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Abstract: A global climate model (GCM) should be able to reproduce features of the distribution of the regional to local-scale 

climate in which it is applied. Such features include: the climatological mean, correlation, monthly or daily variance, thresholds, 

extremes etc, of the distribution of climate variables of interest. Most researchers need to know how GCM simulations vary 

depending on climatic variables, the choice of GCM and place. These variations can be understood by studying the descriptive 

statistics above, and inference can be made based on these sample statistics.  However, there is no standard approach to test the 

features above in order to determine the skill of GCMs. In this paper, we focus on correlation and regression to evaluate the 

performances of five coupled global climate models for simulating monthly rainfall, minimum and maximum temperatures at five 

stations in northeastern Zimbabwe. We use observed historic climatic data (rainfall and air temperature) as well as downscaled 

model predictions of the same parameters. The global climate models used were the same as those used by the Intergovernmental 

Panel on Climate Change (IPCC) in formulating the IPCC Special Report on Emissions Scenarios (SRES).  The GCMs were 

evaluated by comparing observed historic climatic data with hindcast downscaled model predictions. We use the error measures 

for correlation to assess model performance: coefficient of determination (R
2
), root mean square error (RMSE) and model 

efficiency (ME).  For each model, a  -test was performed at 5 % level of significance to assess the usefulness of the correlation 

between observed and simulated data. Comparison of the error measures reveals that the GCMs simulate temperature better than 

rainfall and therefore there is more confidence in predictions of temperature than rainfall. The performance of individual GCMs 

informs the research community of the need to select better GCMs for multi-model climate predictions. Global climate model 

performance varied from place to place i.e. the GCMs were site specific and therefore a GCM may need to be calibrated each time 

it is transferred to a different region.  

 

Index Terms: global climate model, correlation, error measures, inference 

 

1.0 Introduction 

Despite limitations that lead to uncertainties, global climate models (GCMs) have consistently provided a robust and unambiguous 

picture of the climate system [1]. Currently, there is considerable confidence in global climate model simulations mainly because 

GCM principles are based on well established fundamental laws of physics such as conservation of mass, energy and momentum 

[2]. In addition, another source of confidence lies in the models’ ability to simulate important aspects of the current and past 

climates as well as their changes [3]. Multi-model climate predictions have in recent years demonstrated that combining models 

generally increases the skill, reliability and consistency of model predictions [4]; [5]; [6]; [7]; [8]; [9]. A wide range of measures 

of climate model skill have been developed over the past decade for example, [10]; [11]; [12]; [13]; [14]. All provided measures 

of model skill using monthly to annual time-scale data, sometimes over ensemble means of several climate models. However there 
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is no standard approach to determine the skill of GCMs. In this paper, we use a simple statistical approach, the correlation to study 

the skill of global climate models.  Many researchers have recently been able to quantify GCM performance in simulating various 

climate variables [15]; [16]; [17]; [18]; [19]; [20], but such work has not yet received well documentation in Zimbabwe. We 

evaluate five GCMs for simulating monthly rainfall, minimum and maximum temperatures at some selected sites in Zimbabwe. 

The global climate models used were the same as those used by the Intergovernmental Panel on Climate Change (IPCC) in 

formulating the IPCC Special Report on Emissions Scenarios (SRES).  Although more than five GCMs were available in the 

ensemble, our selection of the five was based on the following criteria: (i) only well established models were considered, those 

that are extensively described in peer-reviewed scientific literature [21]; [22]; [15] and  (ii) only models that perform adequately 

in inter-comparison studies [23]. The paper is organized as follows: Section 2 describes the materials and methods used in this 

study. Main results and discussion are presented in section 3. Finally, conclusions are summarized in section 4. 

2.0 Materials and Methods 

2.1 The study area 

The study was carried out in an agro ecological zone known as Natural Region 2 which is located in the middle of the north of 

Zimbabwe, covering parts of Harare, Mashonaland East, Mashonaland West, Mashonaland Central and Manicaland provinces. 

The region has a total area of 58600 km
2
 which is about 15 % of the total area of Zimbabwe [24]. Data from five climatic stations: 

Karoi, Mutoko, Mt Darwin, Rusape and Wedza were used in this research. Table 1 shows the characteristics of the stations used in 

the study, while Figure 1 is a map of Zimbabwe showing all the natural regions with locations of the climatological stations 

overlaid. 

Table 1 Characteristics of the stations used in the study 

 

 

Station Region Location 
Altitude 

(m) 

Period for the observed data 

    

Minimum/Maximum 

Temperature 

Rainfall 

Karoi 2a 
16° 

50´S 

29° 

37´E 
1343 

1971-2000 1970-2000 

Wedza 2b 
18° 

37´S 

31° 

34´E 
1384 

1971-2000 1970-2007 

Rusape 2b 
18° 

32´S 

32° 

08´E 
1430 

1971-2000 1970-2007 

Mt 

Darwin 
2b 

16° 

47´S 

31° 

35´E 
965 

1971-2000 1970-1999 

Mutoko 2b 
17° 

25´S 

32° 

13´E 
1244 

1971-2000 1970-2003 
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Figure 1: The study area, showing the locations of the climatological stations used in this study. 

2.2 Sources and types of data 

In this paper, we used observed as well as downscaled model data. Observed data was obtained from the Zimbabwe 

Meteorological Services Department (ZMSD). Downscaled data from five different global climate models from the 

Intergovernmental Panel on Climate Change Assessment Report (IPCC-AR4) was directly downloaded from the Earth System 

Grid (ESG) data portal (http://data.csag.uct.ac.za/) for the A2 socio‐economic scenario.  

Observed rainfall data were daily totals for the periods shown in Table 1. RAINBOW [25] was used to test the homogeneity of 

rainfall data for each station. RAINBOW is a software package for hydro meteorological frequency analysis and testing the 

homogeneity of historical data sets. All the stations confirmed homogeneity of rainfall data.  The changes in rainfall for all 

stations were therefore assumed to have been caused by variations in climate only and not by factors such as changes in 

instruments, observation procedures, monitoring station relocations, changes of the surroundings, changes in calculation 

procedures, etc. Downscaled model data consisted of daily and monthly totals for the period 1961-2000. Observed temperature 

data were mean monthly minimum and maximum temperatures for the period shown in Table 1. Downscaled model data were 

average daily and monthly minimum and maximum temperatures over the same period. 
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2.3 Comparison of global climate model performances 

The five GCMs used are listed in Table 2. 

Table 2 Global climate models used in the study  

Acronym Name and Institute Atmospheric resolution 

(latitude x longitude) 

CCCMA_CGCM3_1 

 

The third generation coupled global 

climate model (CGCM3.1 Model, T47). 

Canadian Centre for Climate Modelling 

and Analysis, Canada. 

3.75 º x 3.75 º 

CSIRO_MK3_5 

 

Mark 3.5 Model. Commonwealth 

Scientific and Industrial Research 

Organization, Australia. 

1.88 º x 1.88 º 

GFDL_CM2_0 

 

CM2.0 coupled climate model. 

Geophysical Fluid Dynamics Laboratory, 

United States. 

2.0 º x 2.5 º 

GISS_MODEL_E_R ModelE20/Russell. Goddard Institute for 

Space Studies, United States. 

4.0 º x 5.0 º 

MPI_ECHAM5 

 

European Centre Hamburg Model. Max 

Planck Institute for Meteorology, 

Germany. 

1.88 º x 1.88 º 

 

All the models listed in Table 2 are based on the A2 climate change scenario. According to [26], the A2 scenario is characterized 

by heterogeneity, self reliance, an emphasis on local identities and global population increases continuously, reaching over 10 

billion by 2050. Economic development is regionally oriented and economic and technological development is relatively slow for 

the A2 scenario as compared to the other scenarios. 

The performances of the models were evaluated by comparing hindcast model simulations with observed climatic data separately 

for rainfall, minimum and maximum temperature. It was then possible to determine the variation in prediction skill across models 

as well as variation in skill due to change of climatic variable. Each model data set was compared with observational data and the 

results statistically analyzed. We applied the error measures of correlation: 

2.3.1 Coefficient of determination (R
2
) 

A scatter plot of observed against model data in EXCEL clearly demonstrated the relationship between the two variables. The 

closeness of the relationship was assessed by the coefficient of determination (R
2
).   

2.3.2 Model efficiency (ME) 

The efficiency of each model to simulate the variables was calculated for each of the five models. The ME approach [27] is 

computed as:  
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

n

i 1
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

n

i 1

     ̅  
 

      (1) 

where ME is model efficiency,     is an elementary observation in the observed data set (n observations),  ̅  is the mean of i 

observations and Mi represents an elementary observation in the modelled dataset (n predictions). 

2.3.3 Root mean square error (RMSE)  

The RMSE for each model for simulating the variables was calculated. The RMSE approach is computed as:  

         

√


n

i 1

       
 

 
       (2) 

A  -test was carried out at 5 % level of significance to assess the reliability of the null hypothesis (Ho) which was formulated as 

follows: observed and simulated data are not significantly different. A two tailed test was performed for each pair of data set. The 

null hypothesis was rejected when the  -value obtained (     ) was greater than  -critical (  ). That is, Ho was rejected when  

|     |      otherwise it was not rejected. The value of    was 2.25. Model performance was judged by the magnitude of the 

coefficient of determination (R
2
), root mean square error (RMSE), model efficiency (ME) and the  -value.  

3.0 Results and discussion 

3.1 Minimum air temperature 

The statistics used to assess global climate model performance in simulating minimum temperature are shown in Table 3.  

Table 3: Quantitative measures of the performance of the five global climate models for simulating minimum temperature at the 5 

stations 

 

Model CCCMA_CGC

M3_1 

CSIRO_MK3

_5 

MPI_ECHA

M5 

GFDL_CM2

_0 

GISS_MODEL_

E_R 
Statistic Station 

R
2
 Karoi 0.92 0.89 0.88 0.82 0.69 

 

Wedza 0.89 0.85 0.79 0.76 0.73 

 

Rusape 0.87 0.84 0.84 0.81 0.69 

 

Mt 

Darwin 

 

⃰ ⃰ ⃰ ⃰ ⃰ 

Mutoko 0.86 0.81 0.77 0.69 0.67 

 

ME (%) Karoi 91.72 87.17 85.9 78.23 66.05 
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Wedza 88.89 82.86 74.98 74.33 71.36 

 

Rusape 86.73 83.44 81.56 77.13 67.2 

 

Mt 

Darwin 

 

⃰ ⃰ ⃰ ⃰ ⃰ 

Mutoko 85.33 80.2 77.13 78.56 83.44 

 

RMSE  Karoi 3.21 3.08 2.88 2.58 2.32 

 

Wedza 2.88 2.66 2.46 2.48 2.36 

 

Rusape 3.81 3.47 3.3 3.19 2.89 

 

Mt 

Darwin 

⃰ ⃰ ⃰ ⃰ ⃰ 

 

 

Mutoko 3.81 3.49 3.19 3.66 3.47 

 

      Karoi -0.07 7.23 -5.5 -5.6 -2.34 

 

Wedza -2.1 -6.04 -6.06 -1.69 -0.64 

 

Rusape -1.76 4.61 -6.44 -6.44 -2.09 

 

Mt 

Darwin 

 

⃰ ⃰ ⃰ ⃰ ⃰ 

Mutoko -1.16 -1.79 -6.44 -6.44 4.61 

 

⃰ Missing data  

At Karoi, the CCCMA_CGCM3_1 model showed the greatest values of R
2
, ME and RMSE as shown in Table 3. We failed to 

reject the null hypothesis at 5 % level of significance as |     |    . The GISS_MODEL_E_R model showed the smallest values 

of R
2
, ME, RMSE and Ho was rejected. For the remaining models, Ho was rejected (|     |      at Karoi indicating that they did 

not perform well in simulating minimum temperature at the station. The CCCMA_CGCM3_1 model therefore obtained the 

highest performance for simulating minimum temperatures at this station. 

Values of R
2
, ME and RMSE were greatest for the CCCMA_CGCM3_1 model at Wedza and we also failed to reject Ho for this 

model. Although we failed to reject Ho for the CSIRO_MK3_5 and the GISS_MODEL_E_R models; the coefficient of 

determination, model efficiency and root mean square error values were however smaller that those obtained for the 
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CCCMA_CGCM3_1 model. The CCCMA_CGCM3_1 model showed the greatest skill for simulating minimum temperatures at 

Wedza. 

Rusape minimum temperatures were best simulated by the CCCMA_CGCM3_1 model. Although Ho was not rejected for the 

GISS_MODEL_E_R model at Rusape, the R
2
, ME and RMSE values for this model are weaker than those of the former, thus 

making the CCCMA_CGCM3_1 model the best.  

The statistical measures were greatest for the CCCMA_CGCM3_1 model at Mutoko and we failed to reject Ho for this model. 

Although Ho was also not rejected for the GISS_MODEL_E_R model; its statistical measures were smaller than those obtained 

for the CCCMA_CGCM3_1 model.  

3.1.2 Maximum air temperature  

The statistics used to assess global climate model performance in simulating maximum temperature are shown in Table 4. 

Table 4: Quantitative measures of the performance of the five global climate models for simulating maximum temperature at the 

5 stations  

Model CCCMA_CGC

M3_1 

CSIRO_MK3

_5 

MPI_ECHA

M5 

GFDL_CM2

_0 

GISS_MODEL_

E_R 
Statistic Station 

R
2
 Karoi 0.67 0.61 0.61 0.56 0.4 

Wedza 0.69 0.63 0.58 0.56 0.33 

Rusape 0.67 0.6 0.6 0.59 0.38 

Mt 

Darwin 

0.68 0.62 0.6 0.54 0.42 

Mutoko 0.78 0.71 0.68 0.66 0.62 

ME (%) Karoi 64.6 60.24 49.15 54.68 37.33 

Wedza 60.78 60.45 57.82 54.57 28.48 

Rusape 62.36 59.9 55.28 58.24 36.66 

Mt 

Darwin 

63.95 61.79 44.55 52.37 41.27 

Mutoko 68.2 65.11 57.83 64.35 50.24 

RMSE  Karoi 2.31 1.91 1.58 1.49 1.77 

Wedza 2.74 2.19 2.09 2.18 1.98 

Rusape 2.74 1.97 1.92 2.16 1.93 

Mt 

Darwin 

2.55 2.05 1.61 1.81 1.89 

Mutoko 2.41 1.99 1.71 1.83 1.75 
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      Karoi -1.48 -3.23 9.73 0.81 -3.24 

Wedza -2.22 -4.54 -0.86 -3.53 -3.58 

Rusape -0.91 0.17 6.38 -2.66 -3.08 

Mt 

Darwin 

2.21 -0.05 10.9 3.6 -0.63 

Mutoko 2.11 3.62 -4.95 -0.31 3.91 

 

At Karoi, the CCCMA_CGCM3_1 model best resembled observations. Ho was not rejected for the GISS_MODEL_E_R model; 

however the weaker statistics showed a lesser skill as compared to the CCCMA_CGCM3_1 model. 

The greatest values of R
2
, ME and RMSE for the CCCMA_CGCM3_1 model that are shown in Table 4 indicate the highest skill 

in simulating maximum temperatures at Wedza. 

At Rusape, all other models did not perform well in simulating maximum temperatures at the station and the CCCMA_CGCM3_1 

model showed the highest skill. Although the null hypothesis was not rejected for the GISS_MODEL_E_R model, its statistical 

measures were weaker than those of the CCCMA_CGCM3_1 model. 

Maximum temperatures at Mt Darwin were best simulated by the CCCMA_CGCM3_1 model as shown by the statistics in Table 

4. All other models performed poorly in simulating temperatures at Mt Darwin. The CCCMA_CGCM3_1 model however showed 

weaker values of R
2
, ME and RMSE in simulating maximum temperature as compared to the same statistical quantities for 

simulating minimum temperature. This indicates that its skill in simulating minimum temperatures in higher than the skill for 

simulating maximum temperatures 

The CCCMA_CGCM3_1 model showed the greatest skill for simulating maximum temperatures at Mutoko as shown by the 

statistical measures in Table 4.  

We failed to reject the null hypothesis at all stations for the CCCMA_CGCM3_1 model.  This is confirmed by the  -values 

obtained in the significance tests. The CCCMA_CGCM3_1 model therefore obtained the highest performance for simulating both 

minimum and maximum temperature at all stations.  The GISS_MODEL_E_R model showed weaker values of R
2
, ME and 

RMSE; however for this model, Ho was not rejected at Wedza, Rusape and Mutoko for simulating minimum temperature and was 

also not rejected at Wedza, Rusape, Mutoko and Karoi for simulating maximum temperature. This model was second in 

simulating both minimum and maximum temperature.  For the MPI_ECHAM5 model, Ho was not rejected only at Mt Darwin for 

simulating maximum temperature. For the CSIRO_MK3_5 model, Ho was not rejected only at Wedza. The GFDL_CM2_0 model 

performed well in simulating maximum temperature at Mt Darwin only and it performed poorly for all other stations.   

 

3.1.3 Rainfall 

Summary statistics used to assess global climate models’ performances in simulating rainfall are shown in Table 5.  

Table 5: Quantitative measures of the performance of the five global climate models for simulating rainfall at the 5 stations 

Model CCCMA_CGC CSIRO_MK3 MPI_ECHA GFDL_CM2 GISS_MODEL_
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Statistic Station M3_1 _5 M5 _0 E_R 

R
2
 Karoi ⃰ ⃰ ⃰ ⃰ ⃰ 

Wedza 0.33 0.22 0.39 0.18 0.32 

Rusape 0.33 0.37 0.42 0.21 0.31 

Mt Darwin 0.33 0.41 0.42 0.41 0.35 

Mutoko 0.36 0.43 0.35 0.3 0.39 

ME (%) Karoi ⃰ ⃰ ⃰ ⃰ ⃰ 

Wedza 33.97 10.93 18.33 39.92 49.21 

Rusape 15.73 29.11 51.45 24.3 17.22 

Mt Darwin 26.63 23.01 32.13 46.51 20.08 

Mutoko 30.06 22.25 10.38 38.62 13.14 

RMSE  Karoi ⃰ ⃰ ⃰ ⃰ ⃰ 

Wedza 72.9 66.4 89.4 65.3 73.2 

Rusape 52.7 64.5 64.6 40 51.9 

Mt Darwin 55.8 76.8 73.2 66.6 55.3 

Mutoko 53 71.4 72.6 46 53.2 

      Karoi ⃰ ⃰ ⃰ ⃰ ⃰ 

Wedza 3.69 2.67 -0.59 1.51 0.04 

Rusape 6.54 3.28 3.16 6.04 3.94 

Mt Darwin -7.25 -11.01 -10.54 -2.19 -10.98 

Mutoko -7.28 3.66 4.82 -10.12 4.61 

 

⃰ Missing data  

The statistical measures are very low for all the models at Wedza; however the null hypothesis was not rejected for the 

GFDL_CM2_0, GISS_MODEL_E_R and the MPI_ECHAM5 models. The statistical indicators show that the null hypothesis was 

rejected for all the models at Rusape thus the models performed poorly in simulating rainfall at this station. 

All models performed poorly in simulating rainfall at Mt Darwin. This is shown by the weak values of R
2
 and low values of ME 

and RMSE for each model in Table 5. The null hypothesis was not rejected only for the GISS_MODEL_E_R model thus making 

it a better GCM amongst the five models. It is interesting to note that the CCCMA_CGCM3_1 model which best simulated 
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temperature at Mt Darwin was found to be the worst for simulating rainfall at the same station. Table 5 shows inaccuracy of all 

climate models in simulating rainfall at Mutoko. Results of the analysis showed that all the models are poor in predicting rainfall 

for all the stations. Inaccuracy of global climate models to predict precipitation was reported by many researchers. [28] point out 

that that the space-time correlation between models and observations is small, only about 50 to 60 %, particularly in the tropics 

where the spatial variation of precipitation is great. According to [29], strong horizontal gradients in the field lead to a significant 

drop in correlations between model output and observations.  Another discrepancy between models and observations is that when 

precipitation is categorised into light, moderate and heavy, models reproduce the observed extent of moderate precipitation (10 to 

20 mmday
-1

) but underestimate that of heavy precipitation and overestimate the extent of light precipitation [30].  [31] report that 

for precipitation, the Geophysical Fluid Dynamics Laboratory (GFDL) model reveals significant widespread errors in the tropics, 

mostly in the Intertropical Convergence Zone (ITCZ) where precipitation is underestimated by several millimetres per day. 

However, despite these shortcomings, the GISS_MODEL_E_R showed relatively better skill for predicting rainfall at Mt Darwin, 

Karoi and Mutoko, while the MPI_ECHAM5 and the GFDL_CM2_0 models were skilful at Wedza and Rusape, respectively.  

4.0 Conclusions 

We evaluated the performances of five global climate models for simulating rainfall, minimum and maximum temperature.  The 

three main questions were centred on the variation of GCM skill with climatic variable, choice of GCM and place. The results 

indicate that most GCMs can reproduce the observed temperature better than rainfall and that the difference between the rainfall 

predictions from the different GCMs can be significant. The CCCMA_CGCM3_1 model was shown to be a better performing 

GCM amongst the five. Global climate models are place sensitive; a GCM that performs well in one region may not do the same 

when transferred to a different region. 
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