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Abstract- We utilized root systems, via correspondence, in other
considered  quiver

representations[ijlfi], invariant theory and Coxeter groups.

areas of study. In particular, we

. PRELIMINARIES

H points wise and sends its orthogonal vectors to their opposite

with respect to .

Here we will introduce Coxeter systems and Weyl group and
their classifications. While the finite reflection groups have a
special type of root system. To clarify that we consider the
following concepts:

reflection is natural geometric concept. It is a linear
transformation of Euclidean space that fixes a hyper plane

(i) Let 9 be Lie algebra then the Killing form on & * & is defined by
B(X,Y)=—-TrladXcad¥) ER

(ii) The Lie algebra @ is semisimple if and only if & is non- degenerate.

and

(i) . € B where Dis Cartan sub algebras, then we can define abstract root systems as follows:

ABSTRACT ROOT SYSTEMS

If B is non — degenerate on 7 , so there is an induced isomorphism : i — R* _ by definition, < §(h),h’ == B(h ,h")

Let's calculate

< sHp,H, > = B(Hp,H,) = B(H,, Hp)
- B(Ha [Xp.Yp] ) = B([Ha, Xp1.Yp)
- B(Xp,Yp)B(H,)
= =B([Hp, Xp] Yp)B(H)

= _;B(H,E’J Hﬁ}ﬁ(Hn:}

(Hg.Hg)

s(Hg)=—7"—58

Thus, we have that

_ _q _ 2Hg ) _ Za(Hg)
(@fp)=<as7f>=a (B'iH,sﬂ,s}  B(Hg.Hg)

28

Inparticular, letting & = 5, we get s(Hp) =

to rewrite this fact

(B.B)

(B Symmetric)

(B invariant)

(2Xg = [Hg. Xg])

(B invariant)

, also compute

this is sometimes called the co-root of , and denoted B . then we can use 1)
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2(af) _ 2aB)

ez EA
For®f €A (ap) and (B.8) A = AC h¥ (set of roots)
L 2aB
Now we can define 831" — "y () =x (B.8) ﬁ. this is the reflection through the plane orthogonal to 5 in *. The

group generated by the ' for £ € A s a Coxeter group .

Properties of root system :
Basic properties of the root decomposition are :

1. [gﬂ: , g,ﬂ] - Gatp

2. B{gﬂug,ﬁ“}z ﬂifl‘l’"‘ﬁi 0
3. Bl 8z ®8-z isnon—degenerate
4. Bl & isnon - degenerate

Definition (2.1) :
An abstract reduced root system is a finite set A B™ X\ [0] which satisfies :
1. & spans R

) p—

2.1 % 5 € Athen (8.8 €Lonamr@) =4
e @BEL= mp(a) €D, iy & —1p(a) € Zg) 4q

3. If @ ka € Athen k = 1 (this is the reduced part), the number ™ is called the rank of 4.
Notice:

That given root system is 81 B and 42C B™ we get that d1]1A2= R™BR™ js root system .

I1l.  REFLECTION GROUPS
Hy and H irror, Hi' H7 | HZ is disioint uni :
Suppose f71 and 1z are two mirror, £31 +41z is two half planes where **¢ is disjoint union of two half planes ,define the angle
Hy' N H; with measure @ = £(Hy NHY ) Here ¢ =0 & Hy NH; =0

H;

Let 1 = TH, %2 = TH, The composition $152 is the counterclockwise rotations about the angle 20 it @ #0and a
translation if ® = 0.

sps1(p) ® s251(p)
A H
// =
H._‘ , _.--"'_“_- - _-¢||l|u.} o 5y 0p)
— e  n e !
- = |
.--“*H HY —— P

G s group generated by the two reflections S1- 5z,

Definition (3.1):
n
A reflection group in a space of constant curvature is a discrete group of motions of X generated by reflection.
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Theorem (3.2):
Let T be a reflection group in X" There exists a convex polytope P(T) =Nier Hi such that :
i. P is a fundamental domain for the action of T in Xn;

H ,HS

i is equal to zero or T/M

ii. The angle between any two half spaces ij for some positive integer ""ij unless the angle is

divergent.

iii. T s generated by reflections Th, ot = ‘r.

Definition (3.3):
A finite reflection group is a pair (G.V) where ¥ is Euclidean space, G is a finite subgroup of o) and 0 = ‘:{sx:Sx EG)H
generated by all reflections in G,

Generation means ;: & = X, then & genertaes GifG = (X) where X is defined as one of the following equivalents definitions:
i, (X) = NgagyoxH (semantic)

= + t,
ii.{X} _{1}U{ﬂ-1,ﬂ-2,-u--,ﬂ-n-ﬂ-z EX} (SyntaCtiC)

Equivalence :
@G !
(61, V1) ~ (62, V1) if there is an isometry @: V1 = Va gt {oTo 2 Tec, )
Example (3.4):
= E =
F XEE {D’l} is field of two elements. Consider action of Sy on F~, E1s wees By basis of ]Fn.
Vo ES,:t (s) =¢,

]

Consider semi direct product 5= W F" = S X F" the product is
(o,a).(z,b) = (o1,t,_,(a) + b)

Let us check that this is the action of 5, K IFn:

Tt1.0) (T':r,ﬂ}(eij) = Tona (exc)
= [_1:]"31'[@31_'::.}
— [_1][rr—1(rz}]z'e )

Tii)
= T':T,tr—ll:ﬂjljl [ei]
B, = (S, X F*, k™)
It is reflection since Sn K F" = {[(I‘rjj: ﬂ)r Elr Ez':]} and T':':E'J:'JE'] = sﬂi_s_l-" T{:L,.a,-:l = Sgl-_ |Bn| =nl En, B:"‘-‘.{z [:4:]

IV. COXETER SYSTEMS
Definition (4.1):
A group W is a Coxeter group if there exists a subset 5 S Wgych that

W = (s € S|(ss") ™= = 1)

where Mssr = L and Masr € (2.3, .. JU{0) fr a1 5 # 5" The pair (W, S) is then called a Coxeter system.
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1. Let (W,5) be a Coxeter system. If W is finite then we say that (W, 5) is finite. If W = Wy X Whgng 5= 51 US55 \where
D+ 5, < Wang (Wfrsz':] is Coxeter system for — 1,2, one say that (W,5) is reducible. Other wise (W, 5) is irreducible.

2. Let (W,5) be a Coxeter system. The Coxeter graph X assigned to (W, 5) is constructed as follow:

(i) The elements of 5 form the vertices of X;

(i) given 5,5 €5 thereisno edge between < and 5 if Mg = 2.

(iii) given 5.5 €5 thereisan edge labelled by ™ ==between < and S if Mgy =3

Example (4.3):

=z
Use the definition(4.1) to find the Coxeter system for F f} 27
Loz =tsslsi =1}

Example (4.4):
The Coxeter graph of B, following :

o+—0
Theorem (4.5):

if (W, 5) is a finite irreducible Coxeter system, then its Coxeter graph is one of

the following :
.41! H H '[fl E‘ J.II
3 or Gy O—0O-O—0—0 (n = 2)

D, O—0O O<i (n = 4)

b \-_J' k,_,; J \_}—O

Galm) OO

Theorem (4.6):

Each of the Coxeter systems represented by the Coxeter graphs Ay, By, Gy (™M) griges from a finite reflection group. Hence
the map is surjective and we get a bijection
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{stahle isomorphic classes }

of finite reflection group
1=1{ isomorphic classes }

of finite Coxeter systems

V. WEYL GROUPS
Here we will study Weyl groups as special case of finite reflection groups. Indeed they are finite Euclidean reflection groups
defined over Z instead of B.

Definition (5.1):
A lattice of rank ! is a free Z- module £ = Z°, A weyl group is a finite Euclidean reflection group W < O(E) admitting a W.
invariant lattice £ = ]E,where

E=LX;R
Note that for all @ B € & ywe have the following identity

(e, B) = 2% cos@

g=8

Where z.8 is the angle between these vectors. Thus we have

{a, BB, a) = 4cos” @

Since the only root system & is crystallographic, we must have (a,fNB.a)=01,23 4

w 2w 3w S
Hence the only possibilities for Barez’3

VI. DYNKIN DIAGRAMS

Definition (6.1):

Now if we change the notaion for Coxeter graphs, we get a Dynkin diagrams. Namely, for A an essential crystallographic root
system and 2 a fundamental system of 5, we assign a graph X to A as follows :

The elements of 2 from the vertices of X.
Given @ # B € X and O the angle between them, we assign 0,124 3 edge(s) between @ and B by the following rule

T
g =" No edge
2
21 | 1edge
g =—
3
37 | 2 edges
f=—
4
51 | 3 edges
g =—
&

Lemma (6.2):
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If & is irreducible, then at most two root lengths occur in A 1f two root lengths occur in ﬁ, we call the roots short and long. We

denote it in the Coxeter graph of A by an arrow pointing towards the shorter root.i.e., if lell = 151l we have

ik

' i or P
IL'_)_—_\::ll_.___ } T

¥ (4] i |

1

A Coxeter graph with such arrow is called a Dynkin diagram.
Theorem (6.3):

If & is an irreducible essential crystallographic root system, then its Dynkin diagram is one of the following:

i T—{) 1]
] e F] ™ i I .
s S —" = ] |
- J - J
i3, i . ..x L 1)
=
v
-
i 0 T o Y o o o
1 L | - L
.Ix
L
[l it B o T U o o
L, T e e
e
I __.-. -~ -
et s ] s L s -
|
P o
/ x } M ol
4 -".'.'_"\.:_-

Theorem (6.4):

There exists a crystallographic root system having each of Ay, By e

VII. CONCLUSION

A finite reflection group with a special type of root system

has a Coxeter graph made a Coxeter system that we can
represented it by a Dynkin diagram with such an arrow. a group
can have more than one Coxeter system.
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