.6 Phytochemical investigation

Phytochemical analysis for various secondary metabolites of the plant extract was done using methods described below. The groups of phytochemical compounds investigated were alkaloids, flavonoids, tannins, coumarins, steroids, sterols, saponins, terpenoids and glycosides.

Test for tannins

Ferric Chloride Test: *Acmella caulirhiza* 0.5 grams and 0.5gms *Spermacoce princeae* dry powdered samples were boiled in 10ml distilled water on a hot plate separately and the extracts were filtered. 2ml portion of each filtrate was measured and 3drops of 0.1% ferric chloride solution was added. Formation of a green colored solution shows tannins presence (Kiran and Prasad 2015).

Test for coumarins

Onto separate filter papers, a few drops of ammonia were added and then a drop of *Acmella caulirhiza* and *Spermacoce princeae* extracts were added separately. Fluorescence on the paper shows coumarins presence (Sangeetha et al., 2014).

Test for flavonoids

Ferric chloride test; 2ml *Acmella caulirhiza* and 2ml *Spermacoce princeae* crude extracts were separately treated with 5 drops of Ferric chloride solution each. Formation of a blackish red colour shows flavonoids presence (Kiran and Prasad 2015).

Tests for steroids

Liebermann test: To 1ml *Acmella caulirhiza* and 1ml *Spermacoce princeae* extract solution in 10ml chloroform solution separaterly, 3drops of acetic anhydride and Sulphuric acid solutions were added slowly from the side of test tube separately. Observation of a brown ring at the junction of the two layers and the upper layer turns green separating the liquids shows steroids presence (Kiran and Prasad, 2015).

Test for sterols

Liebermann test: Few grams of *Acmella caulirhiza* and *Spermacoce princeae* in separate test tubes were dissolved in 0.5 ml hot acetic anhydride and 0.5 ml of chloroform was added. Observations of blue-green ring at interphase a positive reaction (Sabri et al., 2012).

Testing for saponins

Froth test: Using a top loading weigh balance, 0.5 grams *Acmella caulirhiza* and 0.5gms *Spermacoce princeae* powder were weight, placed in separate test tubes and 10ml distilled water added to each. Then the mixture was shacked and left to stand. Persistent froth shows saponins presence (Kiran and Prasad 2015).

Test for terpenoids

Five ml *Acmella caulirhiza* and 5ml *Spermacoce princeae* extracts were mixed separately in 2ml chloroform and then 3ml concentrated sulphuric acid was added. At the interface a reddish brown color shows terpenoids presence (Ablude, 2001).
Test for glycosides
Keller-kiliani test; *Acmella caulirhiza* (50mg), and 50mg *Spermacoce princeae* extracts in separate test tubes, 2ml and 1ml glacial acetic acid and ferric chloride solution were added respectfufully. The contents were heated and cooled then transferred to a test tube containing 2ml concentrated sulphuric acid. Formation of a brown ring at the interface (presence of deoxy sugar characteristic of cardenolides) and observation of pale green colour in the upper layer (steroidal nucleus) shows glycoside presence (Kiran and Prasad 2015).

Test for alkaloids
Using a top loading weigh balance, 0.5gms of *Acmella caulirhiza* and 0.5gms *Spermacoce princeae* dried powdered sample free extract were measured, agitated with 3mls diluted hydrochloric acid and filtered separately. Then the filtrates were tested for alkaloids using dragnetoff’s reagent: To 2mls of *Acmella caulirhiza* and *Spermacoce princeae* filtrate in separate test tubes, 2 mL Dragendorff’s reagent was added to each. A prominent yellow precipitate shows presence of alkaloids (Harborne, 2005).

2.7 Data Analysis and Presentation
Data was stored in Excel spread sheet in a personal computer protected with a password. Also a flash disk secured with a password was used as a backup. Data was presented using tables and photographs.

2.8 Ethical Considerations
Ethical clearance was obtained from Mount Kenya University Ethical Review Committee and NACOSTI before commencement of the study. Phytochemical analysis was conducted in Mount Kenya University Pharmacognosy laboratory.

III. FINDINGS

Quantity of crude plant extracts

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Part used</th>
<th>Ethyl Acetate</th>
<th>Ethanol</th>
<th>Methanol</th>
<th>Aqueous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acmella caulirhiza</td>
<td>Whole plant</td>
<td>1.68 (2.1%)</td>
<td>3g (3.75%)</td>
<td>4g (5%)</td>
<td>2.45g (12.25%)</td>
</tr>
<tr>
<td>Spermacoce princeae</td>
<td>Whole plant</td>
<td>2g (2.5%)</td>
<td>4g (5%)</td>
<td>5g (6.25%)</td>
<td>3g (15%)</td>
</tr>
</tbody>
</table>

Fig. 2: Preliminary phytochemical screening of *Acmella caulirhiza* whole plant
Phytochemical examinations revealed that *Acmella caulirhiza* contains flavonoids, terpenoids, coumarins and sterols compounds. However, tannins, saponin and glycoside were absent. On the other hand, *Spermacoce princeae* contains flavonoids, terpenoids, tannins, saponin alkaloid and glycoside compounds. However, sterols and coumarins were not found.

Table 2: Phytochemical Analysis of Acmella caulirhiza and Spermacoce princeae from Nyamira County

<table>
<thead>
<tr>
<th>Phytochemical compounds</th>
<th>Flavonoids</th>
<th>Terpenoids</th>
<th>Coumarins</th>
<th>Sterols</th>
<th>Tannins</th>
<th>Saponins</th>
<th>Alkaloids</th>
<th>Glycoside</th>
<th>Steroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acmella caulirhiza</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spermacoce princeae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

IV. DISCUSSION

Medicinal plants usage is increasingly popular among the Gusii community of Nyamira County. Many medicinal plants grow around the homestead and have been used naturally for many years by traditional healers to control common health problems.

Determination of Phytochemical Compounds in Crude Plant Extracts of Acmella caulirhiza and Spermacoce princeae

Phytochemical examinations revealed that *Acmella caulirhiza* contains flavonoids, terpenoids, coumarins and sterols compounds. However, tannins, saponin and glycoside were absent. The presence of coumarin compound in this plant is consistent with other study Chhabra *et al.*, (1989). Other findings indicates that, *A. caulirhiza* leaves and flowers contain spilanthol compounds believed to prevent bacterial pathogens in addition to numbing the pain when used in toothache therapy (Neil and Jerald, 2005). Besides, *A. caulirhiza* plant is believed to treat sore throat and stomachache traditionally (Kipruto *et al.*, 2013; Giday *et al.*, 2010; Njoroge and Bussmann, 2006; Chhabra *et al.*, 1989).

On the other side, *Spermacoce princeae* contained flavonoids, terpenoids, tannins, saponin alkaloid and glycoside phytochemical compounds. However, sterols and coumarins were not found. This result concurs with the phytochemical results reported by Jeruto *et al.*, (2011) on phytochemical compounds present in this plant. *S. princeae* is used traditionally to clean reproductive system after birth. Other findings have shown that *S. princeae* treats venereal diseases, pneumonia, typhoid, Chronic asthma, cancer, wounds, eye
problems, venereal diseases, diarrhoea skin and kidney diseases (Jeruto et al., 2011). This validates therapeutic value of this plant, in traditional management of typhoid, pneumonia and eye infections(Jeruto et al., 2011).

Therapeutic value of medicinal plants is determined by the presence of phytochemical compounds having certain functional and pharmacological activity (Geeta et al., 2012). Flavonoids compounds have been reported to have antimicrobial activity (Pandey et al., 2010; Cowan, 1999). Example flavonoids such as flavone and flavonol glycosides, apigenin, isoflavones, galangin flavanones, and chalcones have been revealed to possess effective antibacterial activity (Cushnie and Lamb, 2005). A new flavanone, 7-hydroxy-6,8-dimethoxyflavanone, showed anti-mycobacterial activity against M. tuberculosis H37Rv at 50 μg/mL MIC value (Prawat et al., 2013). Mode of action results from their ability to inactivate microbial cell envelope transport proteins, enzymes and adhesins (Kumar and Pandey 2013; Mishra et al., 2009; Cowan, 1999). Lipophilic flavonoids may disrupt microbial membranes (Mishra et al., 2009; Cowan, 1999). Flavonoids inhibit cytoplasmic membrane function and they inhibit DNA gyrase and hydroxyacyl-acyl carrier protein dehydratase activities (Zhang et al., 2008).

Terpenoids have antimicrobial activity against bacterial and fungi (Omojate et al., 2014; Ghoshal et al., 1996). Example petalostemumol terpenoid exhibited excellent effects against Bacillus subtilis and Staphylococcus aureus (Omojate et al., 2014). They also control Listeriamonocytogenes Cowen, (1999). Terpenoids derived from essential oil inhibitory 60% fungi while they inhibit 30% bacteria (Omojate et al., 2014; Mohd et al., 2014). Terpenoids act by disrupting cellular membrane by lipophilic compounds (Cowan, 1999; Hatic and Ayse 2014). Coumarin, has been reported to contain antimicrobial activity against Candida albicans and chronic infections (Thornes et al., 1982). Example coumarin compound isolated from Angelica lucida L. is effective against oral pathogens such as Streptococcus viridians and Streptococcus mutans (Wiselski et al., 2009). They act by activating other cells of immune system stimulating macrophages, indirectly affecting the disease causing agents (Casley et al., 1997).

Sterols have been reported to contain antimicrobial activity. Examples stem sterols of Withania somnifera is reported to have antimicrobial effects against P. aeruginosa. As wellstem sterol of Euphorbia hirta and Terminalia chebula is active against S. aureus (Geeta et al., 2012). There is no information on antimicrobial mode of action of plant steroids and sterols. Tannins have been reported to contain bactericidal activity against gram positive organisms such as S. aureus and used for the treatment of diarrhea an example of enteric diseases (Omojate et al., 2014; Chung et al., 1993). Tannins have been used as antiseptic whose activity is due to manifestation of the phenolic group. Tannin-rich plants have been shown to be toxic to filamentous fungi, yeasts, and bacteria (Omojate et al., 2014). Example tannins extracted from Solanum trilobatum plant have been reported to possess high antibacterial activity against Staphylococcus aureus and Proteus vulgaris at 2.5mg/ml concentration (Doss et al., 2009). Tannin compounds act by interfering with bacterial cell wall causing disintegration of bacterial colonies thus inhibiting microbial growth (Erasto et al., 2004). They also act by forming complexes with proteins and polysaccharide through hydrogen bonding, hydrophobic bond and covalent bond resulting to inactivation of microbial adhesion, enzymes and cell envelope transport proteins (Haslam, 1996; Haslam et al., 1988). Also they have the ability to inactivate microbial adhesins, enzymes, cell envelope and transport proteins (Omojate et al., 2014). Condensed tannins have been confirmed to bind to cell walls of ruminal bacteria, thus inducing bacterial stasis and protease activity (Jones et al., 1994).

Saponins have been reported to have antimicrobial activity (Moyo et al., 2012). Example Yucca saponin have antibacterial activity against Staphylococcus aureus and Lactobacillus (Tanaka et al., 1996). Mode of action is by altering with the permeability of cell walls hence they exert toxicity on all tissues. Also they form complexes with cell membranes hence elicit changes in cell morphology leading to cell lysis (Moyo et al., 2012).

Alkaloids have antibacterial properties against gram-positive and gram-negative bacteria (Donald et al., 2016). Example alkaloids Chloroform and ethanol extracts from Callistemon citrinus leaves have been reported to have antibacterial activity against Staphylococcus aureus, E. coli, S. typhi and P. aeruginosa via disc diffusion methods (Krisha et al., 2012; Donald et al., 2016). They act by disrupting cell wall membrane (Cowan, 1999). Glycosides: have been reported to contain antibacterial activity. Example glycosides compounds extracted from Caesalpinia coriaria (Jacq) Willd exhibited antibacterial activity against E.coli, Staphylococcus aureus and Klebsiella pneumonia (Anandhi et al., 2014). Glycosidic compounds (G1) extracted from Citrus laurantifoia L. fruits exhibited broad spectrum antibiotic effects against Staphylococcus aureus, Streptococcus, Pseudomonas aeruginosa and Escherichia coli (Sameerah et al., 2013). Mode of action glycoside act by causing leakage of cellular materials by breaking the outer membrane. Also glycosides inhibit the respiration and growth of pathogenic micro-organisms by entering the inner membrane and inactivating the enzyme system dehydrogenase (Anandhi et al., 2014).

V. CONCLUSION AND RECOMMENDATION

Demonstration of phytochemical compounds in the two plants such as flavonoids, terpenoids, coumarin, sterols, tannins, saponin, alkaloids and glycosides validates their use in management of puerperal sepsis. Mode of action of compounds present in the two plants indicates that the plants have therapeutic potential. Phytochemical compounds analysis lays a foundation for ethnobotanical and pharmacological investigations for new drug discovery.

A. caulirhiza and S. princeae plants may be used in treating puerperal sepsis. The two plants may be used as medicine and can be a potent source of complementary and modern medicine. Further research is recommended to isolate and identify pure compounds of the two plants.
REFERENCES

I am glad to almighty God for being with me through this far.

I am importantly grateful to my supervisors Prof. John Membu Ochora Department of Botany Jomo Kenyatta University of Agriculture and Technology, Dr. Jackson Odhiambo Onyuka from the school of Medicine, Department of Medical Laboratory Science, Mount Kenya University and Mr. Jared Misonge Onyancha from the School of Pharmacy, Department of Pharmacognosy, Mount Kenya University who strongly and patiently supervised this research project, giving me valuable guidance throughout this research thesis goes. My appreciation goes to my immediate supervisor Mr. Masasi of Mount Kenya University health centre and

www.ijsrp.org
my colleagues at work for encouraging me to work hard. Lastly my appreciation goes to Mount Kenya University and Department of Medical Laboratory, school of Medicine for providing me with the opportunity to take my MSc studies. May God bless them.