
International Journal of Scientific and Research Publications, Volume 5, Issue 8, August 2015 1
ISSN 2250-3153

www.ijsrp.org

Agent Oriented Software Engineering: A So-Lution in
Developing Multi-Agent Systems.

Elizabeth Ndunge Benson

Phd Information Technology Student, Jomo Kenyatta Univerity, Kenya

Abstract- Agent Oriented Software Engineering (AOSE) is an
exciting and promising approach for solving complex and real
world problems. It is crucial for industrial and commercial
application as these systems are required to operate in
increasingly complex, open, dynamic, unpredictable and
inherently high interactive environments.
 In this paper, I will outline the concept of agent oriented
software engineering and explain the need of AOSE as a
programming paradigm. The paper also presents a discussion on
challenges of developing multi-agent systems and how agent
oriented software engineering can be applied to solve these
challenges.

Index Terms- Agent-Oriented Software Engineering (AOSE);
Information Communication Technology (ICT); Object Oriented
Programming; Multi-Agent Systems (MASs); Multiagent,
Generic Architecture for Information Availability (Gaia),
Multiagent Systems Engineering Methodology (MaSE)

I. INTRODUCTION
n agent is a computer system that is situated in its
environment and is capable of autonomous action in order

to meet its design objectives (Leon florin, 2010). Intelligent
agents retain the properties of autonomous agents, and in
addition show a flexible behaviour, characterised by:
 • Reactivity: the ability to perceive their environment, and
respond in a timely manner to changes that occur in it;
 • Pro-activeness: the ability to exhibit goal-directed
behaviour by taking the initiative;
 • Social ability to interact with other agents and possibly
human users.
 (V. Dignum and F. Dignum ,2010), The most important
difference between traditional object-oriented programming and
agent-based programming is the freedom of an agent to respond
to a request. When an object receives a message, i.e. one of its
methods is called, the control flow automatically moves to that
method. When an agent receives a message, it can decide
whether it takes a corresponding course of action or not.
Because of the distributed, autonomous and cooperative features,
the design and implementation of algorithms in a multi-agent
framework raise a different class of problems from the design
and implementation in an object- oriented environment.
 This paper is structured in three sections. Section one
presents the need for agent oriented software engineering
(AOSE), section two outlines the challenges of developing multi-
agent systems and section three explains how agent oriented

software engineering addresses the challenges of developing
multi-agent systems.

II. LITERATURE REVIEW
SECTION ONE
 THE NEED FOR AGENT ORIENTED SOFTWARE
ENGINEERING.
 An agent is a software entity exhibiting the following
characteristics in pursuit of its design objectives (Huib
Aldewereld and Virginia Dignum, 2011)

i. Autonomy. An agent is not passively subject to a global,
external flow of control in its actions. That is, an agent
has its own internal thread of execution, typically
oriented to the achievement of a specific task, and it
decides for itself what actions it should perform at what
time.

ii. Situatedness. Agents perform their actions while
situated in a particular environment. The environment
may be a computational one (e.g., a Website) or a
physical one (e.g., a manufacturing pipeline), and an
agent can sense and effect some portions it.

iii. Proactivity. In order to accomplish its design objectives
in a dynamic and unpredictable environment the agent
may need to act to ensure that its set goals are achieved
and that new goals are opportunistically pursued when-
ever appropriate.

 (Bass et al. 2009), traditional object-based computing
promotes a perspective of software components as “functional”
or “service-oriented” entities that directly influences the way that
software systems are architected. Usually, the global design
relies on a rather static architecture that derives from the
decomposition (and modularization) of the functionalities and
data required by the system to achieve its global goals and on the
definition of their interdependencies. (Schwabe et al, 2010) in
their research argue that:

i. Objects are usually considered as service providers,
responsible for specific portions of data and in charge of
providing services to other objects

ii. Interactions between objects are usually an expression
of inter-dependencies; two objects interact to access
services and data that are not available locally;

iii. Everything in a system tends to be modeled in terms of
objects, and any distinction between active actors and
passive resources is typically neglected.

A

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 8, August 2015 2
ISSN 2250-3153

www.ijsrp.org

 (Zambonelli and Parunak, 2003) Object-oriented
development, while promoting encapsulation of data and
functionality and a functional-oriented concept of interactions,
tends to neglect modeling and encapsulation of execution
control. Some sort of “global control” over the activity of the
system is usually assumed (e.g., the presence of a single
execution flow or of a limited set of controllable and globally
synchronized execution flows). However, assuming and/or
enforcing such control may not be feasible in complex systems.
Thus, rather than being at risk of losing control, a better solution
would be to explicitly delegate control over the execution to the
system components
 (Parunak, 2009) Delegating control to autonomous
components can be considered as an additional dimension of
modularity and encapsulation. When entities can encapsulate
control in addition to data and algorithms, they can better handle
the dynamics of a complex environment (local contingencies can
be handled locally by components) and can reduce their
interdependencies (limiting the explicit transfer of execution
activities). This leads to a sharper separation between the
component-level (i.e., intra-agent) and system-level (i.e., inter-
agent) design dimensions, in that also the control component is
no longer global.
 (V. Dignum, 2009)The dynamics and openness of
application scenarios can make it impossible to know a priori all
potential interdependencies between components (e.g.,what
services are needed at a given point of the execution and with
what other components to interact), as a functional-oriented
perspective typically requires. Autonomous components
delegated of their own control can be enriched with sophisticated
social abilities, that is, the capability to make decisions about the
scope and nature of their interactions at run-time and of initiating
interactions in a flexible manner (e.g., by looking for and
negotiating for service and data provision).
 (Koen V. Hindriks, 2009)For complex systems, a clear
distinction between the active actors of the systems (autonomous
and in charge of their own control) and the passive resources
(passive objects without autonomous control) may provide a
simplified modeling of the problem. In fact, the software
components of an application often have a real-world counterpart
that can be either active or passive and that, consequently, is
better suited to being modeled in terms of
both active entities (agents) and passive ones (environmental
resources).
 (Nick Tinnemeijer., 2011)Traditional object abstractions
have been enriched by incorporating novel features such as
internal threads of execution, event-handling, exception
handling, and context dependencies and are being substituted, in
architectural styles, by the higher level abstraction of self-
contained (possibly active) coarse-grained entities
(i.e.,components).
 The researcher argues that these changes fundamentally
alter the way software architectures are built, in that active self-
contained components intrinsically introduce multiple loci of
control are more naturally considered as repositories of tasks,
rather than simply of services. Also, the need to cope with
openness and dynamics requires application components to
interact in more flexible ways (e.g.,by making use of external
directory, lookup, and security services).

 (Birna van Riemsdijk et al ,2011)Objects and components
are too low a level of abstraction for dealing with the complexity
of today’s software systems, and miss important concepts such as
autonomy, task-orientation, situatedness and flexible interactions.
For instance, object- and component-based approaches have
nothing to say on the subject of designing negotiation algorithms
to govern interactions, and do not offer insights into how to
maintain a balance between reactive and proactive behaviour in a
complex and dynamic situations.
 This forces applications to be built by adopting a
functionally oriented perspective and, in turn, this leads to either
rather static software architectures or to the need for complex
middleware support to handle the dynamics and flexible
reconfiguration and to support negotiation for resources and
tasks.
 (Ghassan Beydoun, 2011)An agent-oriented approach is
beneficial in the below types of situations

i. Where complex/diverse types of communication are
required.

ii. When the system must perform well in situations where
it is not practical/ possible to specify its behavior on a
case-by-case basis.

iii. Situations involving negotiation, co-operation and
competition among different entities.

iv. When the system must act autonomously
v. When it is anticipated that the system will be expanded,

modified or when the system purpose is expected to
change.

 In summary, agent-based computing promotes an
abstraction level that is suitable for modern scenarios and that is
appropriate for building flexible, highly modular, and robust
systems.

III. CHALLENGES OF DEVELOPING MULTI –AGENT
SYSTEMS

 There are two main classes of multi-agent systems.
i. distributed problem solving systems in which the

component agents are explicitly designed to
cooperatively achieve a given goal;

ii. open systems in which agents are not co-designed to
share a common goal, and have been possibly
developed by different people to achieve different
objectives. Moreover, the composition of the system can
dynamically vary as agents enter and leave the system.

 (Carles Sierra et al, 2009) One of the major problems in the
field of multi-agent systems is the need for methods and tools
that facilitate the development of systems of this kind. If the
agents are considered to have the potential to be used as a
software engineering paradigm, then it is necessary to develop
software engineering techniques that are specifically applicable
to this paradigm.
 Their research argued that the acceptance of multi-agent
system development methods in industry and/or enterprise
depends on the existence of the necessary tools to support the
analysis, design and implementation of agent-based software.

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 8, August 2015 3
ISSN 2250-3153

www.ijsrp.org

 (Hongyuan Sun et al, 2009) The major challenges of
developing multi-agent systems are summarized by the below
questions

i. How to formulate, describe, decompose and allocate
problems and synthesize results among a group of
intelligent agents?

ii. How to enable agents to communicate and interact?
What communication language and protocols do we
use? How can heterogeneous agents interoperate? What
and when can they communicate? How can we find
useful agents in an open environment?

iii. How to ensure that agents act coherently in making
decisions or taking action, accommodating the nonlocal
effects of local decisions and avoiding harmful
interactions? How do we ensure the MAS do not
become resource bounded? How do we avoid unstable
system behavior?

iv. How to enable individual agents to represent and reason
about the actions, plans, and knowledge of other agents
to coordinate with them; how do we reason about the
state of their coordinated process (for example,
initiation and completion)?

v. How to recognize and reconcile disparate viewpoints
and conflicting intentions among a collection of agents
trying to coordinate their actions?

i. How to design technology platforms and development
methodologies for MASs?

 (Hongyuan Sun, 2010) the challenges in developing multi-
agent systems include the following.

i. There is no agreement on how to identify and
characterize roles in the analysis phase and agent types
in the design phase.

ii. The concepts used in the methodologies, like
responsibility, permission, goals and tasks do not have a
formal semantics or explicit formal properties. This
becomes an important issue when these concepts are
implemented; implementation constructs do have exact
semantics.

iii. There is a gap between the design models of the
methodologies and the existing implementation
languages. It is unreasonable to expect a programmer to
implement the proposed complex design models. To
bridge the gap, a methodology should either intro- duce
refined design models that can be directly implemented
in an available programming language, or use a
dedicated agent-oriented programming language which
provides constructs to implement the high-level design
concepts.

iv. The methodologies that include an implementation
phase, such as Tropos, propose an implementation
language in which it is not explained how to implement
reasoning about beliefs, reasoning about goals and
plans, reasoning about planning goals, or reasoning
about communication.

v. It is widely recognized that an agent may enact several
roles. None of the methodologies addresses the

implementation of agents that need to represent and
reason about playing different roles.

vi. The methodologies, with the exception of the
organizational rules ignore organizational norms and do
not explain how to specify and design them or even how
to do implementation.

vii. Open systems are not really supported. The
methodologies implicitly suppose that agents are
purposely designed to enact roles in a system. But as
soon as agents from the outside may enter the analysis,
design and implementation needs to treat agents as
given entities.

viii. In the analysis, methodologies do not consider the
environmental embedding of a system. The structure of
the organization in which a system will be embedded,
has a large influence on the type of organizational
structure of the system, at least when it interacts with
more than one person.

 (K. S. Decker et al 2010), the implementation is developed
completely manually from the design. This creates the possibility
for the design and implementation to diverge, which tends to
make the design less useful for further work in maintenance and
comprehension of the system.
 Their research argues that although present AOPLs provide
powerful features for specifying the internals of a single agent,
they mostly only provide messages as the mechanism for agent
interaction. Messages are really just the least common
denominator for interaction, and, especially if flexible and robust
agent interactions are desired, it is important to design and
implement agent interactions in terms of higher-level concepts
such as social commitments, delegation of goal/task,
responsibility, or interaction goals . Additionally, AOPLs are
weak in allowing the developer to model the environment within
which the agents will execute.
 (P. Yolum, et al 2011), In most of the practical approaches
for verification of multi-agent systems, verification is done on
code. While this has the advantage of proving properties of the
system that will be actually deployed, it is also often useful to
check properties during the system design, so more work is
required in verification of agent design artifacts. In fact, all the
work on model checking for multi-agent systems is still in early
stages so not really suitable for use on large and realistic systems.
(Juan, T., Pearce, A., et al, 2002) believes that the major
challenges of designing a multi-agent system include:
 1. How to decompose problems and allocate tasks to
individual agents.
 2. How to coordinate agent control and communications.
 3. How to make multiple agents act in a coherent manner.
 4. How to make individual agents reason about other agents
and the state of coordination.
 5. How to reconcile conflicting goals between coordinating
agents.
 6. How to engineer practical multiagent systems

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 8, August 2015 4
ISSN 2250-3153

www.ijsrp.org

IV. HOW AGENT ORIENTED SOFTWARE
ENGINEERING ADDRESSES THE CHALLENGES

OF DEVELOPING MULTI-AGENT SYSTEMS
 (Wooldridge, M., Jennings, 2000) the focus of multi-agent
programming languages can be on individual agents, multi-agent
organizations, multi-agent environments, or their combinations.
Programming languages focusing on individual agents are
concerned with issues such as autonomy of agents, reactive
behaviors, social awareness, reasoning about norms and
organizations, communication and interaction with other agents,
and capabilities to sense and act in a shared environment.
 (Zambonelli, F., Jennings, 2000), Multi-agent organizations
can be implemented either endogenously or exogenously, i.e.,
either individual agents are implemented in terms of social and
organizational concepts, or organizations are implemented as
computational entities outside agents controlling their behaviors.
Their paper argued that programming languages that support the
implementation of multi-agent environments need to provide
programming constructs to implement sense and act abilities of
agents, tools, artifacts, services, and resources that can be used
by agents.
 (Bresciani, P., Giorgini, P et al, 2004), Some multi-agent
programming languages come with formal and computational
semantics, an implemented interpreter, or both. The existence of
formal semantics for multi-agent programming languages is
essential for a better understanding of the programming
constructs and the verification of multi-agent programs. Without
a formal semantics one cannot guarantee the correctness of
programs.
 Multi-agent programming languages can be analyzed by
means of general programming principles they respect and
support. Examples of such principles are modularity,
encapsulation, reuse, separation of concerns, recursion,
abstraction, exception handling facilities, and support for legacy
codes. Of course, the very concept of agent itself supports some
of these principles such as encapsulation and reuse.
 Dam, K. H., & Winikoff, M. (2003). the idea of
implementing environments and organizations separately support
the separation of concerns principle. Multi-agent programming
languages can be used in a more efficient and effective manner
when they support such principle at different levels. For example,
at the individual agent level, modularity can be used to support
the implementation of different functionalities and roles,
recursion can be used to implement complex plans, and
exception handling can be used to implement plan failure
operations.
 Danny Weynes (2008), Multi-agent programming languages
can be evaluated in terms of the functionalities provided by their
corresponding integrated development environments. An
integrated development environment supports the development
of multi-agent programs by means of functionalities such as
editing tools allowing easy browsing of codes, debugging tools
that help to localize errors and anomalies, and automatic testing
tools allowing the automatic generation of test cases for specific
part of the programs. The main difficulty for such an integrated
development environment is the distributed nature of multi-agent
programs, e.g., how to browse through a program that is
distributed by means of agents, modules, environment, and
organization programs. Debugging is even harder as it is not

clear how to debug one single agent when the execution of the
agent depends on the execution of other agent programs, the
environment program, and the organization program

V. AGENT ORIENTED METHODS AND
HOWTHEYADDRESS THE CHALLENGES OF

DEVELOPING MULTI-AGENT SYSTEMS.

1. GAIA
 Gaia comprises an analysis and design phase and explicitly
refrains from including an implementation phase. Jurgen Lind
(2010),
 Analysis is driven by a set of requirements and aims at
understanding the system and its structure. It provides two
models: a role model and an interaction model. The role model
specifies the key roles in the system and characterizes them in
terms of permissions (the right to exploit a resource) and
responsibilities (functionalities). The interaction model captures
the dependencies and relations between roles by means of
protocol definitions. Gaia is only concerned with the society
level; it does not capture the internal aspects of agent design.
 Virginia Dignum, Hulb Gideweld and Frank Dignum
(2012), The design phase provides three models: the agent
model, the service model, and the acquaintance model. The agent
model identifies so called agent types, which are sets of roles.
The service model identifies the services (or functions)
associated with a role. Finally, the acquaintance model identifies
the communication links between agent types. This model can be
used to detect potential communication bottlenecks. The method
has been extended with a model of organizational rules and
organizational structure. This allows the developer to specify
global rules that the organization should respect or enforce.
Like norms, such rules are typically formulated at a high
conceptual level. Little is said about ways of implementing them.
The interaction of agents with the environment is not treated
separately.
 V. Julian and V. Botti (2012), Gaia does not support the
implementation phase.Therefore it is difficult to check whether
agents really implement a certain role. Especially when different
roles containing several responsibilities are joined into an agent
type. Although permissions seem to be norms, it is unclear how
they are actually translated to the system itself. Should the agent
itself make sure that it will only perform actions it is permitted to
do? Do the resources force the agent to refrain from forbidden
actions? Does the agent know about its permissions? Finally,
Gaia cannot support open agent systems, because it does not treat
agents as given entities.

2. AII METHODOLOGY

Franco zambonelli, Nicholas R. Jennings and Michael wooldrige
(2010), The AAII methodology makes no distinction between the
analysis and design phase.
 The methodology generates a set of models, based on
existing object-oriented models. From an external viewpoint
(inter-agent), the system is decomposed into agents, which are
modeled as complex objects characterized by their purpose, their

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 8, August 2015 5
ISSN 2250-3153

www.ijsrp.org

responsibilities, the services they perform, the information they
require and maintain, and their interaction.
 N.R Genza and E.S Mighele (May 2013), AAII is one of the
few approaches that takes the intra agent perspective seriously.
 Roles can be considered as responsibilities, which can in
turn be considered as sets of services. Services are activities that
are not natural to decompose any further. Hardly any reasoning is
required by the agents. The methodology is very practice-
oriented which leads to graphical models, but without much
semantics of the concepts. It is left to the programmer to fill in
the gaps.
 Like Gaia, AAII does not support open agent systems. The
organization of the system is almost completely hierarchical in a
truly object-oriented manner. No norms or rules are specified as
such.

3. SODA
 The SODA methodology has a clear distinction between
analysis and design. The methodology is only concerned with the
inter-agent viewpoint.
 N.R Genza and E.S Mighele (May 2013), The analysis
phase provides three models: the role model, the resource model,
and the interaction model. The role model defines global
application goals in terms of the tasks to be achieved. Tasks can
be individual or social. Individual tasks are assigned to roles
while social tasks are assigned to groups. A group is an abstract
concept that can be analyzed as a set of roles. The resource
model captures the application environment and identifies the
services that are available. The resource model defines abstract
access modes (permission), modeling the different ways in which
the services associated with a resource can be exploited by
agents. The interaction model defines the interaction between
roles, groups and resources in terms of protocols.
 Leon florin (2010) The design phase refines the abstract
models from the analysis phase and provides three models: the
agent model, the society model and the environment model. The
agent model specifies the mapping from roles onto agent classes.
An agent class is characterized by the tasks, permissions and
interaction rules associated to a role. It also specifies the
cardinality (the number of agents in that class), their location
(fixed for static agents and variable for mobile agents) and their
origin (inside or outside the system). The society model specifies
a mapping from groups onto societies of agents. An agent society
is characterized by the social tasks, the set of permissions, the
participating social roles, and the interaction protocols. Finally,
the environment model specifies a mapping from resources onto
infrastructure classes.
 Infrastructure classes are characterized by the services, the
access modes for roles and groups, and the protocols for
interacting with the environment.
 SODA is a very usable development methodology. The
inter-agent aspect is well developed. The interaction among
agents, but also the interaction between agents and the
environment is taken seriously. Garcia, A., Silva, V., Chavez, C.,
& Lucena, C. (2002). However, SODA does not specify the
design of the agents themselves. Therefore it too leaves a gap
between the design and implementation of the multi agent
system. Due to the fact that SODA recognizes explicit

organizational structures and rules, it becomes applicable for
open agent systems.
 Dam, K. H., & Winikoff, M. (2003Although many concepts
are used for the inter-agent specification, they are not formalized.
Therefore it becomes difficult to check whether agents fulfilling
a role comply to all the organizational rules. Another worry is
that the use of procedural specifications of behavior, like
standardized tasks, will bias the design. It suggests traditional
imperative programming constructs. Such a simple choice is
nice, when it is enough. However, such a view may limit the
potential benefits of multi-agent systems, such as flexibility and
robustness, because it does not take advantage of the autonomy
and possible intelligence of the agents.

4. Tropos
 The Tropos methodology distinguishes between an early
and a late requirements phase, and between architectural design
and detailed design. It considers both inter-agent and intra-agent
issues.
 Dam, K. H., & Winikoff, M. (2003). The early requirements
phase, which is based on the i¤ organizational modeling
framework is concerned with understanding an application by
studying its organizational setting. This phase generates two
models: a strategic dependency model and a strategic rationale
model. These models specify the relevant actors, their respective
goals and their inter-dependencies. In particular, the strategic
dependency model describes an ‘agreement’ between two actors:
the depender and the dependee. The strategic rationale model
determines through a means-ends analysis how an actor’s goals
(including softgoals) can actually be fulfilled through the
contributions of other actors. The late requirements phase results
in a list of functional and non-functional requirements for the
system.
 (Bresciani, P., Giorgini, et al 2010) The architectural design
defines the structure of a system in terms of subsystems that are
interconnected through data, control and other dependencies. The
detailed designdefines the behavior of each component. Agent
communication languages like FIPA-ACL or KQML, message
transportation mechanisms, and other concepts and tools are used
to specify these components. Moreover, communication
protocols are used to specify communication patterns among
actors, as well as constraints on the contents of the messages they
exchange. Finally, the internal processes that take place within an
actor are specified by plan graphs.
 The implementation phase maps the models from the
detailed design phase into software by means of Jack Intelligent
Agents. Jack extends Java with five language constructs: agents,
capabilities, database relations, events, and plans. It is claimed
that these constructs implement cognitive notions such as beliefs,
desires, and intentions.
 (Hongyuan Sun et al, 2010)The drawbacks of Tropos are
that it doesn’t have a formal semantics and therefore it is hard to
specify an implementation for the design models. It also neglects
the environment, and fails to notice that roles affect the access
modes or permissions for executing certain actions, or for
accessing resources.
 Also Tropos is meant to design closed systems, in which the
designer has control over the agents that enter. However, if a
system would allow external agents to enter and interact,

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 8, August 2015 6
ISSN 2250-3153

www.ijsrp.org

an interface between such external agents and the environment
and the other agents is required..

5. The Prometheus Methodology
 (Garcia, A., Silva, V., et al 2002) Prometheus is a detailed
process for specifying, designing, and implementing intelligent
agent systems The goal in developing Prometheus is to have a
process with defined deliverables which can be taught to industry
practitioners and undergraduate students who do not have a
background in agents and which they can use to develop
intelligent agent systems Prometheus distinguishes itself from
other methodologies by supporting the development of intelligent
agents:

i. providing start-to-end support,
ii. having evolved out of practical industrial and

pedagogical experience,
iii. having been used in both industry and academia, and,

above all, in being detailed and complete
 Dam, K. H., & Winikoff, M. (2003). Prometheus is also
amenable to tool support and provides scope for cross checking
between designs
The methodology consists of three phases: system specification,
architectural design, and detailed design

6. OperA + Environment
 (Toronto, May 2010), OperA contains three models.
 The social model describes roles and their dependencies.
Roles have objectives: the goals the organization expects an
agent to fulfill when enacting that role. OperA allows for agents
to have their own goals which should be combined with those of
a role when enacting that role. Therefore OperA caters for open
agent systems. A role can be dependent on another role to fulfill
(part of) its objective.
 The interaction model describes the process flow of the
system, in terms of scenes and transitions between scenes. This is
similar to the Islander approach. The scope of a role is limited to
a scene. Each scene contains an abstract and declarative
specification of the landmarks to be achieved during interaction.
Scenes do not (have to) specify complete protocols; they specify
landmarks that can be reached in many different ways.
Transitions between scenes are subject to constraints, and to a
temporal ordering. E.g. an agent cannot enter a ‘conference
presentation’ scene as a presenter if its paper was never accepted.
 The normative model contains all the different types of
norms that regulate behavior in the system. For example:
 (1) Norms for roles; e.g. a PC member should not review a
paper submitted by another member of the research group he is
working in.
 (2) Norms for scenes; e.g. the reviews have to be returned
to the PC chairs before a certain deadline.
 (3) Norms on scene transitions; e.g. a delegate should pay
the registration before coming to the conference.
 (M. Birna van Riemsdijk, et al, 2009), Norms cannot be
translated into a design model directly. They will be distributed
over the various models of the design phase. Although normative
concepts are found in most of the methodologies discussed in this
paper, they are usually immediately associated with roles. They
are not formulated in a general way, or associated with activities
or scenes. Therefore, norms for roles already bias the design of a

system. By contrast, OperA allows one to first formulate norms,
and then discuss the various ways of translating them in a
society.
 (P. Yolum, et al 2010), The final model of the analysis
phase, which is not included in OperA, is the environment model.
In this model we specify the resources that are available for the
agents, like databases, etc. We also specify the available services.

7. 3APL
 (Carles Sierra, et al, 2009), The implementation phase is
based on the 3APL language and environment. It has facilities
defined in the infrastructure and environment model of the
design phase, such as communication and coordination facilities,
access to knowledge sources external to an agent, a way of
mediating between different agents, and an underlying
architecture that supports low level programming facilities, such
as arithmetic and a user interface.
 (Hongyuan Sun et al, 2010), Many of these facilities are
accessed through the agent management system, based on the
FIPA Agent Management Specification. The platform can be
used through a graphical user interface (GUI) which enables the
programmer to load agents from a library, implement and
execute them, and observe their behavior.
 Communication Management The 3APL agent platform
provides communication by means of message passing. A
message will be delivered by the underlying transport layer,
provided the agent management system knows the identifier of
the agent being addressed. The agent can be located on a
different platform running on a different machine as long as the
address is recognized and unique. The messages themselves have
the structure of communicative acts, with a sender, receiver and a
content, which is compliant with the FIPA standards for agent
communication.
 Environment In the current 3APL platform an agent can
only interact with an environment through a Java class called a
plug-in..
 Service facilitator The platform contains a very simple
service directory facility. Agents can register the services that
they offer with the AMS. If they are interested in the services
offered by other agents, they can query the AMS. This
functionality of the agent platform may be extended in the future
with more elaborate directory services (yellow pages) that allow
more intelligent searching and matching.
 Agent library The most important development support, is a
library of software templates for common tasks and applications.
In this library the templates for the facilitation agents belonging
to different organizational structures can be found. E.g. templates
for matchmaker agents, notary agents, etc. Thus it implements
parts of the organizational model of the design phase. Typically a
template will implement a particular kind of behavior that is part
of an interaction pattern. A template consists of an initial belief
base and goal base, a set of capabilities and a set of practical
reasoning rules. As such they are the implementation
counterparts of the agent types.

VI. CONCLUSION
 Software Agent technology has drawn much attention as the
preferred architectural framework for the design of many

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 8, August 2015 7
ISSN 2250-3153

www.ijsrp.org

distributed software systems. Agent-based systems are often
featured with intelligence, autonomy, and reasoning. Such
attributes are quickly becoming alluring to both legacy and new
systems. Agents are building blocks in these software systems,
while combinations of attributes are composed to form the
software entities. The more complex an Agent-based system is,
the more sophisticated the methodology to design such systems
must be. There are also many challenges when it comes to the
development of multi-agent systems.
 This paper has explained the need for agent oriented
software engineering (AOSE) and in detailed how different
AOSE methodologies can be applied to address the many
challenges of developing multi-agent systems. Some of the core
issues of developing multi-agent systems can be solved through.

i. Integrating design and code better manner
ii. Extending AOPLs with the ability to represent social

aspects and the environment;
iii. Developing practical tools for verification and

validation that are tailored specifically for multi-agent
systems.

REFERENCES
[1] Huib Aldewereld and Virginia Dignum. OperettA: Organization-oriented

de- velopment environment. In Proceedings of the 3rd International
workshop on Languages, Methodolo-gies and Development Tools for
Multi-agent Systems (LADS2010@Mallow), 2011.

[2] V. Dignum, editor. Handbook of Research on Multi-Agent Systems:
Semantics and Dy-namics of Organizational Models. Information Science
Reference, 2009.

[3] V. Dignum and F. Dignum. Designing agent systems: State of the practice.
Inter- national Journal on Agent-Oriented Software Engineering, 4(3), 2010.

[4] Koen V. Hindriks. Programming rational agents in GOAL. In Rafael H.
Bordini, Mehdi Dastani, Ju¨rgen Dix, and Amal El Fallah Seghrouchni,
editors, Multi-Agent Programming: Languages, Tools and Applications.
Springer, Berlin, 2009

[5] Nick Tinnemeijer. Organizing Agent Organizations. SIKS Dissertation
Series 2011

[6] Birna van Riemsdijk, Virginia Dignum, Catholijn Jonker, and Huib
Aldewereld. Program-ming role enactment through reflection. In
Proceedings of the Joint Inter- national Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS- 2011).

[7] M. Birna van Riemsdijk, Koen V. Hindriks, and Catholijn M. Jonker.
Programming organ-ization-aware agents: A research agenda. In
Proceedings of the Tenth Inter- national Workshop on Engineering
Societies in the Agents’ World (ESAW’09), volume 5881 of LNAI, pages
98–112. Springer, 2009.

[8] Estefan´ıa Argente, Ghassan Beydoun, Rub´en Fuentes-Fern´andez, Brian
Henderson-Sellers, and Graham Low. Modelling with agents. In Marie-
Pierre Gleizes and Jorge Gomez-Sanz, editors, Agent-Oriented Software
engineeringX, volume 6038 of Lecture Notes in Computer Science, pages
157–168. Springer Berlin / Heidelberg, 2011.

[9] Carles Sierra, Cristiano Castelfranchi, Keith S. Decker, and Jaime Sim˜ao
Sichman, editors. 8th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary, May
10-15, 2009, Volume 2. IFAAMAS, 2009.

[10] Hongyuan Sun, John Thangarajah, and Lin Padgham. Eclipse-based
prometheus design tool. In Wiebe van der Hoek, Gal A. Kaminka, Yves
Lesp´erance, Michael Luck, and San-dip Sen, editors, AAMAS, pages
1769– 1770. IFAAMAS, 2010.

[11] K. S. Decker, J. S. Sichman, C. Sierra, and C. Castelfranci, editors.
Proceedings of the 8th International Conference on Autonomous Agents
and Multiagent Sys- tems, Budapest, Hungary. International Foundation for
Autonomous Agents and Multiagent Systems, May 2009

[12] W. van der Hoek, G. A. Kaminka, Y. Lesp´erance, M. Luck, and S. Sen,
editors. Proceed-ings of the 9th International Conference on Autonomous
Agents and Multia- gent Systems, Toronto, Canada. International
Foundation for Autonomous Agents and Multiagent Sys-tems, May 2010.

[13] P. Yolum, K. Tumer, P. Stone, and L. Sonenberg, editors. Proceedings of
the 10th Interna-tional Conference on Autonomous Agents and Multiagent
Systems, Taipei, Taiwan. International Foundation for Autonomous Agents
and Multiagent Systems, May 2011.

[14] Juan, T., Pearce, A., & Sterling, L. (2002). Roadmap: Extending the gaia
methodology for complex open systems. Autonomous Agents and Multi-
Agent Systems.

[15] Wooldridge, M., Jennings, N. R., & Kinny, D. (2000). The gaia
methodology for agent-oriented analysis and design. Autonomous Agents
and Multi-Agent Systems, 3, 285-312.

[16] Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2000). Organizational
abstractions for the analysis and design of multi-agent systems. Paper
presented at the AOSE 2000

[17] Bresciani, P., Giorgini, P., Hiunchiglia, F., Mylopoulos, J., & Perini, A.
(2004). Tropos: An agent-oriented software development methodology,
technical report #dit-02-0015. AAMAS Journal, 8(3), 203-236.

[18] Castro, J., Kolp, M., & Mylopoulos, J. (2002). Towards requirements-
driven information systems engineering: The tropos project,information
systems.Elsevier, Amsterdam, The Netherlands.

[19] Dam, K. H., & Winikoff, M. (2003). Comparing agent-oriented
methodologies. Paper pre-sented at the Fifth International Bi-Conference
Workshop on Agent-Oriented Information Systems (AOIS-
2003),Melbourne, Australia.

[20] Garcia, A., Silva, V., Chavez, C., & Lucena, C. (2002). Engineering multi-
agent systems with patterns and aspects. Journal of the Brazilian Computer
Society, SBC, Special Issue on Software Engineering and Databases.

[21] Leon florin (2010) Design of a multi-agent system for solving search
problems. Journal of engineering studies and research-volume 16

[22] N.R Genza and E.S Mighele (May 2013), Review on multi-agent oriented
software engi-neering implementation. International journal of computer
and information technology (ISSN:2279-0764) volume 62

[23] Franco zambonelli, Nicholas R. Jennings and Michael wooldrige (2010),
developing multi-agent systems: The GAIA methodology

[24] V. Julian and V. Botti (2012), Developing real-time multi-agent systems
[25] Virginia Dignum, Hulb Gideweld and Frank Dignum (2012), the

engineering of Multi-agent systems
[26] Jorges S. Gomez-Sanz, Ruben Fuentes, Juan paron (2011), Understanding

Agent oriented software engineering methodologies
[27] Jurgen Lind (2010), Issues in Agent-Oriented software engineering
[28] Danny Weynes (2008), Future of software engineering and multi-agent

systems

AUTHORS
First Author – Elizabeth Ndunge Benson, Phd Information
Technology Student, Jomo Kenyatta Univerity, Kenya

http://ijsrp.org/

	Agent Oriented Software Engineering: A So-Lution in Developing Multi-Agent Systems.
	Elizabeth Ndunge Benson

	I. Introduction
	II. LITERATURE REVIEW
	III. CHALLENGES OF DEVELOPING MULTI –AGENT SYSTEMS
	IV. HOW AGENT ORIENTED SOFTWARE ENGINEERING ADDRESSES THE CHALLENGES OF DEVELOPING MULTI-AGENT SYSTEMS
	V. AGENT ORIENTED METHODS AND HOWTHEYADDRESS THE CHALLENGES OF DEVELOPING MULTI-AGENT SYSTEMS.
	VI. CONCLUSION
	References
	Authors

