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A DEFACTO —DEJURE MODEL FOR POSITRONS,STELLAR
NUCLOSYNTHESIS,QUANTUM COHERENCE,SIMULATION,OBJECTIVE
REALITY,QUANTUM DECOHERENCE,VIRTUAL PHOTONS ,PHOTON
TUNNELLING,ENZYMES ,SPACE TIME ,INCREASE IN SPEED OF
CHEMICAL REACTIONS(SVERDUPA N D S E MANMBER)AISD
QUANTUM TUNNELING

DR K N PRASANNA KUMAR, *PROF B S KIRANAGI AND *PROF C S BAGEWADI

ABSTRACT. There exists differential relations, contiguous similarities; in compassable anti generalities, pre
suppositional resemblances, dialectic transformation, portmanteau incompatibilities between different structures of
stellar nucleosynthesis  that occurs in stars, positrons, and Eulerian kinematic description thereof, calls for the
attention of both simulation and Quantum coherence, Quantum Gravity and Objective reality. Despite the crying
need for the same, and lack of comprehensive envelope of expression, there seems to be contential staticity and
presciential dynamism in so far as these aspects are considered. Atrophied asseveration in stellar nucleosynthesis and
environmental decoherence are probably most endearing attributions that call for both rational Leibneizism and
Socratic subjectivity and of course discourse relativity. An evolutionist model is expounded with configurational
entropy and morphological entity for these variables and we look at the system dispassionately without being
disturbed by the state of the system. There is no clamor for participatory seriotological sermonisations or an
orientation towards pedagogical pontification. We just state the facts and leave the rest to others to do the
divergential affirmation, disjunctive synthesis,. While we do resort to concept formulation, related phenomenological
methodologies, transformational minimal conditions we neither resort to glorification or mortification of the thesis.
Warts et al are presented without any hesitation, reservation, compunction or contrition, which probably is the
testimony for the fact that human knowledge is limited and all the needs to be explored stretches in front like an
ocean with all its cacophonous mendacious moorings and thromboses unbenedictory singularities with splashed

contours and stigmatized boundaries.

Parameters taken in to consideration are:

(1) Positrons

(2) Stellar Nucleosynthesis

(3) Simulation

(4) Quantum Coherence

(5) Quantum Gravity

(6) Objective reality

(7) Enzymes

(8) Space-time

(9) Virtual photons

(10) Photonic tunneling(and visibility thereof)
(11) Acceleration in Chemical reactions
(12) Quantum Tunneling

WWW.ijsrp.org



International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012
ISSN 2250-3153

POSITRONS AND STELLAR NUCLEOSYNTHESIS : MODULE NUMBERED ONE

NOTATION :

"Q; : CATEGORY ONE OF STELLAR NUCLEOSYNTHESIS
"Q4 : CATEGORY TWO OF STELLAR NUCLEOSYNTHESIS
Qs : CATEGORY THREE OF STELLAR NUCLEOSYNTHESIS
“Ys : CATEGORY ONE OF POSITRONS

"Ys : CATEGORY TWO OF POSITRONS

"Ys :CATEGORY THREE OF POSITRONS

SIMULATIONS AND QUANTUM COHERENCEMODULE NUMBERED TWO :

Note: Every film is simulation. Every thought issimulation.

"Qg : CATEGORY ONE OF SIMULATIONS

"Q; : CATEGORY TWO OF SIMULATIONS

"Qg : CATEGORY THREE OF SIMULATIONS

“Ys :CATEGORY ONE OF QUANTUM COHERENCE
"Y; : CATEGORY TWO OF QUANTUM COHERENCE

“Ys : CATEGORY THREE OF QUANTUM COHERENCE

OBJECTIVE REALITY AND QUANTUM DECOHERENCE:MODULE NUMBERED THREE

Qo : CATEGORY ONE OF OBJECTIVE REALITY

"Q, :CATEGORY TWO OF OBJECTIVE REALITY

"Q, : CATEGORY THREE OF OBJECTIVE REALITY
"Y, :CATEGORY ONE OF QUANTUM DECOHERENCE
“Y, :CATEGORY TWO OF QUANTUM DECOHERENCE

"Y, : CATEGORY THREE OFQUANTUM DECOHERENCE

WWW.ijsrp.org



International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012
ISSN 2250-3153

SPACE-TIME AND ENZYMES: MODULE NUMBERED FOUR:

"Q,4 : CATEGORY ONE OFENZYMES

"Qs : CATEGORY TWO OF ENZYMES

"Qg : CATEGORY THREE OF ENZYMES

“Y, :CATEGORY ONE OF SPACE TIME
“Ys :CATEGORY TWO OF SPACE TIME

“Ys : CATEGORY THREE OF SPACETIME

PHOTONIC TUNNELING(VISIBILITY THEREOF) AND VIRTUAL PHOTONS: MODULE
NUMBERED FIVE:

"Qg : CATEGORY ONE OFPHOTONIC TUNNELING
"Qg : CATEGORY TWO OF PHOTONIC TUNNELING
"Qp :CATEGORY THREE OF PHOTONIC TUNNELING
“Yg :CATEGORY ONE OF VIRTUAL PHOTONS

“Yo :CATEGORY TWO OFVIRTUAL PHOTONS

Yo :CATEGORY THREE OF VIRTUAL PHOTONS

QUANTUM TUNNELING AND ACCELERATED CHEMICAL REACTION: MODULE
NUMBERED SIX:

"Q, : CATEGORY ONE OF QUANTUM TUNNELING

"Q; : CATEGORY TWO OF QUANTUM TUNNELING

"Q, : CATEGORY THREE OFQUANTUM TUNNELING

“Y, : CATEGORY ONE OF ACCELERATION IN CHEMICAL REACTIONS
“¥; : CATEGORY TWO OFACCELERATION IN CHEMICAL REACTIONS

“Y, : CATEGORY THREE OFACCELERATION IN CHEMICAL REACTIONS
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are Accentuation coefficients

(If%l,dﬁ 1,(;:% 1,(;{{%1,(’)’:2531 1,(':% 1,(1%2,(1297 2,(12% 2, (If%z,&f%
L6 %L 6R LR LR o

@4,@4,@4,@4,&%4,&% 4,('12% 5'(’12% 5,(’1%5 (12%5,(12%5

5 & R - B¢ I /A
are Dissipation coefficients

POSITRONS AND STELLAR NUCLEOSYNTHESIS: MODULE NUMBERED ONE

The differential system of this model is now

o og, 1 W L+ B Y0 Q
> W3 4 3 3 4 3

29,

(93]

%: s 1Q 6 1+ of2® 7Y,,0 Qs

D

%: (Iia 1"\{4 (:f% ! J-f%eel Q0 Y3

(93]

G 'Q; @ '+ ot Y. 0 "G,

Ths @, s GH Y GEE 00 Y,

(03]

%: J~15 l"\{4 (Li% ! (If%eel Q0 Ys

(94
+ G%®1 "Y,,0 = First augmentation factor
621 Qo = First detritions factor

SIMULATIONS AND QUANTUM COHERENCEMODULE NUMBERED TWO

The differential system of this model is now

‘Q-‘&: e 2°Q; 6% 2+ 6R®? "Y7,0 Qg

(93]

9= @, 2°Qe G 2+ GEE2 Y0 G

(93]

Lo @ 270G, 6 2+ GRE2 Y0 Qg

(93]
QYe _ [ 2w 5 2 Texe2 oo e
o - @ Y7 uff of§ Qo .0 Y6
QY7 _ 2w 5 2 Tee2 oo e
o . W7 Y6 of7 off Q .0 Y7

OYs _ = w 5 g o e
?&8_ Qs °7Y,  Gff 2 aff®? Qe .0 Y
+ G#*? "Y,,0 = First augmentation factor

G2®2 Qg ,0 = First detritions factor

Z'dféZ

G °

OBJECTIVE REALITY AND QUANTUM DECOHERENCE:MODULE NUMBERED THREE
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The differential system of this model is now

%: Go 2@ B P+ &P %0 Q
%: @ 2Q W C+ F V0 Y
& _ o 3w o 3 + vpe 3 v v ow
5 - W2 TG &) ) %1,0 'Q;
9% _ o 3w e 3 T3 " A ¢
o %o Y1 7 ) Q3,0 Yo
9% _ o 3w S 3 T3 " A ¢
o - Yo o o Q3,0 "Y1
Q 5 o 7, 7, o e
T\fz = Y o5 B 65%%° Q3,0 Y,

+ G Oaa3 "\flib

a%*° Q3,0 =

First augmentation factor

First detritions factor

SPACE-TIME AND ENZYMES: MODULE NUMBERED FOUR

The differential system of this model is now

%: 6 Qs 6% 4+ &P Y0 Q
Qs _ o, 4 o, 4 v 4 v P
—= Wy T Qy a5t o+ 038 ¥5,0 Qs
fejeT] _ o, 4 = v, 4 + vppld v S
o - e Qs 0 (&7 ¥5.0 Qg
Q 5 o 5. 5. - e
% = @ Y o ! 65EY Q0 Y,
Q 5 o 5. 5 - e
T\fs = @ 'Y o o aEE Q0 Y
Q 5 o 5. 5. - e
% = @ 'Y T N ¢ T i 1

+ =4 "Ys,0 = First augmentation factor

65524 Firstdetritions factor

Q0 =

PHOTONIC TUNNELING(VISIBILITY THEREOF) AND VIRTUAL PHOTONS:

MODULE

NUMBERED FIVE

The differential system of this model is now

Qg _ . N . . v s
_.Q-,B = Gy ° Qg 6% ° + FH=° Y0 Qg
Qg _ . N . . o, s .

—= = @y 5'Qg 6% ° + 3% "¥9,0 Qg

== Gy ° Qg 6 °+ &= Y0 Qo
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Q 5 o 5. 3 . e
.—\‘és G > Yo o5 ° 65%2° Q.0 Y

Y _ = o 7 g o P
Tf— 6o ° Ys 655 ° 65%%° Q1,0 Y

%: @o ° Yo & ° «=° Q0 Yo

+ G®° "Y,,0 = First augmentation factor

a%®°> "Q; ,0 = Firstdetritions factor

QUANTUM TUNNELING AND ACCELERATED CHEMICAL REACTION: MODULE
NUMBERED SIX

The differential system of this model is now

'Q‘&: ., 6 o 6 + vpe 6 v )

pre ;) Q3 a5 () ¥3,0 Q@
9Qs _ o 6 vp 6 L rmE6 vy oY
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o - W X3 (1 ¢ Qs ,0 ™
+ (8*° "Y,,0 = First augmentation factor

62®® "Qs ,0 = Firstdetritions factor
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EQUATIAS

POSITRONS AND STELLAR NUCLEOSYNTHESIS: MODULE NUMBERED ONE

OBJECTIVE REALITY AND QUANTUM DECOHERENCE:MODULE NUMBERED THREE

SIMULATIONS AND QUANTUM COHERENCEMODULE NUMBERED TWO

SPACE-TIME AND ENZYMES: MODULE NUMBERED FOUR

PHOTONIC TUNNELING(VISIBILITY THEREOF) AND VIRTUAL PHOTONS: MODULE
NUMBERED FIVE

QUANTUM TUNNELING AND ACCELERATED CHEMICAL REACTION: MODULE
NUMBERED SIX
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Where| &=l Y, 0 || &=t Y, 0 || = Y, 0 | are first augmentation coefficients for category 1, 2 and 3

|+ =22 "Y,,0 ,|+ CB=222 Y0 ||+ (@222 Y,,0 |are second augmentation coefficient for category 1, 2 and 3

1

|+ @233 Y,0 ||+ GE=33 Y0 ||+ CB=33 "Y,0 |are third augmentation coefficient for category 1, 2 and 3

[+ cg@aad 0| [+ G eeh ¥,0 ||+ a5® 4444 Y, 0 |are fourth augmentation coefficient for category 1, 2 and 3

[+ G555 "Yo,0 ||+ GBF5P55 ¥,0 ||+ G555 "Yo,0 | arefifth augmentation coefficient for category 1, 2 and 3

|+ 6= 0685 "y 0] [+ 6@ 6855 "Y;,0],[+ §EBOO5S "¥5,0 | are sixth augmentation coefficient for category 1, 2 and 3
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Where| = "Qo || = "Qo || =t "Qo |are first detrition coefficients for category 1, 2 and 3

| =22 "Qy,0 || =22 "Qq,0 || a3=2?% "Qq,0 | are second detrition coefficients for category 1, 2 and 3

| aB=3% "Q,,0 || CE=3% "Q;,0 || aB=3% "Q;,0 |are third detrition coefficients for category 1, 2 and 3

| FBEA444 "Q,.0 || CRE4444 "Q,,0 || CRE 4444 Q.0 |are fourth detrition coefficients for category 1, 2 and 3

| cg®5555 g0, ®=5°%5 Q0| @®=55%5 Q0 |are fifth detrition coefficients for category 1, 2 and 3

| Gg=0556 "g5,0 | | CR=0858 "Qg,0 | , | CH= 0868 "Qg,0 Iare sixth detrition coefficients for category 1, 2 and 3
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Where|+ 0R%=2 "Y,,0 | ,|+ 6222 "Y,,0 ||+ 6B=2 "Y,,0 Iare first augmentation coefficients for category 1, 2 and 3

|+ = Y, 0 ||+ 6= Y, 0 ||+ 2 y,,0 | are second augmentation coefficient for category 1, 2 and 3

[+ 65233 y,0 [+ é5®%3 "y,0].[+ =333 "¥,,0 |arethird augmentation coefficient for category 1, 2 and 3

|+ FR A4 Y0 H+ G 44444 Y G ||+ G2 A4488 Y o | are fourth augmentation coefficient for category 1, 2 and 3

|+ CRE 55555 Y o I |+ CRE 55585 "y o ||+ CGB= 55555 "y 0 | are fifth augmentation coefficient for category 1, 2 and 3

|+ (= 08666 "y o I |+ GEE 06666 "y o I , |+ CEE06686 "y o | are sixth augmentation coefficient for category 1, 2 and 3
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wherel b®? Gt | | bEZ2 Gt | | bEZ2 Gt | are first detrition coefficients for category 1, 2 and 3
| = Qo || aE=M Qo || aE=M "Qo | are second detrition coefficients for category 1,2 and 3
| =333 "Q,,0 || CF5EE333 "Q,,0 || CHB=333 "Q,,0 | are third detrition coefficients for category 1,2 and 3
| ag=e444d .0 || GR® 44444 1,0 || = 44444 7Q,,0 | are fourth detrition coefficients for category 1,2 and 3
| GBEO5S5E QL0 II (8= 55555 "Q,,0 || CBEO5585 Q0 |are fifth detrition coefficients for category 1,2 and 3
| c$=66566 Qg0 || d§O6665 Q0| G§=55956 'Qy,0 | are sixth detrition coefficients for category 1,2 and 3
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|+ =3 Y0 | + GE=% Y0 ||+ aBF3 Y0 | are first augmentation coefficients for category 1, 2 and 3

i

+ 08222 Y,,0 | are second augmentation coefficients for category 1, 2 and 3

|+ df%aez,z,z Y., 0 |’|+ @&2,2,2 S

i

|+ @@=t vy, 0 ||+ GF= M Y, 0 ||+ 2L 7Y,,0 | are third augmentation coefficients for category 1, 2 and 3

|+ QT AR Y | , |+ GRZAMAARE Y ||+ (3= 4haddd Y o Iare fourth augmentation coefficients for category 1, 2
and 3

|+ CRT 555555 vy o || + CREBOPO5EE Y 6 | ,|+ [0 A VA |are fifth augmentation coefficients for category 1, 2 and 3

|+ (B2 606686 "y o ||+ (B2 606686 "y o ||+ (2 666666 "y o |are sixth augmentation coefficients for category 1, 2 and
3

dg(e) 3| &%393 "Q3,0 “Z (If%eeZ,Z,Z "Qy, 0 HZ d‘f%ael,l,l, QOI

Do _ 7, 3 \f
e 1 | (g 4aa8s 1,0 H LS T ” (2666666 "Q. 0 | 0
%: &%1 3y | (‘:ﬁ 3| aﬁees Q3,0 HZ er?aez,z,z "Qqg,0 HZ (Iﬁael,l,l, "QC‘)I v

(Ig%ee 444444 " 4 H (I,Z%w 555555 "Q,,0 ” Jggae 6,6,6,6,6,6 "Qs,0 |

o . ) B 3| (Ig%ew "Qs,0 |Z (If%eez,z,z "Qo, 0 HZ &f%ael,l,l, "Qf"l

— 3
o - @ TTh 2
(03] 5, .. . 5, N \ 5, .. \
| GR=aadsdd g o H CE=555555 "Q, o ” CE=666666 Q. o |

| G52 Q3,0 II =% "Q,,0 | | GB=% "Q;,0 I are first detrition coefficients for category 1, 2 and 3

| GE=222 "Qy,0 I CR=222 "Qy,0 I G2 222 "Qy,0 | are second detrition coefficients for category 1, 2 and 3

| eg=tt Qo] &=t 0o |,| &= 06 | arethird detrition coefficients for category 1,2 and 3

| CEBE 444444 9,0 || CRE 444444 "G, 0 || CRE 44444 "G, 0 | are fourth detrition coefficients for category 1, 2 and
3

| CRZ 555555 "Q,0 || CFBE 555855 Q.0 || CBEOPO855 Q.0 | are fifth detrition coefficients for category 1, 2 and
| CBE 006666 "0 H CFE 080666 " 0 || CFE 080666 " 0 |ares/xz‘/7 detrition coefficients for category 1, 2 and 3
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|+ =ttt yY,,0 |||+ aEE bt vy,,0 |,|+ [ el ) | are fourth augmentation coefficients for category 1, 2,and 3

|+ 22222 Y, 0 |,|+ §* 2222 Y, 0 |,|+ 22222 Y, 0 I are fifth augmentation coefficients for category 1, 2,and 3

|+ [0 7 7 H+ CF23333 "y 0 |,|+ CFE2 3333 "y 0 |are sixth augmentation coefficients for category 1, 2,and 3
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[+ 68= 558 5,0 | [+ aBZ05° "¥,0 ][+ (BT "¥s,0 |G QICNQ 6B BB G QOGO BI BEORI 1,2 62 Q3

|+ e vy, o |||+ e Ll Y, |,|+ CRELLLLL "y, o | are fourth augmentation coefficients for category 1,2, and 3

|+ 5222222 Y, 0 |||+ §e® 22222 "L |,|+ CB2 22222 Y, 0 Iare fifth augmentation coefficients for category 1,2,and 3

|+ e 33338 "y o |,|+ 233333 "y o |,|+ 6233333 "y o I are sixth augmentation coefficients for category 1,2, 3

QYs 5 5 #7 5| ag=® “QLOH @4 "Qy,0 ||Z S 'Q5,€‘J| "
oo . s ¥o l GEE Il Qo H (§®22222 °Qy ¢ “Z (@ RRss "Qs,f‘Jl 8
Do . .. @ 5| &0 Quol| &Y Q.0 lz (0 Qo |
o G20 ¥ ‘ (Iﬁeel,l,l,l,l "Qo H &f%eez,z,z,z,z "Qo, 0 HZ (Igeleea,a,a,as "Qg,(‘)‘ Yo
DY . . % °| @&° "Quol| @@= 9u0|[r &% Qo |
o | @ ¥o ‘ @@L Qg H (E=22222 Qo HZ (= 33333 “Qs,ol 0

0'mMOz &5 QLo [ ®=° 'Quo|[ ®=° Q0| Qo0 a8 GOMMRG @i GG K1,2 ¢ Q3

A Qi Qe QOGN "G8E GEOEHBEG "1 WG (01,2 (2Q3

| 55@4,4, "Q,,0 |‘| d’g%ee 44 °Q,,0 |‘| &S%ae 44 Q.0

| 62555 Q5,0 8% "Qs0]| &= "Qs0 | QM0 O0 a8 EOXHEG @i GHOR 01,262 Q3

| =LY "Qo |,| eIl "Qo | ,| GEELLLL Qo | are fourth detrition coefficients for category 1,2, and 3

| CEE22222 "Qy,0 I,I G52 22222 "Q,,0 |,| CE® 22222 "Qq,0 |are fifth detrition coefficients for category 1,2, and 3

|Z $BE33333 ;.0 HZ CF5E33333 "Q,;,0 ||z CBE33333 "Q;,0 |are sixth detrition coefficients for category 1,2, and 3

D_ e 6% C[+ @B %0 [+ GBS 0.0+ R %0 9
O 2 3 - ~ - ~ - ~ - 2
(0] |+ GRELLLLLL vy, “+ (R®222222 "y, ||+ (e 333333 "y o |

99 o6 G O+ GBEC a0 |[+ GRTOS Yo.0 ||+ @BE Y0 q
or - 3 2 o v hY A2 I 1 2 o 1 3
(0] ‘_,_ CRELILLLL vy, g H_,_ (RE 222222 "y, 4 ||+ (= 333333 "y o ‘

QQ, _ . . 082 6’+ E*° "¥,0 ||+ GE* > "¥9,0 H+ g 444 "\fs.(‘)| N
o Qs Qq

. 111111 - ! v 2222292 . o, . N
[+ agg@ i Ya.0 ||+ agg= 22222 Y0 J[+ 682233333 .0 |

[+ 6B¥° "¥%,0 [[+ cB=° "Y,0 ||+ GEFC "¥5,0 | I NI 6 (B BB G OUBREG "B BRI 1,2 03

[+ GHZ55% "Yo,0 ||+ aB=55° "¥,0 | [+ 6B "Yo,0 |6 QI Qe Qi G G TR GEONEREG @i GBI O1,2 Q3

[+ 65= 444 Yoo ||+ aB244h Y0 ][+ BE ¥, 0| GOSN G oeE GEOMXEIEG @i ENRI 01,2 62 Q3

[+ GE= LI vy, 6 | [+ GFEIIILLL (Y, 0 | [+ ég@ 1AL 7Y, 6 | - are fourth augmentation coefficients

|+ 65=222222 7Y, 0 ||+ (FR222222 "y, 0 ||+ ag® 222222 Y, 0| -fifth augmentation coefficients
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|+ (2333333 7y o |,|+ (2333333 7y o ||+ CH=2 333333 7y 0 | sixth augmentation coefficients

aY, . 4. #7 6| @$%=° "Qs,0 HZ G325 Q.0 ||Z & . "Q%b‘

T 032 % | (If%ael,l,l,l,l,l "Qo || (If%aez,z,z,z,z,z "Qg, 0 HZ a%aes,s,s,s,s,s “Q3'0| 2
oy, .. (I?é 6‘ &géaee "Qs, 0 |Z J%aes,s,s "Q,,0 HZ &%694,4,4, "Q7,b| )
o s % | a'ﬁael,l,l,l,l,l "Qo || (If%aez,z,z,z,z,z "Qo, 0 HZ agsiaes,s,s,s,s,s "Qsab‘ %
oY .. &ﬁ 6| &ﬁaeﬁ "Qs,0 HZ &S%aes,s,s "Q,,0 ||Z &g%ae4,4,4, “Q7'0|

T G4 % | (If%eel,l,l,l,l,l "Qo || (If%eez,z,z,z,z,z "Qg, 0 HZ (1592993,3,3,3,3,3 "Qg,b‘ 4

| 68®° Q50| @&®° Q0] &=° Q0] ciommooni g GO @i @RI 01,203

| =555 Q0| ¢%®%%® QLo B "Q,,0| Qi diiQ0m Gt OB "B WG 1,2 G103

| as@% g0, ag®*4 g0l @44 "Qr,0 | GO B8 GOXKIEG "Gl HNRI (12 03

| el Qo || [ AR O o) || GRE Ll "Qy | are fourth detrition coefficients for category 1, 2, and 3

| B® 222222 "Qq,0 I,I g2 222222 "Q, & || Oy 222222 "Qy 0 | are fifth detrition coefficients for category 1, 2, and 3

|Z (5= 333333 "Q,,0 |,|z 0523338333 ", 0 ||z 0532333333 "Q,.0 | are sixth detrition coefficients for category 1, 2, and 3

Where we suppose
A) gt L ET, B, & >0,

‘O 13,1415
(B) The functions ¢!, G&* are positive continuous increasing and bounded.
Definition of (g 1, (igt:

@™ (Y0 (Rt (853)W

@ (Q0) (9t (B (613)P
©) (o] “¥O Hb d'%ael Y4,0 = (N4 !

limgow B Qo = (ig?
Definition of ( 613 )®,(6153)® :

Wherel( 013)D,(613)D, (R L, (it ‘are positive constants and
They satisfy Lipschitz condition:
(G ¥, (GBP Yaol (Q)WIY, "YlQ(@=)Ye
(G "o (G "Qo | < (Qs)M|I0 "OffQ (V1)
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With the Lipschitz condition, we place a restriction on the behavior of functions

(G "¥5,0 and(GFr "Y4,0 . "¥E,0 and “Y,,0 are points belonging to the interval
("Q3)®,(013)® . ltisto be noted that (G “Y4,0 is uniformly continuous. In the eventuality of the

fact, that if (0 13 ) = 1 then the function (G&* “Y,,0 , the first augmentation coefficient WOULD be
absolutely continuous.

Definition of (013 )™,( Q3 )™ :
(D) (013)D,(7Q3 ), are positive constants

(6 * (6 *
(013)D "(013)®

Definition of ( 05 )™,(0,3)® :

(E) There exists two constants ( 033 )™ and (0,3 )™ which together
with (013)®,(Q3)D,(6,3) and (6,3)™ and the constants

((bd ! 1((:"% ! ,(&H ! 7(@ ! v(na ! ’ (‘ld ! 7"(2: 131141151

satisfy the inequalities
1 . . i ) ]
(013)(1)[(033 L4681+ (013) P+ (05)P(Q)W]<1

Gooml (@ + (@@ + (813)D+ (015)® ()P <1
Where we suppose
(F) @p?, (B2, B2, 2, @2, = >0, go161718
(©)) The functions (%2 , GE£® are positive continuous increasing and bounded.
Definition of (p;) 2, (r;) ?:

2

@ Y0 (Md? B
@B ('Q,0 (ig? (F? (0656)?
(H) lim-yo, B "Y7,0 = (N9 ?
M-, B Qe ,0 = (ig?
Definition of ( 816 )@, ( &16)@ :

Where|( 016)@,(616)?,(N3 2, (i9?2 ‘are positive constants and ['Cx 16,17,18

They satisfy Lipschitz condition:

(G2 5.0 (62 Y0l ()Y, "ElQtw)®e
(GBF? Qo %0 (G2 "Qy ,01<(Q)?|"Q Qo F|Q (1)

With the Lipschitz condition, we place a restriction on the behavior of functions (¢f? "Y&,0

and(¢&f? "Y,,0 . "¥2,0 and "Y,,0 are points belonging to the interval ( Qg )@, (046)@ . Itisto
be noted that (G&B*? “Y7,0 is uniformly continuous. In the eventuality of the fact, that if (0 14 )® = 1
then the function (G2 “Y,,0 , the SECOND augmentation coefficient would be absolutely continuous.

Definition of (0 15)®,( Qs )@
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0 (016)P,(7Qe )@, are positive constants

(6 2 (6
(016)@ "(016)?

Definition of ( 0;3)®,(0,3)@ :

There exists two constanty 0,5 )(? and ( 04 )(® which together
with (0 16)@,(Q6)@,(0816)PEQ( 815 )P and the constants

(6%, (6F 2, (2. (6F2%. (%, (g2, 161718,

satisfy the inequalities
Gl (@) 2+ (@7 + (A)P+ (Re)@ (kig)@P]< 1

Sl @2+ (@82 + (616)@+ (01)@ (Q)P] <1
Where we suppose
) M3, GB3, @B™, i, &, @& >0, 'gx202122
The functions ¢E*, &> are positive continuous increasing and bounded.
Definition of (713 3, (r;) ®:
@ (¥,0 (M° (82)®
@B (Qs,0) (9% (B3 (020)?
(o] "¥O Hb d%eeg "¥1,0 = (N4 3
liMeow, B Q3,0 = (i3
Definition of ( 6,59 )®,( 659 )® :
Where‘( 000)®,(60)3, (13 %, (192 ‘are positive constants and

They satisfy Lipschitz condition:

(G2 .0 (B2 %ol (GO "glQdz=)®
(6B "Qe%0  (G&® "Q3.01< (Qo)@I'Q Qe (P29

With the Lipschitz condition, we place a restriction on the behavior of functions (¢&f* "¥,0

and(¢&F® "Y;,0 . "¥8,0 And "Y;,0 are points belonging to the interval (Qo )®, (0 )® . ltisto
be noted that (G "¥;,0 is uniformly continuous. In the eventuality of the fact, that if (0 50 ) = 1
then the function (G “Y;,0 , the THIRD augmentation coefficient, would be absolutely continuous.

Definition of (0 50 )®,( Qg )® :
(K) (020)®,(Qg)®, are positive constants

(6 3 (6
(020)3 "(020)®

There exists two constants There exists two constants ( 0,0 ) and ( 0,0 )® which together with
(020)®,( Q0 )P, (820)PEQ( 6,0 )® and the constants

(d)é 3 ,(dﬁ 3 !((:)d 3 !(&gl 3 v(r‘]d 3 ’ (‘ld 3 "’Q; 201211221

WWwWWw.ijsrp.org
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satisfy the inequalities
1 . . . 3 ?
T (@ + (2 + (820)F+ (50)@ ()P < 1

;[ (@3 + (63 + (020) P+ (020)@ ()< 1

(099)3
Where we suppose
Mo, G/, B, nt, B, & >0 242526
(M) The functions ¢E2*, @& are positive continuous increasing and bounded.
Definition of (f1d *, (i9 *:
& (%0 (' (024)@
@ Q0 (gt (B4 (0624)

(N) (o] “¥O Hb d%aeél ¥5,0 = (N4 4
limgoy, 6E**  "Q; ,0 = (ig*

Definition of ( 8,4 )@, ( 6,4 )@ :

Where‘( 004 )*,(64)H (3 4, (i9* ‘are positive constants and |'Gx 24,25,26

They satisfy Lipschitz condition:

(G .0 (G %0l (Qu)@Y% “YlQde)®o
G Q%o (6 "Qr.01< (Q)@I"Q g FQ P20

With the Lipschitz condition, we place a restriction on the behavior of functions (G “¥&,0

and(6GBP** "¥5,0 . "¥,0 and "¥s,0 are points belonging to the interval ( Q4 )™, (0,4 )™ .Itisto
be noted that (GZF* “¥s,0 is uniformly continuous. In the eventuality of the fact, that if (0,4 )®* = 4
then the function (& “¥s,0 , the FOURTH augmentation coefficientWOULDbe absolutely
continuous.

Definition of (0 54 )®,( Q4 )@ :
(04)™,(Q,)™, are positive constants

(oo * (G 4
(024) ) "(024)#

Definition of ( Ops )@, (04 )@ :

There exists two constants ( Oy, ) and ( 0,4 )* which together wit
(Q) h i ) and (4) which h h
(024)*,07Qs )W (824) D EEQ( 654 )™ and the constants

(d)ﬂ 4 !(dﬁ 4 1(@ 4 :(dﬁ 4 v(r‘]d 4 ’ (‘ld 4 "'fz: 24:251261

satisfy the inequalities

WWwWWw.ijsrp.org
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Too@l (@4 + (G + (820) D+ (5)D (Q) D] < 1

(024)®
1 > . ; . 7
Tl @+ (@4 + (60) @+ (020)@ (Q) ] < 1
Where we suppose

@ %, GBS, B>, M, FS, E™ >0 g 282930
(S) The functions (EX , @& are positive continuous increasing and bounded.
Definition of (f1d °, (i °:
B (¥,0 (MQ°  (0)®

W@ Q.0 (lg° (F° (825)®

(M (o] “¥O Hb d%% ¥,0 = (N4 >
liMgo B "Qp,0 = (i °

Definition of ( &5 )@, ( 65 ) :

Wherel( 008 )®,(65),(NY 5, (195 lare positive constants and ['(x 28,29,30

They satisfy Lipschitz condition:

(GBS ¥5.0 (G Yo.0l (Qe)®Y "EIQ(D2)
(G Q%0 (GB® "Q ,01<(Q)®"Q  'Q FQ0)®0

With the Lipschitz condition, we place a restriction on the behavior of functions (G “¥g,0

and(6GB*® "¥5,0 . "¥E,0 and "Y,,0 are points belonging to the interval (Qg)®, (0 5)® .ltisto
be noted that (GF® "Yo,0 is uniformly continuous. In the eventuality of the fact, that if (0 55 )(® = 5
then the function (G&F® “¥,,0 , theFIFTH augmentation coefficientattributable would be absolutely

continuous.
Definition of (0 55 )®,( Qg )® :
(0,5)9,(Qg)®, are positive constants
(N (& °
(028)5) "(D2g)®

Definition of ( Uyg ), (025 )®

There exists two constants ( U,g ) and (0,5 ) which together with
(0,8)3,(Qg)®,(8,8)DEQ( 655 ) and the constants
(63 5, (GF°,(°.(F°,(M°, (i °,Cx 28,2930, satisfy the inequalities

Gy (00 ° + (6 + (029)F+ () (Qg) V] < 1

Tl (@5 + (@85 + (6:5)+ (026)® (Qe) ] <1

Where we suppose
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o, GBC, (B, b, (E°, (g™ >0, "Jx 323334

(W) The functions (EX® , @& are positive continuous increasing and bounded.
Definition of (g &, (ig ©:
B (.0 (¢ (03)O®

W (Q .0 (i9° (F°® (65)°

(79 ®
(19 °

) H@eyop BF Y0
liMmgo, (B Qs ,0

Definition of ( 83, )(®,( 83, )(® :

Where‘( 032)® (63,)® (3 ¢, (ig° ‘are positive constants and |"(x 32,33,34

They satisfy Lipschitz condition:

(G .0 (B %0l (@O "o t)®
I(CB® Qs 20 (GBF® "Qs ,01< (@)®||'Q Qs FQ(0a)®0

With the Lipschitz condition, we place a restriction on the behavior of functions (G&f° "¥g,0

and(GE® "¥5,0 . "¥5,0 and "¥3,0 are points belonging to the interval (@, )®,(04,)® .Itisto
be noted that (GZF® “"¥,,0 is uniformly continuous. In the eventuality of the fact, that if (03, )® = 6
then the function (& “¥5,0 , the SIXTH augmentation coefficientwould be absolutely continuous.

Definition of (0 3, )®,(Q,)® :
(03,)®,(Q,)®, are positive constants

(67 (G ©
(032)® "(032)®

Definition of ( 0s, )®, (04, )® :

There exists two constants ( Uz, )(® and ( 03, )(® which together with
(03,)0,(7Q,)® (83,)OcEQ( 63, )® and the constants

((bﬂ 6 1(6‘% 6 !(@ 6 ,((Iﬁ 6 v(r‘]a 6 ’ (‘ld 6 1"§2: 32:33:341

satisfy the inequalities
1 - v o . -
m[(ﬁﬂd6 + (GG + (03)O+ (05)0(Q)0<1

— L[ (G + (G + (83) O+ (02)® (Q)0]<1

(032)®

Theorem 1:if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying
the conditions

Definition of "@,0 ,"%0 :

o, N 5 1.5 1
@0 U1 QY3

o, @0 ="@> 0|
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MO (D13) D08

Definition of "@,0 ,"%0
Q0 ()P0

MO (D16) @010

@0 (U )@020)%0
%O (00 ) 02000
Definition of "0 ,"%0 :
4

N 5 4., 5 >
0 Uy QY24 70

MO (O )02

Definition of "@,0 ,"%0 :

o~ 3 5 5 45 5 &
@0 Uyg QU2 "0

MO (Dg) 020
Definition of "@,0 ,"%0 :
6

o~ 3 5 6 5 >
@0 U3, QU3 "0

MO (g )@

Proof: Consider operator ' defined on the space of sextuples of continuous functions '@, "%a, © A,

which satisfy

Q0 ='®, %0 = "8, "G

, .Q}O — “C%> 0
. ™0 ="%>0
. @0 ="@>0
. "R0 ="%>0
@0 ="@> 0
;760 ="%>0
(@0 ='d> 0]

'

Q0 = Q> O‘

’

(613)(1) v"% (613)(1)1

0 Qo & (U3 D1 Mo

0 %o & (D)gome
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By

Qs 0 =G5+ Woo (6d3) ' Q4 1 13 (6) 1 + BT Ya i1z i a3

@ 0 =G, +Wob (G4) *"Qs 1 13 (65) * + (BT Ya iz a3

Qs 0 = "Gs "',voo (6ds) ' "Qq 1 13 (6F8) ' + (GF' "Yu i1 i 13
Yoo =B+ o (@)Y g (&) (cBF* Of 15 i3
Ys 0 =Y, +,Voo (@) ' "Ys i 13 (6f) ' (GHBF! Oi 13 i3

Tis t =T "'WOO (Qs) *"Ya i 13 (&) ' (GRF' Oi 3 i3

Wherei 13 is the integrand that is integrated over an interval 0,0

Proof:

"QB i 13 Qi 13
“Q4 i 13 Q 13

"QS i 13 Q 13

Yz iz g3
Ya iz g3

Y5 i3 Qg3

Consider operator ' @ defined on the space of sextuples of continuous functions "@, “%s, © A, which

satisfy

‘@0 =, %0 =8, G ()@, (06)?,
0 Qo d (by)@@0w)e

0 %o B (D) @G0

By

Qe 0 = G + woé (6d6) Q7 1 16 (6F) 2 + CB]F? Yo i 16 i 16
@ 0

@, "'Nob (6d7) Qg 1 16 (6§%) 2 + (&FBF? Yo i1 17

Bp 0= g+ .o () > Qi 16 (GB) 2+ (GBF? Vi i
Yoo =Ht. o (@e)2 Y i (G8)7  (C@F? O i
Yo=Y+ o (@)2 Yl (6B (GBF® i i1
Yoo =Yt o (@)Y i (@87 (CBF? O i

Where { 15 isthe integrand that is integrated over an interval 0,0

Proof:

Qi1 Qo6
Qi Qg6

“QB i 16 [0} 16

Yo i16 16
Y7 i1 Qs

Yo i1 Qg5

Consider operator ' ® defined on the space of sextuples of continuous functions '@, "%, © A, which

satisfy
Q0 =G, "0 ="8,"Q  (00)P " (0)?,
0 @O G (D)D)
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0 %o b (D)0

By
Y i20 20

Gy 0 = "Gy + ,Vob (6r0) * Q1 1 20 (6%3) ° + G%F 3

=G+,
@+

", 0 Oo (6%1) Qo 1 20 (681) % + (6BF° "™ {20 i 20

@, o (68) 3 + (&FBF2 Y1 i i

O (%) 2"Q1 i 2

Yo 0 =Y +,Voo (G) *“¥1 i 20 (655) % (683F°% "Oi 5 iz
Yo ="% "'wob (@1) * Yo i 20 (68) % (G5F® "Oi 5 i
Tt =75 +,vob (62) * % i 2 (6$B) % (GBF® Oi 5 iz

Where { 5o is the integrand that is integrated over an interval 0,0

Consider operator
which satisfy

@0 =@, %0 =8, (52)@ 8 (02)@,
0 Qo @ ()@t ®

0 "0 "G (Dp)@02) W0

By

@, 0 =G, + ,Vob (Gra) * Q5 i 24 (682) * + BF* Yo (s i s

s "'woé (Gys) *"Qq 1 24 (G82) * + (BT * Y5 24 i 24

B 0

Qs 0 = "Gp "‘,Vob (Gy6) * Qs 1 24 (683) * + (GBTF* Yo {24 i 2

Y 0 =" +,vob (G24) Y5 1 24 (685) *  (G55F* Ol 54 i 5
Y 0 =Y +,vob (Gs) * "Ya i 24 (G$2) *  (G52F* Ol 54 i 5
Tt =T+ (G6)* ¥ ioa  (G)* (CEBF* Olo o

Wherei ,, istheintegrand that is integrated over an interval 0,0

Consider operator

satisfy
Q0 =G, %0 =8, R (05)P 8 (0)O,
0 @0 G (Gy)Oa

"\fO i 20

¥ 020

20

“QO i 20 Q 20

Qi Qg
Qi G
[ 3P
[ORPY)

Yo i 50 o

' (4 defined on the space of sextuples of continuous functions ‘@, "%, © 5.

Qs i Ay

Qs {24 A oy
Qs 24 A x4
Yl Qo
Y5 i Qo

Y6 i QA 24

' (9 defined on the space of sextuples of continuous functions "@, "%, © A, which
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0 o B ()0
By
"Bg 0 = "Gy + ,VOO (Gyg) ° Qo | 28

"Gy 0 = "Gy +,v06 (Gye) ° Qg i 28

@y 0 =" "'WOO (630) ° Qo { 28

Y 0 =Yy +,v00 (Gg) ® Yo i 2

Yo 0 =Y +w00 (Gde) ® Yo i 28

o , . .
Tt =T+, (W)° Yo iz

(%) ° + o5F°
(6%5) ° + (65eF°

(%) ° + (T °

(6R)°  (aRF°
(658) °  (dRF°
(6g) °  (aRF°

Oi 25 i 28
Oi 25 ,i 28
Oi 25 ,i 28

"¥9 i 28 Al 28
"¥9 i 28 Al 28

"\fQ i 28 vi 28

Where i ,g isthe integrand that is integrated over an interval 0,0

Consider operator
satisfy

Q0 = Q%0 = "8G

0 @O G (Oyp) @00
0 "o G (Dg)@0be)%
By

@, 0 =@, + ,Vob (Gx2) ® Qs i 52
Qs 0 = Qs "'woé (633) °"Q 1 3
@, 0 =4, +)v00 (6d4) Qs i 3

Yo =" +,vob (G) "% 1 3

Y 0 =¥ +,vob (Ga3) ® "% 1 3

o , = o ,
T§4+,vo (634) ° "5 1 32

(055)©® "

(05)©,

(é%) ® + a%F°
() © + (BT °

(6%) ° + (c&F°

() ° (c&F°
() °  (c&F°
(%) °  (a&¥°

Y i3 ia
Y i3 g

X3 i3 ia

Oi 3 i3
Oi 3 ,ig
Oi 35 i3

Where i 3, istheintegrand thatis integrated over an interval 0,0

(@) The operator b maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it

is obvious that

Ys i 28
Yo i 28

Yo [ 28

“QB i 28
“QQ i 28

"QO i 28

“QZ i 32

“QB i 32

“Q4 i 32
"\é2 i 32
"\43 i 32

"\£4 i 32

[ORPY

Q5

[oRPY
Q 2

[O4PY

' (6 defined on the space of sextuples of continuous functions "@, "% . © A, which

Q3

Q3

S

[SREP

[SREP

Q3

21
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Q0 Qs +wob (6a3) 1 "yt (Os )(1)'§5013)(1)i B Qs =

- (d13) * (013)D (10 )(De
1+ (Qg) 1 07°Q, + =—iy— abele 1

From which it follows that

(513)D+dy

o~ s e o (D)o (Gu3) L > o >
Q; 0 "G5 QP)To (0133)(1) (03)M+7Q, Q 4 + (03)®

"@, is as defined in the statement of theorem 1
Analogous inequalities hold also for "Q, ,"Qs, Y3, Y4, Y5

(b) The operator '@ maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

o~ o . . 161D ,
Qs 0 @+, (Gs) 2 @+ (0) OG0T G g =

5e) 2 (e ) (2 N .
1+ (G) 20°Q, + ((*).I.G)" (916)7 o516)P0 4
(016)@

From which it follows that

(516)@+dy

o~ s o (D)@ (Sue) 2 > o d >
Q@ 0 G QP10 (012)(2) (06)?+°Q; Q 7 + (06)@

Analogous inequalities hold also for "Q; ,"Qg, Y5, Y7, Ys

(&) The operator b@ maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
is obvious that

o . o 0 , v o 5 o~ D 3)g ,
Qo O Cgo"'woo (Gyo) 3 "Gi+(0y)GP20) 20 o =

o 3 . (é20) 3 (020)®) <5 y®o
1+ (C) 207G, + (020)@ 3020 1

From which it follows that
(520)®+

N . o (Do (3 (¢pg) 3 > - >
Q 0 Gy QP00 (UZOW (020)® + G, Q 1 + (0)@

Analogous inequalities hold also for "Q; ,"Q,, %, ¥1, ¥

(b) The operator b maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is
obvious that

o \ o 0O , v . ¥ o~ D (OO B
Q0 G, "')VOO (63a) * "Gt (Dpg ) B0 V020 g, =

“ N4 (624) * (52)® 15 54) @0
1+ (6pa)  07Gs + =5 S — @0 !

From which it follows that

(024) D+ s
. N - . " (4) g A 4 5 - . @ 5
Q0 g W Lo (§ @4 g 0 5 + ((0g4)@

(024)

"@, is as defined in the statement of theorem 1
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(c) The operator L) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is
obvious that

Qg 0 Gy +,vob (Gyg) ° "o+ (Dpg )(5)'9[)2*3)(5)i 22 Qg =

AR (628) 5 (028)® {5 ,5)®)o
1+ (6yg) O%-FWQ 2 1

From which it follows that

(528)3)+ Qg

.‘ R o o (Do )(5)¢ (Cpg) ® > A0 Fy >
Qs 0 "Gy Q02870 (UZSW (05)5) + G5 Q 9 + (0p5)®

"@, is as defined in the statement of theorem 1

(d) The operator () maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is
obvious that

o s n . . - o~ 0 31O :
Q2 0 C§2"',v0O (Gyp) © Qs+ (05) OG22 G 5 =

o N6 (@32) ® (932)®) (4 53,)®)0
1+ (Gy) %0+ (032)® 0 1

From which it follows that

(532)®)+fy

“ . o i~ (D an)(6)s (¢g2) © > “ o % >
Q0 @ Q)0 (U;W (052)® +G; Q 3 + (032)®

"@, is as defined in the statement of theorem 6

Analogous inequalities hold also for "Qg ,"Qg, ¥4, ¥s5," ¥s

(i ! (Gt

015)@ ,m< 1 and to choose

It is now sufficient to take

(P3)® and ( Qi3 )™ large to have

(513) D+,
(ot 5 5 o v R
©d (O13) ' + (03)P+"@ Q 2

0 (1)
(013) 1 (013)

(013)D+¥,

.1 o T o -
(% (013) P+ Q 0 +(013)®  (043)@®

(b13) *

In order that the operator ' (O transforms the space of sextuples of functions "@, “¥satisfying GLOBAL
EQUATIONS into itself

The operator ' (9 js a contraction with respect to the metric

,Q uol ’qu , uoz ’"YZ =
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fonfdcdgr o " 0 Q0WIoadm g o Y o Q0w Yy
Q oA+ oA+

Indeed if we denote
Definition of "Q"Y:
“Q"Y - ! (1)(.‘0"\’

It results

Q; sz . Oo(dla) 1 941, QA% Q(013) Mz g tis 13+
woé{(dfs) 1 (?31 Q§ Q (013) i 'Q (U13) Yig oy

(GEF* Yol QG G egie i

Q5 1(GRBFY Yy i 13 (GBFL YF i3 | Q0w Tdbn) T Teyg g
Where { ;3 represents integrand that is integrated over the interval 0,t
From the hypotheses it follows

ol "2 Qb)) to

2 (Qz) t + (&)1 + (013)r +(013) 1 (@)t Q "O,"Yr; 0% ,"Y2

(013) !

And analogous inequalities for "QE Q" Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (¢§5F* and (cf%¥ ' depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( 055) 019 ' 02 Q(5,5) L g0 10
respectively of ...

If instead of proving the existence of the solution on 4., we have to prove it only on a compact then it
suffices to consider that (6B and (G&F ,"Cx 13,14,15 depend only on T,, and respectively on
"QaE'QEE0EE O) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any & where '@, 0 = 0 GEQ"% 0 = 0

From 19 to 24 it results

‘6 "GO OBt (BB Yaigs iz O ogs 0

%0 BQ @G0 >0 fort> 0

Definition of (045) * |, (013) ' ,BQ (Dy3) *

Remark 3: if "Q; is bounded, the same property have also "Q, GE'Q"Qs . indeed if
Q< (03) L it follows% (013) * | (G33) * "Qq and by integrating
Qs (Dgg) ' =0+ 2(6) T (Dga) b /(GF) Y

In the same way , one can obtain

Qs (Dig) ' =G+ 2(ds) P (Dga) P/ (GEE)
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If "Q, €1 "Qs is bounded, the same property follows for 'Q; , "Qs and "Q; , "Q, respectively.

Remark 4: If "Q; "Qbounded, from below, the same property holds for "Q, GE'Q Qs . The proof is
analogous with the preceding one. An analogous property is true if "Q, is bounded from below.

Remark 5: If T3 is bounded from below and lim g (G ("00 ,0)) = (¢§) * then"Y, © Hb.
Definitionof & ! and-;:

Indeed let 0, be so that for 0 > ¢

(@)1 (B (00,9 <-,"%(9> & !

Then% (a)t & 1 -1"Yswhich leads to

syl g 1 . . .
vy, Qe & Q10 4 P19 |fwetake t such that'Q 10 = % it results
-1

" (na) & 1
Ya —“2

The same property holds for "Ys if limgp (GEEF: "00,0 = (aff) *

, 0= &% By taking now - sufficiently small one sees that T;, is unbounded.
-1

We now state a more precise theorem about the behaviors at infinity of the solutions

(6 2 (02

6)@ (616)@ < 1 and to choose

It is now sufficient to take

(016 )@ 2'Q( 045 )@ large to have

(016)@+d)
@32 . o
©10) 2 (O16) 2 + (036)P+ @ Q 2

(036)®

(5160044,

TN 2 - B - ~
@ (015)@+ "¢ Q 2+ (016)@  (046)@

(0 16) 2

In order that the operator * (@ transforms the space of sextuples of functions "@, “¥satisfying

The operator ' (@ is a contraction with respect to the metric

Q QYo' Q%Y 2 =

ionfacn Q@ o Q¢ 0 QW0 am g o g o Q0w
q A+ oAy

Indeed if we denote

Definition of 'Qs,"Yo :  "Qs,"Yo ="' @('Qs,"Ye)

It results
Qé sz . oé(d%) 2 Q% Q72 Q(016) 21 16 g016) 21 16 'y 6+

00{((1296) 2 Qé Q§ 'Q (0 16) 2i 46 'Q (U16) i 4
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GEF? Y i G Qe gy

QT2 Y i1e  (GBF2 Y ias | QO e dle e yg

Where i 15 represents integrand that is integrated over the interval 0,0

From the hypotheses it follows

Qo 1 "Qy 2 e (M)’

W (Ghg) * + (GF3) 2 + (Ag) 2 +(Pe) ?(Qe) > d Qo ', Yo ' Qo %, Yo ?

And analogous inequalities for Ggand T-q Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (¢§%¥ 2 and (cf%¥? depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( Pg) 2 e(M18) 2t and ( Q) 2 e(M1s) ? t
respectively of a1, .

If instead of proving the existence of the solution on s ,, we have to prove it only on a compact then it
suffices to consider that (¢E? and (G&F2 ,"Cx 16,17,18 depend only on T;; and respectively on
"Qy (andnot on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not existany t where Ggt = 0OandTqt =0

From 19 to 24 it results

Got Gl o (F2 (OB Ti7i16 d16 digg 0

Tt T3e @d%t >0 fort> 0
Definition of (Myg) * |, (M) > ,and (Myg) ? -

Remark 3: if G is bounded, the same property have also G;; and Gig . indeed if

Gis < (Mig) 2 itfollows == (Myg) 2 | (658) 2 Gy7 and by integrating

Gr (M) ? = Gl + 2(Q7) * (Myg) ? J () ?

In the same way , one can obtain

Gs (M) ? 3= Gls + 2(¢dg) * (Myg) * ,/(CF3) 2

If G; or Gg is bounded, the same property follows for G5 , Gig and G5, G;7 respectively.

Remark 4: If Gjg isbounded, from below, the same property holds for G;andG;g. The proof is
analogous with the preceding one. An analogous property is true if G;; is bounded from below.

Remark 5: If T, is bounded from below and lim o 1, ((GBF2 ( "Qe t ,t)) = (¢E) 2 then Ty © Ho.

2

Definition of @ andr, :

Indeed let t, be so that fort > t,
(@7) 2 (B ('Qy t.,t)<R,Tig(t)> @& 2

dT
Then —X£

“dt ((:QJ) 2aq 2 R2T17 which leads to
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N2 4 2
T17 (dy7) a

- 1 eR' +T2e R Ifwetaket suchthate Rt = % it results
2

. 2 . 2
T17 (dn7) o

2
same property holds for Tig if lime (CBF2 Qe t,t = (C) 2

We now state a more precise theorem about the behaviors at infinity of the solutions

, 0= IogRi By taking now R, sufficiently small one sees that T;; is unbounded. The
2

(i 3 ("

52000 (500 - 1 and to choose

It is now sufficient to take

(P )® and ( Q)@ large to have

(820)®)+d
vy 3 o o T
(@ (0) % + (00)®+@Q 2

0 (3)
(0 20) 3 (0x)

(320)+ 0y

T\ 3 - e - ~
@ ()@ + "8 Q 2+ (00)® (D)@

(0 20) 3

In order that the operator ' (3 transforms the space of sextuples of functions "@, "% into itself

The operator* (3 is a contraction with respect to the metric
Q Q. Y%, Q2 Y =

ionfaci QG 0 P o Q000 ggnyE o Y o QP79
Q M+ Nt

Indeed if we denote
Definition of 'Q3,"¥%;: Qs , ¥a =' @ Q;, ¥
It results
Qé Q)z wob(dko) 3 Qi Qi 'Q (020 31 9 '} U 20) 31 g A o +
o68) ° g gh P g i 4
@ Yo QG0 agim ia
QTS W0 (GBFP K i | QO T2 gl Tmyg
Where { 5o represents integrand that is integrated over the interval 0,t
From the hypotheses it follows
ol 0?2 Qb0 30

- (Cyo) 3 + (6) 2 +(020)3 +(020)%( Q)% Q Q@ ', "% *; Q@ 2,7y 2

(020) 3

And analogous inequalities for "QLE'Q"Y, Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (¢55F 2 and (635F 2 depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
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necessary to prove the uniqueness of the solution bounded by ( y,) 3 020 * 0 GEQ( 0 ,) 3 020 0
respectively of a1, .

If instead of proving the existence of the solution on 4., we have to prove it only on a compact then it
suffices to consider that (¢ and (GEF® ,"Ck 20,21,22 depend only on T,; and respectively on
"Q; (GE'Qe€0€E 0) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any & where '@, 0 = 0 GEQ"%0 = 0

From 19 to 24 it results

‘0 @ o @R i i20 9 a0 0

%o BQ @370 >0 fort> 0

Definition of (020) * |, (D20) % ,6EQ (020)° -

Remark 3: if "Qy is bounded, the same property have also "Q; (€ Q"Q, . indeed if

Qo < (20)  itfollows S 2

(020)°% | (68) > "Q and by integrating

Q (D) ® ="+ 2() % (D20)% /(33

In the same way , one can obtain

Qo (Dg0)® =G+ 2(c) % (D20) 2 /(¢3)°

If 'Q; €1 "Q, is bounded, the same property follows for "Q, , "Q, and "Q, , "Q; respectively.

Remark 4: If "Qy "Q2bounded, from below, the same property holds for "Q, G£'Q"Q, . The proof is
analogous with the preceding one. An analogous property is true if "Q, is bounded from below.

Remark 5: If T, is bounded from below and lim g i ((GBF°  "Q; 0,0) = (655) 3 then™¥; © Hb.
Definition of & 2 and-;:

Indeed let 0; be so that for 6 > &;

(1) % (B Qs 0,0 <-3,%(Q> a 3

Then % () % & 2 -3"¥; which leads to

v (¢p1) % & 8
¥l 1_—

1 Q3% +"Y'Q 3% Ifwetaket suchthat'Q 3°= % it results
3

v (bp) % & 3
\fl W) - &

2
The same property holds for "¥, if limg (655F° Q3 0,0 = (653) 3

We now state a more precise theorem about the behaviors at infinity of the solutions

, 0= &% By taking now -5 sufficiently small one sees that T,; is unbounded.
-3

(i 4 (i 4

—2 <
0200 "(024)® 1 and to choose

It is now sufficient to take

(Py)® and ( Qy4 ) large to have
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(320)9+d)

ol ol o, 0 “;; 5
(O2) 4 + (020)®+"Q Q 2 (Og)™

(cog 4
(0 24)

(326) @+,

0 4 ol 12 0 "F, ol il
(3 (024)@+ "8 Q 0 +(050)®  (02)™

(0 24)

In order that the operator ' 4 transforms the space of sextuples of functions "@, “¥satisfying IN to itself

The operator ' 4 is a contraction with respect to the metric
Q Q.Y t, Qg 2, 2 =

ionfaci Q@ o P o Qg o Y o QY
Ko} ovea 4+ May

Indeed if we denote

T o, o -, o 1 e o
Definition of "Q; , "Y¥; Q.Y = Q. "Y)
It results

o a2 0, o R, I 0 4 o~ D 4 8

Qi Q >v00((*b4)4 Qé Qs Q (024) "1 2a°d024) "1 24 'y oy +

IN(CARNCTIRC A ISR N AR

(GBEF* ¥ l20 Qr GQf QU Tagban iy

9121 |((I§ﬁ”4 )/; i o4 (@3;4 ¥52 i oos | 'Q(024)4l' 24 'Q024)4l' 24 Y4 5,

Where i 54, represents integrand that is integrated over the interval 0,t

From the hypotheses it follows

o, o, B N 4
Q; ! Q; 2 Qb 70

(0;)4 (Cpa) 4 + (CF) 4 +(022)* +(02)*(Q)* Q Q@ 1, "% *; Q 2,7¥ 2

And analogous inequalities for "QE Q™Y Taking into account the hypothesis the result follows

Remark 1:The fact that we supposed (635F 4 and (¢35F* depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( 0,) 4 'C§924) o GEQ(0yy) 4 'F024) o
respectively of 4, .

If instead of proving the existence of the solution on A ,, we have to prove it only on a compact then it
suffices to consider that (¢ and (G&F** ,"(x 24,2526 depend only on T,s and respectively on
"Q; (GE'QE€0£E 0) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2There does not exist any 0 where "@,0 = 0CEQ™% 0 =0
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From 19 to 24 it results

Q0 @ oY G s i o4 O o 0

%0 MBQ @F*0 >0 fort>0

Definition of (024) * |, (024) ¢ ,6EQ (D24)* ;-

Remark 3if "Q, is bounded, the same property have also "Qs GE'Q"Qg . indeed if
Qs < (0,4) * itfollows % (024)* | (688) * Qs and by integrating
Qs (Daa)t =G+ 2(6ks) * (D20) */(cER) ¢

In the same way , one can obtain

Qs (Daa)* = o+ 2(6ke) ¢ (D2a) * 7 (68R)*

If 'Qs €1 "Qg is bounded, the same property follows for "Q, , "Qg and "Q, , Qs respectively.

Remark 4:If "Q, "Qbounded, from below, the same property holds for 'Qs GEQ'Qg . The proof is

analogous with the preceding one. An analogous property is true if "Qs is bounded from below.

Remark 5if T,, is bounded from below and limp 1, ((GBF* ( "Q; ©,0)) = (G52) * then"Ys O Hb.

Definition of & 4 and-,:

Indeed let O, be so thatforo > ¢

(@s)* (BF*(Q 0,0<-4,"%(©O> a 4
Then % (Gps) 4 & *  -,"¥s which leads to

oA g 4 . . .
“Ys (¢ps) ~ 4 1 Q4% + "Y'Q 40 |f we take t such that'Q "4° = % it results
-4

v (Gps) 4 & 4
\fs %

The same property holds for "Y if limeo w(GRF* "Q; 0,0 = (&%) 4

, 0= (E"Q~ By taking now -, sufficiently small one sees that T,5 is unbounded.
-4

We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS

inequalities hold also for "Qq ,"Qp, ¥s, %o, Yo

(¢ ® (G5

—2 <
(925)0 "(025)® 1 and to choose

It is now sufficient to take

(Pg)® and ( Qg )® large to have
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(028)(®+d)
(G 5 ¥ ¥ o ey ¥
ﬁ (0p8) 5 + (0)® + '@ Q 2 (Og)®

(028)%)+"¥%,

0 5 ol 12 0 "F, ol il
(3 (028)®+ "8 Q 0 +(058)  (02)®

(0 28) ®

In order that the operator ' (® transforms the space of sextuples of functions @, "into itself

The operator ' (5 is a contraction with respect to the metric
Q @t t, Q. 2=

ionfaci QG 0 P o QOB oainE o Y o0 Q=9
Ko} ovea 4+ May

Indeed if we denote

Definitionof "Q; , ™ = '@, % ='0 Q¥

It results

a1 o2 0, w a1 R, I 0 5 o~ D 5 8

Qs Q >vo((*§8)5 Qs Q5 Q (V28) > i 23 ¢fU28) ° 1 28 'y 2 +
ol ° G Gy e e hm) i

(GBFS ¥ i20 Q5 Qf QUm Tamgha) i 4

o o o ’ o, o , . 0 5 ¢ I 5 5
Q5 I(GRFS Yo ulos  (CBF® Yo .ios | Q02 Taaddo0 T anyy o
Where i ,5 represents integrand that is integrated over the interval 0,t

From the hypotheses it follows

Q t g 2wt
: (Cyg) ® + (C83) 5 + (028)° +(028)%( Q)% Q Q@ ', "% *; Q 2,7 2

(028) 5

And analogous inequalities for "QE Q"Y, Taking into account the hypothesis (35,35,36) the result follows

Remarkl: The fact that we supposed (G5F °> and (655F > depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( U,g) 5 C§928) oo GE'Q( 0,g) 5 0 28) S0
respectively of 4, .

If instead of proving the existence of the solution on A ,, we have to prove it only on a compact then it
suffices to consider that (¢ and (G&F® ,"(x 28,29,30 depend only on T,y and respectively on
"Q; (GE'QE€0£E 0) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2There does not exist any 0 where "@,0 = 0CEQ™% 0 =0
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From GLOBAL EQUATIONS it results

Q0 @ oS (G Yoioas 2 O g 0

%o "BQ @°0 >0 fort>0

Definition of (028) ° |, (028) ° ,EQ (D28)° -

Remark 3if "Qg is bounded, the same property have also "Qq GE'Q"Q, . indeed if
"Qg < (0 ,5) ° itfollows % (028) ° | (G88) ° Qg and by integrating
Qo (028)° ,= Qo+ 2(Cho) ° (D2g)° ,/(6F)°

In the same way , one can obtain

Qo (Da8)° ;= "G+ 2(6k0) ° (D) ° L/ (cH)°

If 'Qq €1 "Qq is bounded, the same property follows for "Qg , "Qy and Qg , "Qq respectively.

Remark 4: If "Qg "Qbounded, from below, the same property holds for Qg GE'Q'Q,. The proof is

analogous with the preceding one. An analogous property is true if "Qq is bounded from below.

Remark 5if T,g is bounded from below and lim g ((GBF° ( "Q; 0,0) = (G53) ° then ¥y © Hb.

Definition of & ° and-5:

Indeed let & be so thatfor 0 > &

(Go) °  (GEF®("Q1 0,9 <-5"¥% (9> & °

Then % (Gpg) ° & °  -5"¥9which leads to
o 5 4 5 \ . .
Yo ) & 7 g -0 4 "¥'Q "% If we take t such that Q "5° = % it results
-5

. 5 . 5
'¥9 (6pg) 5 a
The same property holds for "Yp if limpo wW(CRF°> "Q; 0,0 = (¢5) °

We now state a more precise theorem about the behaviors at infinity of the solutions

Analogous inequalities hold also for "Q3 ,"Q4," Y2, Y3, ¥4

(cog © (N
(032)6) "(03)6)

It is now sufficient to take < 1 and to choose

(P,)® and ( Qs, )(® large to have

, 0= (€"Q= By taking now -5 sufficiently small one sees that T,q is unbounded.
-5
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(032)(®+d
(G 6 ¥ ¥ o ey ¥
ﬁ (032) & + (03)® +@ Q 2 (03)®

(032)®+¥%,

0 6 ol 12 0 "F, ol il
(3 (032)®+ "8 Q 0 +(05)®  (03)®

(032) ©

In order that the operator ' (®) transforms the space of sextuples of functions @, "into itself

The operator ' (8) is a contraction with respect to the metric
Q Q@ ', ', QY 2=

ionfaci Q@ 0 P o Q0 oainE o Y 0 Q=Y
Ko} ovea 4+ May

Indeed if we denote

Definitionof Qs , "% : Qs , ¥ ='© Q¥

It results

a1 o2 0, w a1 R, I 0 6 | o~ D 6 | 8

Q; Q wo((*?BZ) 6 Q; Q5 Q (V32) " i 32 ¢fl32) ° i 32 'y o +
Ll ° g Qg aR et

(@ Bin @ @G olaiadgia’ic,

QG ICEEFS i  (BF° % .igp | QO Taddia ey,
Where i 3, represents integrand that is integrated over the interval 0,t

From the hypotheses it follows

Q! Qs 2 0wt
- (632) & + (6F) ¢ +(03) % +(0) (P Q "Q ', "% ' @ 2, "% ?

(032) 8

And analogous inequalities for "QE Q™Y Taking into account the hypothesis the result follows

Remarkl: The fact that we supposed (G5F ® and (a53F°® depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( 03,) 8 C§932) °o GE'Q(03,) 8 F032) ®o
respectively of 4, .

If instead of proving the existence of the solution on A ,, we have to prove it only on a compact then it
suffices to consider that (¢ and (G&F® ,"(x 32,33,34 depend only on Ta; and respectively on
Qs (GE'QEE0EE 0) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2There does not exist any 0 where "@,0 = 0CEQ™% 0 =0
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From 69 to 32 it results

Qo @Q ..é’(éﬁ b (B iz iz g 0

%o  "BQ @°0 >0 fort> 0

Definition of (032) ® |, (03)° ,EQ (03)° ;-

Remark 3if "Q, is bounded, the same property have also "Q; GE'Q"Q, . indeed if

"Q, < (03,) 8 itfollows % (032) ® | (G8) °"Qsand by integrating

Qs (03) ° L= "G+ 2(cxs) ® (D3p)® /(68)°

In the same way , one can obtain

Qs (03)° =G+ 2(c) ® (D) ® /(c)°

If "Qz €1 "Q, is bounded, the same property follows for "Q, , "Q, and "Q, , "Q3 respectively.

Remark 4: If "Q, "Qbounded, from below, the same property holds for 'Qz CGEQ'Q,. The proof is
analogous with the preceding one. An analogous property is true if "Qs is bounded from below.

Remark 5if Ty, is bounded from below and lim g 1, ((GBF® ("Qs ©,0)) = (G) © then"¥; O Hb.
Definition of & © and-g4:

Indeed let & be so that for 0 > &

(Gas) ©  (CB® "Qs 0,0 <-6"%(9)> & °

Then % (G33) & & &  -5"¥s which leads to

v (¢g3) & & ©
Y 3—

1 Q6% + "P'Q 6% [f wetaket suchthat’'Q 6% = % it results
6

“ (é3) ® & ©
\\(3 oB3) %

2
The same property holds for ™Y, if limeo (CEFE Qs 0,00,0 = (685) ©

, 0= (E"Q— By taking now -¢ sufficiently small one sees that T3 is unbounded.
"6

We now state a more precise theorem about the behaviors at infinity of the solutions

Behavior of the solutions

_If we denote and define
Definition of (,1) * ,(,2) > .(t) * .(t) ! :
@ 1)t .2t ()Y (1)t four constants satisfying

G2) b (6t () (CBF' a0+ (T a0 ()t
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(t2) * (&)L +(cB)  (CBF* Q0  (WFHF' Qo (t)*
Definition of (") *,(5) *,(61) 1, (6,) Y, t,01t :

(b) By (")* >0,(,)* < 0and respectively (6;) * > 0,(6,) ! < 0the roots of the equations
(@) " P (Ga) ! =0and (@)t 61 C+(f) 16 (A =0

Definitionof "D *,,( D 1.,(07) 1,(0,) * :

By(CD?!>0,CF?' < 0and respectively (6,) * > 0,(6,) ! < Othe roots of the equations
. L1 2 , . . L1 2 . v
(Qa) ' "t T+ (Gt ()t =0and ()t 0 TH(H) ot (@)t =0

Definition of (64) * ,(a2) Y (). (2) .Co)?t -
(c) Ifwedefine (d1) * ,(42) " (") ".("2) " by
(G2t =Co)t(G) P =(C) W)t < (1)
() =(C) (@) =CD" @A) <(Co)t <D,

and (o) * = B

()t =(C) b (a)t =Co) ', @D <o)t
and analogously
(2)' =(6) (1)t =(0) ", WMO) < (61) !
(‘2P =(0) ()t =(0) WOt < (60) P < (61) F,

and|(6g) ! =

(‘20 =(61) 1 (1)t = (60) FW61) P < (O) 1 where (6;) *,(61)
are defined respectively

Then the solution satisfies the inequalities

GO0t ()t e gy dEo e

where (113 * is defined

1w L (1)l 0 v s 1 oY) L
@, Q0 ~ ()= 0 "Q,(9) @, o

CENE (ap)?!

@191 U

(oot oty @Y e h7e +rgatd e "gy(9)
(én5) L Q. Y L o o2y L g o o a1
T T @ @Y QT+ g ) )

o\ '~ 14 o . @ (" 14,0 1 .
|Y3QY1) o Y9 "B Trim o

1 e@NY)10 = . 1 w0 (Y) L+ 1 ¢
e BaW 0 TY5(9) S Bt ) = o
(dis) ¥y gWwie Q@A L P @Rty (g

(ol vt @@
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(Grs) * ¥y oM+t o (o 4 (e te
PR R L Q270+ 0 (%

Definition of ("Y) (") *,(Y) 1, (Yp) * -
Where ("Y) * = (d3) * (a2) b (c8B) *
9= (As) (M)
(V)" = (@) ()t (6B’
() =(c8) " (i) ?

Behavior of the solutions

_If we denote and define
Definition of (K1) 2 ,(K2) 2 ,(z1) 2 ,(22) 2 :
(d) A1) 2 ,(A2) 2 .(z) ? (22) 2 four constants satisfying
(A) 2 (6§8)2 +(6)2  (C8F2 Ty, 0 + (68F2 Tir.0 (K2
()2 (GR)2+(CB)7 (CBF2 Q.0 ((BF? Q.0 ()2
Definition of ('4) 2, (&) 2,(01) 2,(6,) 2 :
By ("1)?2 > 0,(&) 2 < 0and respectively (6,) 2 > 0,(6,) 2 < 0 the roots
() of theequations (Ga7) 2 ' 2 “+ (K)2' 2 (Ge)2 = O
and (@) 2 62 "+ (z)%062 (G)2 = Oand
Definition of ('[) 2,,(’§) 2,(01) 2,(0,) 2 :
By('D2 >0,(th) 2 < 0and respectively (0;) 2 > 0,(0,) 2 < Othe
roots of the equations (637) 2 ' 2 “+ (K) 2" 2 (Gye) 2 =0
and (G7) 2 62 "+ (2)%062 (Qe)? =0
Definition of (&) 2 ,(&5) 2 (‘1) 2,("5) 2 :-
(f) Ifwedefine (1) % (6,)2 (') 2.(2)% by
(6202 =Co)2.(a)?=C)? W) ?<(1?
622=00%.602=(D% M D2<(0?<(D2,

0
Gis
0
Gi7

and [(') ? =

(62)2 =(1)2.(4y)? = ('o)z,éﬁl('Dz <(o)?

and analogously

(‘2)2 =(00) 2,("1) % = (6y) 2, I(Oo) 2 < (6y) 2
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((2)%=(61)2,(1)% =(61)7 [M(61)? < (60) % < (6n) 2,

c v 2 _ T
and|(06g) < = 7o

(“2)2=(6)2%.("1) 2% = (60) 2, J(61) 2 < ()2
Then the solution satisfies the inequalities

Qe G0 ? (02 t Qoo DeelS)?t

(N9 ? is defined

1 2 M 2 e, . 1 2
Qe o2t gy —L Peelsn?t

(62) 2 (62) 2
(6n8) 2 6 S2 () 2 ¢ 2, 2,
STRERTS 2 o) 7 (%) 2 e (%7 (ho e @7t + Ghe (2
(Gho) Gl [t ¢ (@) %]+ Pe @R)7Y

(62)2 (S1) 2 (F) 2

ToeRD 20 "y (g The (R ?+(iw)? o

1

1 2 o .
Te®) 70 Yo

0 R¢) 2 H 2 &
E Tke (R~ +(ie) = ©

(J).l.)ZTO 2 4 TRy 2 2 2 " .
T 2 (Rj) 2 J:(}fg) > e(Rl) o e (wfg) < 0 + Tl08e (wf%) o] YB(O)

(rs) ? Ths (R)2+(16)2 6 o (R)20 4 T0o (R)20
(27 R 2+ Ze R 2 © e ()70 + Tze (2

Definition of (S)) 2 ,(S) 2,(Ry) 2,(Ry) 2 -
Where (S)) 2 = (&) * (45) > (GF) 2
()% =(dg) ®  (Ms)?
(M) 2 =(Qe) 2 ()" (&R)?
(Re)? = (cf8) ®  (ig) ?

Behavior of the solutions

_If we denote and define
Definition of (,1) ® ,(,2) 2 ,(T) 3 ,(f) 3 :
@ .1) % .(2) ® (1) ® ,(f) ® four constants satisfying
(b2)® (&%) ° +(a8)°  (GKF° "Y,0+(EF° "¥%,0
()% (6R)° + (&) ° (G%BF® Qo (GHF® Qs ,0

Definition of ("1) 3,(",) 2,(01) 3 ,(06,) ® :

Gis(0)
(n l) 3
(f)®

(b) By (1) % >0,(,) 2 < 0and respectively (0;) * > 0,(0,) 2 < 0 the roots of the equations

@)% "% 2+ ()% % (G =0
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and (Gy) 3 63 “+ (1) 363 (Ga)® = Oand

By('[)3 >0,(CF) 3 < 0and respectively (6;) 3 > 0,(6,) 3 < Othe

roots of the equations (Gy) 3 * 3 2+ (,2) 3" % (Gx) 3 =0
and ()2 6° "+ (1) %03 (o) =0

Definition of (&) 3 (&) 3 (‘1) 3.("2) 2 -

(c) Ifwedefine (61)° ,(a2) % (") %.('2)° by
(62)°=Co) % (a)®*=C0° Mo ®<(?3
62)° =360 =CD% MD*<Co)®<(D?3,

and [("o) 3 :%

(G2)% =(q)3.(ay) 3 :(’0)3,§§§I(’D3 <(o)?

and analogously

(‘2) % =(60)%.("1) 3 =(0y) 3, I(Oo) 3 < (o)

((2)%=(61)3,(1)3% =(0p) 3 ,.(01) 3 < (60)® <(61)°%, and
("2)% =(0)3%.("1) % =(60) *, W(01) % < (0p) 3
Then the solution satisfies the inequalities
"GP 02 0 g g Gy e
(N ° is defined
1 o . (\1)3 (r] )3 o o, N 1 o . \1)30

NTHE G Q 0 Q1(9) TRE [e)e!
( (6p2) 8 "C?o 'Q(\I) 3 (N20) 3 5 Q ™) 35 + "@2'9 (") 35

(61)3 (D3 (20) 3 (p) 3
(ép2) "G g3 @34 o @30
(@23 ()3 (aB}) 3 [ 1+ )

W oy g P i) ® o

1w\ N 3 ¢ v . 1 wp e 3., 3 .
E HAY 7 Yo(9) (23 Y 7 +(iz0) © 0

(Gpp) 3 AV 3 (Y35 L e m (GBY3 5 ey sa
(D3 (‘Yi)3\£()?b3%)3 g te QUEERTe + Q@R e Y, (g)

(90) ° OM 3+ 6 (W26 4 P (V)36
("2)3 (V1) 3 +(iz0) 3 +(¥) 3 QtH 2 Qt= + % (V2

Definition of ("Y) 3,("¥) 2,('V1) 3 ,(Y,) 3 -
Where (Y) 3 = (dy) 3 (G2) % (6%) 3
(") 2 = (@) ®  (Np)?®

(00) 3 =

Yo
%

Q2(9)
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(V)3 =(@)3(2)°% ()°3
(Y2) 3 = (&5%) 3 (i22) 8

Behavior of the solutions
If we denote and define

Definition of (,1) * ,(,2) * ,(T1) * ,(t) * :
(d) (1) .(G2) * (1) % ()4 four constants satisfying
G2)* (G8)* + (@) (EEF* ¥.0 + (&EF* %0 ()
(t2) (6%) 4 + (%) *  (6&FF* Q.0 (c%F* " .0 (t) *
Definition of ("1) *,("2) 4 ,(61) *.(6) 4, 4,04 :

(e) By (1) % >0,(,)* < 0and respectively (0;) * > 0,(0,) * < Otherootsof theequations

) "4 2+ )4 Y () =0
and (Gys) 4 0* 2+(T1)4()4 (634) * = Oand

Definition of D) 4 ,,C D % ,(07) % ,(0,) * :

By(CD* >0,CF* < 0and respectively (6;) * > 0,(6,) * < Othe
roots of the equations (Cys) * * 4 an (L)% % (Gy)* =0
Jed ’ 2 r el
and (@s)* 04 "+ (H)*0* (w)* =0
Definition of (é14) * ,(é2) * ,(*1) *.("2) *. (o) * =

(f) Ifwedefine (61) * ,(a)* (‘1) *.("2)* by
()% = (o). (61) " = ('1)4,§§§l('0)4 <(n?
() =C)*@)*=CD* ) <Co)*<(CD*,

and (o) ¢ = 3

(62)% =(Ca)*.(G)* =(o)*, l(D t <o
and analogously
(‘2)* =(60) *.("1) 4 =(61) %, ﬁl(éo) 4 < (o)

((2)* =(6)" ("1)* = (0" ,l(ol) 4 < (60) 4 < (01) 4,

and|(0g) ¢ = %‘5‘

("2)% =(61) %, (1) =(0g) * ,I(Ol) * < (6g) * where (6;) *,(01) *
are defined by 59 and 64 respectively

Then the solution satisfies the inequalities
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@t et o g, 5 @i

where (1} # is defined

1 o . o 4 S 4 A o, N 1 o o™ 4 A
e @0t et o g, 4 T Q0o
(626) * 'Sy B4 ) ? 6 040 4 9P sn ¢
QD" (M2a)" 0o ()"0 4 Q () "o o)
G4 (N4 () * (p) 4 % Qs
(Gpe) 4 Dy rQ"\I)“o o) (@) 4o 4 "@6'9 (@) 4o

(G2)4 (D4 ()4

|-'\g4-g'vl) Yo vy, o P00 a0t o

Lopgwte ry (g ——"g ol e

(04 (24
(Gpe) * "%s gW o Q@R ‘e 4o @R 0y (¢
3 0
(D4 (W4 (@) % %(9
(G26) * "¥s QUM izt 0 Q) Yo 4 g () o

(2% () 4 +(20) 2 +(%) ?
Definition of ("Y) *,("¥) 4, (V) 4 ,(Yz) 4 -
Where ("Y) * = (6pq) * (42) ¢ (d53) *
("9 * = (6pe) * (M) *
(V) * = () * ()" (a3)*
() * = (&%) (iz)*

Behavior of the solutions
If we denote and define

Definition of (,1) ® ,(,2) ° , (1) ° ,(12) ® :
@) (»1) % .(»2) % (1) ® ,(1)) ° four constants satisfying
(2)° () ° +(6R)°  (GHF® Yo.0 + (GRF° Y0 (1)°
()% (GR)° +(&R)° (cHBF°® Q.0 (¥ Q.0 (h)°
Definition of (*1) 5,("2) 5,(61) 5,(62) %, 5,65 :

(h) By ("1)°® > 0,(’,) ° < 0and respectively (0;) > > 0,(0,) ° < Otherootsof theequations

. e 2 , )
(Cpg) ® " % "+ (;1) 15 (Gyg)° =0
and (G) ° 0% "+ (1)) %0°% (G&g)® = Oand

Definitionof ('[) 5., §) 5,(61) 5,(6,) 5 :

By('D® >0,Cp° < 0and respectively (0;) > > 0,(0,) ® < Othe
roots of the equations (Gyg) ° * ° g (b2)°' % (G)° =0
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and (Ge) 5 05 “+ (1) 505 (Gg)® =0
Definition of (& 1) ® ,(G2) > ,("1) °,("2) °,(0o)° =

(i) 1fwedefine (d1)° ,(45)° ,(‘1)°,("2)° by
(G2)°% =(o)°.(6)° = ('1)5,§§I('o)5 <(1)°
(@)% =C)®.(@)°=CD°. WC)®<(Co0)®<(D*,

and |('o) ® :%

(a2)°=(C)®%.(61)°=(Co)°, WMCD®<(0)?*
and analogously
(‘2)% =(00) *,("1) ° =(61) °, W(60) ® < (61) ®
(‘2)° =(61)°,("1)° = (6)° ,l(ol) > < (00) ® < (01) °,

and|(0p) ° = ﬁ
9

¥

("2)° =(01)°.("1)° = (6g) ° ,I(Ol) ® < (6¢) > where (61) °,(0,) °
are defined respectively

Then the solution satisfies the inequalities
o o (" 5 > 5 & o \ o o~ 5 ¢
QD ° (M28)° 0 Qo) P 0

where (19 ° is defined
L @00 ° (8)° 0 "gu(g) L@ °o

(65) 5 (62)5
((030) 5 “cgs . o~ 5 N 5 & . o~ 5 5 “ B o 5 . “ N
QD% (128)5 6 (V%0 4 @0 (¥ °0 o
(15 (N5 (A) 5 (B) 5 % Qo
(630) ° "G g e Qe 4+ §Q 5o

(@2)% (N ° (&) S

BaW ey oM rim® o

LW (0 et 0w o

(1° (25
(630) %5 g o Q@R %0 4P @) S vy (¢
- Q (@0 + P Q (%) °0 o)
(D5 (W5 (@5 % %(9)
(Gn0) © ¥ QM) S +iz8)° 0 Q)0 4P ()0

(2)5 (M) 5 +(i28) 5 +(¥) B
Definition of ("Y) ®,("Y) °,(Y1) ° ,(Y») ® -
Where ("Y) ® = (Gyg) ° (42) °  (68) °
(") ° = (c¥) °  (Nao) °
(V) ° = (Ge) ® (') () °
(%) ® = (6%)°  (is) ®
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Behavior of the solutions
_If we denote and define

Definition of (,1) ® ,(.2) ® (1) © (1) © :

() (w1) ® 1(w2) ® (1) © ,(12) © four constants satisfying
(b2)® (GB)° +(&B)°® (GFF® "¥%.0 + (&F° %0  (1)°
() ® (&) °® +(B)°® (BF® '@ .0 (BF® Q.0 (t)°

Definition of (") ®,("2) ®.,(61) ®,(62) ©®," ®,0° :

(k) By ("1)® >0,(5) 8 < 0andrespectively (0;) & > 0,(0,) ® < Otheroots of the equations

(Ga) "¢ "+ () ° ° (@) ® =0
and (G33) © 0° "+ (1) 6% (G) ® = Oand
Definition of ") ¢,,C ) ¢ ,(0,) ,(6,) © :
By(CD® >0,CE® < 0and respectively (6;) ® > 0,(6,) ® < Othe
roots of the equations (Gx3) © * © 2, (L) 8 8 ()8 =0
and (G3) © 0° "+ (£,) 6% (G) ¢ =0
Definition of (&) ® ,(a2) € ,(“1) 8.,("2) ®.(Co) ¢ -
() Ifwedefine (61)® ,(6,)% ,("1)%,("2)° by
(G2) 8 =(o)®.(a1)® =(1)°®, l(o) b <(y)®

(62)°=C°%06)°=CH°® MD®<C®<CD®,

and [("o) © =%

(G)® =(1)°.(a)®=(o)®, I(’D 6 <(o)®
and analogously
(‘2)® =(60) ®.("1)® =(61)°, ﬁl(éo) 6 < (6))°

((2)° =(0)°,("1)® =(6y)° ,l(ol) < (60) ° < (01)°,

and|(0g) ¢ = %

(“2) ¢ = (61) 6 (1) 6 = (60) 6 l(01) 6 < (60) ® where (61) 6 +(61) 6
are defined respectively

Then the solution satisfies the inequalities
o o~ (" 6 5 6 . o \ o, o~ 6
Q0 (M) ® 0 gy QP o
where (f}9 © is defined

1 o A (TY) 6 > 6 ¢ o . 1 o o~"YY) 6 ¢
Q000 ° () ® 0 g (g Qg °o

(61) 6 (62) 8
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(6na) 8 &, O & (2) & 6 1 (p) 6 ¢ o o (%) 6w \
QD ° (e2)”> o () 0o 4 Q () o o)
G108 (N6 (A) & ()6 e Qs
(c3a) © "Gy g Q@) o 4 Qoo

(62)8 ()& (iFY°

o " 6 4 o N o . . 6 N 6
|\?2QY1) o (9 QMW * i) o

L g ®o my (¢ 1w ~(Ys) B +(ia) & &
(N HAW 0 (9 (‘2)8 QM) ” +(is2) ° 0

((:B)G e 6 - . Yo\ 6 ) - ¥, 6 - “ .

(d)34)6"\£2 P ('Y)6+('| )6 o v ('Y)6c‘> o0 « ('Y)6b
B EE Ea Q270 + QY

Definition of ("Y) ¢ ,("¥) ©, (V) ¢ (V) © -
Where ("Y) ® = (632) ® (62) ®  (683) °
(") ° = (3a) ©  (N34) °
(M) ® =(@)°(2)° (c)°
(V2) ® = ()¢ (is) ®
Proof : From GLOBAL EQUATIONS we obtain

'Q’l

—= ()1 (GRB) ' (6F) ' + (BT Y..0 (GBF' Y07 b (Gt ?
m ™,
Definition of * 1 :- 1= 38
- Qs
It follows
. , 2 , v o 1 . , 2 , .
(Qa)t "t TGt (Ga) ! 3 (Qa)t "t T+ ()Y (Gt
From which one obtains
Definition of "D *,("¢) * :-
@ Foro<|(o)t =Ll< ()t <(D*
L1y ir@icpioe Gu (0T Cot o @)t = (ot
1+8) 10 og bt cot oo ' ()t (¢!
itfollows("g)t "1 (® ()?

In the same manner , we get

('1)1+(6§1(’2)1'Q 014 1 ('l):L (12)1 0

v 1 :(’1)1 (o)t
' (Oy (o)t (2)?

O

1+@flo @4 Pt 2t oo

WWwWWw.ijsrp.org

43



International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012
ISSN 2250-3153

Fromwhichwe deduce "o) X * *(0 (D?
b) FOo< ()t <(? = %< (D! we find like in the previous case,
4

R ST I R
(pl+s lepyyla ©14 ((1)* C2)* o

(ot

145 1 @4t (0l (2t o

(pl+ofleyln “4 ' (0t (2t 0

(Dt

14 6Tl @a bl 2l o

© fo<(Cy)Y DY |Cot :% , We obtain

g L el ool g
(pl+sfleyylag “4 (1) (2~ o

) 1 y 1o ) 1
() © 1+ orlg G4 DT (L o (o)

And so with the notation of the first part of condition (c) , we have

Definitionof * 1 o :-

()t " to (Gt "t o=

In a completely analogous way, we obtain

Definitionof 61 o :-

‘ A A ‘ 4 ‘_”Yé
(‘2)? 6t o (‘pt, 010—"\(3—0
4

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If (GBFL = (GBFL.6Q% (L)L = (,2) ! andinthiscase ("1) ' = ([ ! ifinaddition (") ! =
(1) then' t 0 =(o)?! andasaconsequence 'Q3(0) = (o) * "Q4(0) this also defines (' o) 1 for the
special case

Analogously if (GEF* = (GEF* .6 (1) * = (1,) * and then

(61) ¥ = (6,) tifinaddition (6g) * = (01) ! then "Y5(0) = (0g) * "Y4(0) This is an important
consequence of the relation between (" ;) * and (' [) * , and definition of (0g) * .

we obtain

d

(@9 @) @)@ Tot @ Tt (4?0

H%11 11 1 ) G
Definition of * 2 :- 2 _ Gis
G17

It follows
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(@22 P+ ()22 (@2 LT (@2 % T (K)? 2 (G ?

From which one obtains
Definition of ') 2,(’¢) 2 :-

0
Gie

(d) Foro< (o) ? =G—g7<(’1)2 <(D?

. 2 2 2 3
L2 Pr@2ep?e MWD (97 0 e, (w? (92
1+(Q20q @72 (D% (0?0 ' (0% (2)?
it follows (o) 2 " 2(0) ('1)?

In the same manner , we get

b0 2 02 (o2 ¢

,2(0) (D2+(Q2(,20 @7 7 (D% (27 0 ( 2:(’1)2 (o2
14(Q 29 @7 2002 20 ' ()2 (2?2

From which we deduce (") 2’ 2(0) ('D?2

0
() f0<(1)?<(g? = %< ('D 2 we find like in the previous case,
17

7 2 012 (o) 2 ¢
Cp2+Cc2¢,2q @7 ° (D% (27 0

ok 70

wc2qo @202 (2% 0

" 2 2 B 2 .
(2+Cc 20,20 @7 (t1)c (C2)° o

(D?

ec2g @72 (02 (220

M If0<()2 (D2 ('0)2=§—§j,weobtain

o 2 . 2 , 2 .

vy 2 P (2+Cc2(¢y20q @7 (1) (C2)° o v\ 2

(l) 0 " 2 02 (o)2 & (0)
1+ C 2q @97 (= (20 o

And so with the notation of the first part of condition (c) , we have

Definition of * 2 & :-

, s \ , s N “ o}
(G,) 2 20 (4,)2,] 2 0=22

In a completely analogous way, we obtain

Definition of 62 0 :-

. AP 2 -~ _ Y60
(‘2)? 620 ("1)?%, 0% 0=

Particular case :

If (GRF2 = (GBF? .60 (K) 2 = (K,) ? andinthiscase (";) 2 = (') 2 ifinaddition (') 2 =
(1) 2% then’ 2 & = (') ? and as a consequence 'Qg(0) = (' o) 2 'Q;(0)

Analogously if (G2F2 = (G2F2 ,6C% (z5) 2 = (Z,) ? and then
(61) 2 = (06,) 2 ifinaddition (0g) 2 = (0;) ? then "Ys(0) = (00) ? "Y7(0) This is an important
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consequence of the relation between (" ;) 2 and (" [) 2

From GLOBAL EQUATIONS we obtain

VQ3

== (@) ® (6%) % (&) ° +(&%F° ™.0 (&F° ™%,0° % (&)°°

Definition of * 3 :- '3 = D
Q1
It follows
v , 2 , 3 o 3 ) , , | "
e A 1 R 2 CEV R (1

From which one obtains

@ Foro< (o)® =< ()3 <(D?

o 3 3 3 .
('1)3"'(6)3(’2)39 w21 (1) (o) o

L vz _ (D3 (0
© 146y 3 @1 % (D3 (03 o @ (0% (23
it follows (") 3 " 3(9 (p)3

In the same manner , we get

o 3 0vy3 (53 &
('1)34‘(6[3('2)30 w21 (1 (2 o

NG (0 (0?

1 3 (A
(9 ()% (23

1+@F3q @1 2 (03 (230

Definition of (' [) 3 :-
From which we deduce (") 3 3(0 (D3

b) IF0< ()3 <(o?® = %< (’'D 2 we find like in the previous case,
1

& 3 Y3 (153 ¢
, 3 ('1)3+6 3('2)3'Q w21 (1) (2 o
(1)

146 30 @ 3% 2% 0

. 3 4.3 N3 &
(v1)3+6r3(v2)3n w21 (1) (2 o

(D3

14 6F3q @1 2 (13 (23 0

(¢ fo<(Cy)3® (D (’0)3:%,Weobtain

,. 3 . 3 B 3 .
(p3+6F3(¢y3q @ (1)° (2)° o

1 3 1 3 A 1 3
(1) © 1+ 803 21 3 (D3 (23 0 (o)
And so with the notation of the first part of condition (c) , we have

Definitionof * 3 0 :-
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, s \ , s . _ Qoo
(Gy) 3 30 (67)3, 30 =2—

In a completely analogous way, we obtain

Definition of 63 o :-

) L g s . .2 . _ Yoo
(‘2)3 630 (3, 030—";—‘
10

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If(GRF3 = (6FF3,60% (,1) 2 = (,2) 2 andinthiscase (") 2 = (') 2 ifinaddition (" o) 3 =
(1) 3 then’ 3 0 = (') 2 and asaconsequence "Qq(0) = (' o) 2 "Q1(0)

Analogously if (62F° = (65F3,6(% (1) 2 = (1,) ° and then

(6,) 3 = (6,) 2 ifinaddition (60) 3 = (01) 2 then "Yo(0) = (0p) 2 "Y,(O) This is an important
consequence of the relation between (" ;) 2 and (' [) 8

: From GLOBAL EQUATIONS we obtain

s (@) (GE)Y (GR) Y GETY W0 (BT W0 ()

Definition of” * - T 2]
Qs
It follows
I 41 4 “ N4 Q N4 o4 2 41 4 o N 4
(0s) (»2) (Gpa) @ (Qs) (»a) (0a)

From which one obtains

Definition of ) % ,(" o) * -

(d) ForO<|(')* =%‘5‘ <()*<(D*

. 4 4 4 4
L4y (nirsicyta W5 (D7 (07 ° 540 (0
4 5 4 @25 4 DY Cot o ! (0)* (2*
itfollows (') 4 " 4(8 ()%

In the same manner , we get

" 4 4 ) 4 .
L4y (niselicyta W5 (0 (D7 0 @f ¢ =t (ot
4r T4 @5 4 (DY (2% o ’ (0 C2)*
Fromwhichwededuce ") * 4 (© (D*

() FO< ()% <(o? = % < (D * wefind like in the previous case,
5
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e A A oy A g
4040 25 (1) (2 0

(y )4 (‘1)4+6
! 1e5 40 95 4 (DY (24 0

. 4 4 4 5
Cp4+8f4eta a5 (1) (2" o

cD*

14 604 G5 % (D% (2% o

M) FO< ()4 (D* |Co)? =2, weobtain

SN SN RN B
(' )4 SV () 4+ 8F4eyda 925 (1) (2) 0
1

(o) *

14 6F4g 925 4 (D (2% 0

And so with the notation of the first part of condition (c) , we have
Definition of * 4 © :-

. 4 v 4 . 4 v 4 & _ Q40
a (0] a , 0 = N
(é2) (61) o

In a completely analogous way, we obtain
Definition of 6 4 0 :-

‘ 4 L4 ‘ 4 L4 s _ ¥4 0
[0} (0] , | O 0 =—-
(2 () 7

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If (GEF 4 = (GBF 4,60 (,1) * = (,2) * andinthiscase (1) * = (") # ifin addition (' o) 4 =
(1) * then’ 4 0 = (") % andasa consequence 'Q,(0) = (') * "Qs(0) this also defineq’ ;) * for
the special case

Analogously if (GEF* = (65F* 6% (1;) 4 = (1,) * and then
(61) 4 = (0,) #ifin addition (0g) * = (01) 4 then "¥,(0) = (0g) * "¥5(0) This is an important
consequence of the relation between (*;) # and (" [) 4, and definition of (6,) * .

From GLOBAL EQUATIONS we obtain

‘Qs

o = (@)% (6BR)° (65R) % + (CRF° o0 (CEF® Y07 % (Chy) ° °

Definition of’ ® :- 15 =@
Qg
It follows
- , 2 , v Q5 . , 2 , .
(Gpe) > " % "+ (,2) %" % (Gyg)® B (Cpg) > " % "+ (,1) %" °  (Gyg)®

From which one obtains

Definition of ' [) % ,("o) ® :-

(@) For0<|(C9)® =< ()5 <(D?
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. 5 5 o 5 4
5y (W@ cn%e (W7 (07 ¢ (8)5 = (W° (0®
5+(8) 5 O g ® (15 (g% o ! (o) (23
itfollows ("g) > " °(0 (1)°

In the same manner , we get

. 5 5 o 5 4
sy (W °rEICn%e 7 (W= 27 ¢ )5 = (0° (0°
se(3f5q 0 ° (DS (2% o ’ (0)® (2)°
From whichwededuce ") °> ' %(© (F)°®

(h)y FO0<(1)® <(g)?® = % < ("D ° we find like in the previous case,
9

L s (15+850250 g 5 (1% (2% o
(1) 146 50 @ % (D% 25 0

o 5 ()5 ()5 ¢
)5+ 8F5(¢,5g % ° (D> (27 0

(D°®

14 §F51q 9 % (15 (25 o

i) FO0< ()% (D% [(o? :% , we obtain

o 5 ()5 ()5 ¢
(1)5+8F5(¢,)5q ®@ ° (0> (27 0

] 5 y 5 3 1 5
(0]
(l) 1+6r5'Q d)295(v1)5 (v2)5 o (0)
And so with the notation of the first part of condition (c) , we have
Definition of * % © :-

r 5 ,5 1 r 5 ,5 hY _“ng
a (0] a , 0O =——
(&) (61) 20

In a completely analogous way, we obtain
Definition of 6 ° 0 :-

. £5 g 5 ~ _ ¥ 0
(‘2)° 6%0 ("1)%, |05 0 =22~

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If (GRTF° = (GBF° 6% (,1) ° = (,2) ° andinthiscase ("1) ° = ([ ° ifinaddition (') ° =
('s) % then’ 5 0 = ("4) ® and asaconsequence 'Qg(0) = (* o) ° "Qg(0) this also defineq’ ) ° for
the special case

Analogously if (G5F° = (G5BF° 6% (1;) ® = (1,) ° and then
(61) ® = (0,) ®ifin addition (0g) ° = (0;) ° then "¥5(0) = (0g) ° "¥o(0) This is an important
consequence of the relation between (*;) ® and (" [) ® , and definition of (6,) ° .

we obtain
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Q

o (02 (B (@B + (GBTC %0 (GETS %o O (&) ® O

Definition of* © - 6= R
Q3
It follows
“ \6 16 2 61 6 “ 6 Q° " y6 1 6 2 61 6 “ V6
3 "2 2 = 3 nl 2
(Gx3) + (,2) (Gx2) = (Gx3) + (h1) (Gx2)
From which one obtains
Definition of " [) ¢ ,("o) & :-
() For0<|(o)® :% <()°®<(D°
. 6 y 6 ) 6 o\
Loy (WEr®f(nto (> Co™ o (86 = (0° (o)®
1+(5) 6 98 ° (D (b o ’ (0% (2)°
it follows () © " 6(8 ('4)°
In the same manner , we get
o 6 6 6 4
ey (wireftraCn a3 " (W7 (27 0 @)6 = (W° (of
148y 6 q 33 66 28 0o ’ (0)® (2)°
From whichwededuce (") ¢ "6 (D°®

(k) FO0< ()8 <(g® = % < ("D ® wefind like in the previous case,
3

a6 (1) 6 (1) 6 ¢
(1)8+8 B8(,y6an 988 (t® (20> o

(1)°

145 6 ©@3 8 (08 (28 o

i 6 (1) 6 (1) 6 ¢
(1) 8+ 8F6(,60q @83 (t® (20> o

(D°

1+ 6T60 93 8 (0 (26 o

) ¥0<()® (p° (’0)6=%,weobtain

()6 6o (nireélfrylo G © (00 (D° 0
1

(o) ®

1+ 6760 938 (6 26 o

And so with the notation of the first part of condition (c) , we have
Definition of * ¢ o :-

’ 6 ,6 i ’ 6 ,6 i _"sz
[of [0} a , 0O =——
(62) (61) 2

In a completely analogous way, we obtain
Definition of 6 ¢ ©

. AP 6 ~ _ %0
(‘2)° 60 ("1)®, |06 0=2—
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Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If (GBFC = (CBFC .60 (,1) ® = (,2) ® andinthiscase ("1) & = ("[) © ifinaddition (") & =
(1) 8 then’ & 0 = (") ® andasa consequence 'Q,(0) = (') © "Q3(0) this also defineq’ ;) ¢ for
the special case

Analogously if (G5F® = (5F° 6% (1) ® = (f,) ® and then

(61) & = (0,) ®ifin addition (0g) © = (0;) © then "% (0) = (0g) & "¥5(0O) Thisis an important
consequence of the relation between (*;) ® and (" [) ¢ , and definition of (6,) © .

We can prove the following

Theorem 3 If (6™ 2'Q(GEF are independent on 6, and the conditions

(6fB) " (cFa) * Qs P g t <O

(683) * (af2) * Qs Py P Qs s P ()T M P s P >0
(6B) ' (cf) ' Qs t @t >0,

(cf3) ' (a) * @ st (6Bt (6B T+l iy <0

0@Q M3 1, iy, ! asdefined, then the system

If (632 GE'Q(GEF? are independent on t , and the conditions

(653) % (5B) 2 e > @7 2 <0

(653) % (5B) 2 e > Q7 2+ Qg % Mg 2+ ()2 My 2+ Mg 2 My 2 >0
(cf3) 2 (6fB) 2 @ % Q7 2 >0,

(f8) 2 () 2 Qe 2 Q7 2 (GR)% iy 2 (CB)2 iy 2+ lg 207 2 <0

0'GQ e 2, iy7 2 asdefined are satisfied , then the system

If (G2 (2'Q(CEP® are independent on 6, and the conditions

(6%p) ° (657) ° G % ap * <0

(6%p) ° (657) ° Gpo % Gy P+ o P Mo PH(AB)C M P+ Mo P M >0
(6R)° () ° @ * @ *>0,

(65) 3 (a51)® Qo @ ® (a8)% i P (@) iy P+ iy iy <0

0@Q M,y 2, i, 2 asdefined are satisfied , then the system

If (G CE'Q(EF* are independent on 0, and the conditions

(68%) * (68%) * Gy * Gps 4 <0

(G%) * (682) * G 4 Gys P+ g Mg P H(EE) Y s P+ My Y s >0
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(68) “ (a2)* G * s * >0,

(68 * (a8) * Gy * s * (655) % M5 ¢ (G s * + Qpp * 05 4 <O
0@Q M,y 4, 1,5 4 asdefined are satisfied , then the system

If (¢F® CE'Q(WEF® are independent on 0, and the conditions

(683) ° (6%%) ° Gyg °> Gpo °> <O

(683) ° (6%%) ° Gyg ° Gpo °> + Ghg ° Mg °> +(683)° Moo ° + Mg ° Mo ° >0
(C58) ° (4R) ° Gy ° 3 ° >0,

(G$) ° (2) °  Gys ° Gho °  (GFB)° 9 ° (GR)® Gpe ° + lpg ° iz ° <O
0'AGQ g %, iy ° asdefined satisfied, then the system

If (¢F® CE'Q(WEF® are independent on 0, and the conditions

(G8) ° (6B °  cyp ® g ° <0

(GB2) ®(CB)° o ® g ®+ G © Mg ® +(GH)° Mg ®+ Mz ® Mz © >0
(6B)° (@B °  qp ® ay ° >0,

(68)°(aB)°  qp © Gy © () lgs & () ® igg ® + Qg ® iy © <O

0'EGQ ng, 8, i35 & asdefined are satisfied , then the system

Qs 1°Qs (@) + (GBF Y. Q=0
Gg TQy (AT H(GRTFT Y Q=0
s 1°Qs (@) + (GRF Y, Q=0

@s 'Ys [(cB) ' (GBF' OIY%=0
A 'Ys [(GF) T (HF O1Ya= 0
@s 'Ys [(c#) ' (GEF' O]Ys=0

has a unique positive solution , which is an equilibrium solution for the system
Qe Q7 (6R) 2 + (CBF* Y, "Qe= 0
A7 2"Qs (62 + (&EBF* Y, Q=0
Qs 2"Q;  (GR) 2 + (CBF* Y, Q=0
@ 27y [(GR) % (6BF? "Qo 1Y =
@ Y [(6B)? (aBF? Q 'Yy = 0
@ 27 [(6]R) % (cfBF? "Q [Ys= 0

|
o
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has a unique positive solution , which is an equilibrium solution for

Gdo
@1

0

has a unique positive solution , which is an equilibrium solution

Gq
G)s
Ge
G4
G5

Gy

has a unique positive solution , which is an equilibrium solution for the system

has a unique positive solution , which is an equilibrium solution for the system

3

3

3

3

3

3

Q
Qo
Q
Y
Yo
Y

“"Qs

4

4

4

4

4

5

5

Qq
Qs

Y.
Y

¥

“Qq

Qs
“Qq

-

“¥s

¥

(I%Z 6 "Q3

(I%B 6 “QZ

Gy °7Qs

(6%) ° + (BT ™% Q=0
(@) ° +(BF°> ™h Q=0

(@) ° + (BF° "h @

[(6%)°  (6%F° Qs 1%
[(65)° (FF° Qs 1%
[(6$)°  (eBF° Qs 1% =0

(@) * +(&F* Y Q

(6%5) * + (&BF* "% Qs
(@) * + (BT * "% "Q

[(c53) *
[(c82) *
[(c83) *

(%) ° + (CBF° Yo Q=0

(6%%) ° + (GBF° Yo Qo= 0
(6%) ° + (CHF° Yo Q=10

[(6%)°  (G%F® @ 1Y%= 0
[(653) °  (GRF® Q1 1% =0
[(6%)°  (cBF° @ 1Y%= 0

(6)) ° + (BF° "% Q

(@) ° + (BF° "% Qs
(6%) ° + (&BF° "% "Q

(7 9 1%

0

0
0

(GRF* " 1Y%=

(6EF* @ 1Y% =0

0

0
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@ °7 [(6B)°  (WBF° Qs 1% = 0
@ °Y [(6R)°  (GBF® Qs 1% =0
@y °¥% [(6)° (6BF° Qs 1% =0

has a unique positive solution , which is an equilibrium solution for the system

(a) Indeed the first two equations have a nontrivial solution "Q3,"Q, if

07V = (6fg) t(6F) T s b Qe T (GB) (AT Ya + (6R) (Gl Y.+
(GBF*" Yo (GFF" Ya =0

(a) Indeed the first two equations have a nontrivial solution "Qg, '@, if

FY = (68)2(fH)? Qe 2 Q7 2+ (65R) 2 (FBF2 Y + (&) 2 (§F2 Y, +
(GFRF2> Y, (62F2 Y, =0

(a) Indeed the first two equations have a nontrivial solution "Q,,"Q, if

07 = (68) 2 (1) °  dyo P oy P+ (6B) P (CHEFS TV + (68) P (BT W +
(6%F° Y% (EF° ™% =0

(a) Indeed the first two equations have a nontrivial solution "Q,4, Qs if

oy, =
(G52) * (685) * Gpa * s 4+ (653) Y (GHTFH Y + (65) 4 (GETF s + (BT Y (BT s
0

(a) Indeed the first two equations have a nontrivial solution "Qg, Qg if

oy, =
(%) ° (683) > Cpg ° o ° + (6BR) ° (GRF° "Yo + () ° (CHRF® Yo + (KHF° Yo (CBF° "o
0

(a) Indeed the first two equations have a nontrivial solution "Q,, " Q3 if

oy =
(G%) ° (683) ©  dyp © s O+ (6BD) °(GHBFC Yo + (683) ° (GHTF° " + (GBF° s (GHF°® "%
0
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Definition _and unigueness ofT;, :-

After hypothesis "Q0 < 0,"QHb > 0 and the functions (¢3gf* “Y, being increasing, it follows that there
exists a unique “Y, for which "Q"Y, = 0. With this value , we obtain from the three first equations

"Q, = iz 1'Qq "Qs = G5 1"Qq
BT (@) L@RF N TR THERF

Definition _and unigueness ofT}; :-

After hypothesis "Q0 < 0,"QHb > 0 and the functions (¢§f** Y, being increasing, it follows that there
exists a unique Ty; for which "QT;; = 0. With this value , we obtain from the three first equations

"Qg = e 2 Gy Qg = g 2 Gyy
67 () 2 +(@EF2 Ty ’ 87 () 2+(FF2 iy

Definition _and unigueness ofT;; :-

After hypothesis "Q0 < 0,"QD > 0 and the functions (¢3J"* "¥; being increasing, it follows that there
exists a unique “¥; for which "Q"Y; = 0. With this value , we obtain from the three first equations

"Qp = ipo Q1 "Q, = ip2 * 'Oy
07 (@) dHHmFE H 27 (B) PHEETF

Definition and unigueness 6f55 :-

After hypothesis "Q0 < 0,"QH> > 0 and the functions ((&** “¥s being increasing, it follows that
there exists a unique “¥s for which "Q"Y¥s = 0. With this value , we obtain from the three first
equations

"Q, = ipa 4 Qs "Qg = ips 4 Qs
FTO@RTH@ETY s T @R THET

Definition and unigueness 0f5q :-

After hypothesis "Q0 < 0,"QH> > 0 and the functions ((&f® “Y, being increasing, it follows that
there exists a unique "¥g for which "Q"¥y = 0. With this value , we obtain from the three first
equations

"Qg = épg ° Qg "Qq = 3o ° Qg
87 (B SHHFS Yo 07 (é8) 5 +(C&F° Yo

Definition and unigueness of3; :-

After hypothesis "Q0 < 0,"QH> > 0 and the functions ((Gf*® “¥; being increasing, it follows that
there exists a unique "¥3 for which "Q"¥; = 0. With this value , we obtain from the three first
equations

"Q - (IBZ 6 Qs “Q _ (1)34 6 Qs
27 (6B S (BT N 4T (6B B H(OBTFE %

(e) By the same argument, the equations 92,93 admit solutions "Qs,"Q, if
« 0= () ' (aR)* @s ' Qg t
(%) ' (GHF O+ (6f) * (6BF O +(ciBF' "O(cfE¥' ©0=0

Where in "0°Q3,"Q4, Qs ,"Q3, Qs must be replaced by their values from 96. It is easy to see that 3 isa
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decreasing function in "Q, taking into account the hypothesis « 0 > 0, H < 0 it follows that there
exists a unique "G, suchthate "0 = 0

(f) By the same argument, the equations 92,93 admit solutions "Qg, @y if
3 Qo :(&f%)z(&ﬁ)z Qs 2 @ 2
(af2) % (6F5F? "Qo + (6ff) 2 (GRBF? Qo +(cfeF? "Qo (6f5F? Qo =0

Where in "Qq "Qg,"Q7,"Qg ,"Qg, Qg must be replaced by their values from 96. It is easy to see that 3 is a
decreasing function in "Q; taking into account the hypothesis 3 0 > 0, H < 0 it follows that there
exists a unique G, suchthatz "Qg * = 0

(g) By the same argument, the concatenated equations admit solutions "Qg,"Q; if
Qs :((If%)s(dﬁ)s (I%o 3 (Iél 3
(52) ® (T3 Qs + () ® (G5BF° Qs +(HF® Qs (FF® Q@ =0

Where in "Q3 "Qp,"Q1,"Q, ,"Qq, @, must be replaced by their values from 96. It is easy to see that (i is a
decreasing function in "Q, taking into account the hypothesis « 0 > 0, B < 0 it follows that there
exists a unique "Q, suchthate "Q; * =0

(h) By the same argument, the equations of modules admit solutions "Q,, Qs if
* 'Q :(@)4(@%)4 &%4 4 &%5 4
() * (GRF* "Q; + () * (FHF* Qr +(&HF* Q; (FEF* Q; =0

Wherein "Q; "Q4,"Gs5,"Qg , ' Qa, Qg must be replaced by their values from 96. It is easy to see that 3 is
a decreasing function in "Qs taking into account the hypothesis « 0 > 0, Hb < 0it follows that there
exists a unique "Qg such thate "Q; ° =0

(i) By the same argument, the equations (modules) admit solutions "Qg, Qq if

e =(&§g)5(&§g)5 (Iés > (Iég >
(3) ° (GBF° "Q + (68B) ° (GHBF° "Q +(WBF° "Qu (@BF° Q. =0

Wherein "Q; "Qg,"Qg,"Qp ,"Qg, @y must be replaced by their values from 96. It is easy to see that 3 is
a decreasing function in "Qq taking into account the hypothesis « 0 > 0, Hb < 0it follows that there
exists a unique "Gg suchthate "@; © =0

(j) By the same argument, the equations (modules) admit solutions "Q,, "Qj if

* Qs :(6592)6(@%)6 (Iéz 6 a&s 6
(63) © (GBF° Qs + (&) ® (6HF° Qs +(WBEF® Qs (6HF°® Q =0

Wherein "Qs "Q,"Q3,"Q, ,"Q,, Q4 must be replaced by their values It is easy to see that 3 is a
decreasing function in "Q3 taking into account the hypothesis * 0 > 0, H < 0itfollows that there
exists a unique "G such thate "G =0
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Finally we obtain the unique solution of 89 to 94
"G, givenbyes "G = 0,"Y, givenby™Q"Y, = Oand

G, = &z 14y "G = s °dy
ST @R LTI N, BT (@) IHERT

Y, = s 1Yy Y, = s 1Yy
3T (@Bl (GR¥L O BT (@) (|’FL O

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

G; givenby3 "Qq ° = 0, T;7 givenby "QT;; = 0and

G‘zl - ajs 2 Gy Gzl — ajg 2 Gy
67 (@R 2+@RF2 Tiy | BT (aR) 2+@KF2 Ty

T2 = bie 2 Tiy
7 %) 2 bFF2 Q°

T2 = big 2 Tiy
PO %) 2 RF? Qo

Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution
"G, givenbye "Q; * = 0,"¥; givenby™Q"¥; = 0Oand

"Gy = o %G, "Q, = a2 3Gy
07 (@R 3+@HT2 Y | 2T (BT %

\f - o 3" Y - Sy ¥
07 (@) (@B¥S Q ' T ()3 (GBF o3

Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution
"Qs givenby s "Q; = 0,"Ys givenby 'Q"¥s = Oand

q - épq *"Gs Q - ips 4 "Gs
AT @ BT Y T T (@) BT s

"\Z - Gpa 4"\35 u\{ — Cpe 4"\55
AT @Y @EBFY 9t 7 T O(GR)Y (CRFY o

Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution
"Gy givenbye "Q; ° =0,"Y, givenby"Q"Yy = Oand

"Gy = rs ° 'Go "Gy = @30 ° "o
BT (B S H@BFS Y T 0T (@B S H(EETFS Yo

Y, = dps ° Yo Y, = o ° Yo
87 (@5 (@&FS e 7 0T (GBS (GBFS a1’

Obviously, these values represent an equilibrium solution
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Finally we obtain the unique solution
"G; givenbye Qs © = 0, Y3 givenby'Q"Y; = Oand

Q — sy G Q — tng ©ds
27 @) P @®mF Y T T (RS +(RTC %

@32 ® ¥ s %3

% = ()¢ (BFS @s° %= (%) 6 (GBFS Qs

Obviously, these values represent an equilibrium solution
ASYMPTOTIC STABILITY ANALYSIS

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions (G &'Q(GEF™:
Belongto & * (s.) then the above equilibrium point is asymptotically stable.

Proof:_Denote
Definition of M 1 -
"QF "Gyt Vg VY%= TRt 1

1 (ofF!

T((I%fel G =
T"Ys

Yo = Mg b, Ty I

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

qu;g, = (G + M Vgt Qg Mg fhs TGsly
% = (GR) ' M Vit Qg MMiz Mg TQaly
Q;;S = (GfR)'+ s Vst Qs Mg Tus T GsTi
% = (@) i3 P Tt Qs M1+ B3 13 9 sV
% = (@B i P 1t Qg Y13+ BB 14 g WV
% = (@)Y s ! Tt Qs Y1+ BBz s 9 VsV

If the conditions of the previous theorem are satisfied and if the functions (a8 and (b%** Belong to
C? (a,) then the above equilibrium point is asymptotically stable

Denote
Definition of M 1 -

Gg= Got Mg Tg= T+ 1q

HOBEF? = _ HEE? o 2 _ ¢
?717117 = My ? %ﬂ Q" =iwm

taking into account equations (global)and neglecting the terms of power 2, we obtain

dv " . " ,
?16= (&) 2+ e 2 Mg+ Qg *M17  Nie 2 Gty
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dVg7

ol ()2 + 7 2 Mgz+ Q7 *Mgg M7 2Galyy

au . , . .
Tls: (Cf5) % + fs ® Vig+ Qg *M1z s *Gislar

d116 _ 5 2 N 2 5 2 18 . z
- - (ufB) l1g < Te+ We “ 117+ Bgis 1 16 0TisV0
d117 _ ey 2 3 2 52 8 z
e (¢ 1)) l1i7 © Tzt @7 “ T+ Brie |17 Tz
d11g _ 5 2 N 2 5 2 18 . z
o - (053) l1g Tig+ Wg 117+ Bgis 1 18 (9TisV

If the conditions of the previous theorem are satisfied and if the functions (¢&f® E'Q(c&f® Belong to
6 3 (a.,) then the above equilibrium point is asymptotically stabl

_Denote
Definition of M1 -o:-
QF Gt Vo % %t 1o

T(EEFE . (e o~z
1 (GBTF° Y RC RN

= N = .
™% 21 B ¢ o

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

(o] . N o y o,
Tfo: (G823 + Ny > Mag+ Gy VMo Mo 3 "Gola
oM . N o y o,

.Qfl = (6B 3+ Ny 3 Mo+ @y My N 3Gl
Q;;Z = (@) + Np 3 Vp+ @y My N 2 Qlan
%: (68)° iy % T+ G 31, +B%y i o YoVo
% = (@)% im P a+ @y 10+ BE i apYiVe
™ 5. N 5 ’ o
?iz = (&) g 3 1o+ @y 31+ B*Zézo L 22 (o Yo\

If the conditions of the previous theorem are satisfied and if the functions (G (EQ(GEP** Belong to
64 (9 4) then the above equilibrium point is asymptotically stabl

_Denote
Definition of Vg1 -
“Q)z “Q2+ \.I "Q , "%: u%+ ,] "Q

4 165

1(RFL . . o~ 1
>— Y5 = N C Ty Q, =i

T"¥s

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

Tf‘lz (GF) 4 + Mg 4 Mpg+ g *VMos Mg 7G4l
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.S;S: (GF)* + Mys 4 Mps+ Gys *VMos M5 Qs
Tfﬁz (GF) * + Mys @ Mps+ Gys “Mos  Mps * Gelos

[oy] . N 5 ’ -
%: (GF) 4 Hag * Mo+ Gy * 155+ B8y i 21 0 YV
[oy] . N 5 ’ -
T&zsz (G82) 4 a4 1+ G5 * 1,0+ By i 25 0 ¥V
o™ . N 5 ’ -
Tfe: (GR) 4 iz * 126+ Gy * 125+ By i 26 9 Y6V

If the conditions of the previous theorem are satisfied and if the functions (B GE'Q(GE® Belong to

6 ° (51.,) then the above equilibrium point is asymptotically stable
Denote
Definition of M -1 -

QF Gt Vg %= T T

TERTFS vy _ - G
';9 Yo = Mo 5, =2 g

i
7 ey @

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

2= (GF)° + Mg ° Mpg+ Cyg °Myg g ° "Gglog

@
%: (G83) > + Mg ° Mpg+ Ghg Vg Mg °"Goloe
%= (G8)° + Nao ° Mao+ Gy Ve Mo °Golao
%: (G83)° g ° 1o+ Qg ° 19+ BRog i 55 0¥V
%: (G$) 5 Gpe ® Moo+ Qg ° 15+ B8y i 20 0¥V
%= (68) ° g0 ° Ta0+ @ %19+ BRp g 9 %oV

If the conditions of the previous theorem are satisfied and if the functions (CEf® & Q(dEF®
68 (4 4) then the above equilibrium point is asymptotically stable

Denote
Definition of M1 -
Q= G+ Vg , %= YNt 10

1 (OEFE . o 6 (0% o~z _
—=2 = , ——— = |
T Y3 N33 T Qs ()

Then taking into account equations(global) and neglecting the terms of power 2, we obtain

Belong to
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‘o o N o ’ o,

.sz = (6B)°+ N2 ® Vgt Gy ®Vg  Ne Qi
Tfs = (GB)C + Mez © Magg+ Gy3 PV Maz © Gl

.934 = (CF) %+ Mg © Mg+ Gyg ®Vag  Nag ©Qylas
[oy] . N 5 ’ -
T?‘z = () ° la & Tap+ @y S133+ B i3 0%V
(o4 5. N 5. ’ -
%: (6%) © iz & Ta3+ Gz 15+ BHs (33 9 eV
(o4 5. N 5. ’ -
Tf“: (6%) ° igs & Mo+ 3y 133 +BRs g (o ¥V

The characteristic equation of this system is
_ ()t s P { (A s
POt s Y oM TQa+ G ot TG
R N (%) I PERE N VR VIS A ¢ VR IPPRPTRS 7
S (A7) I 1 VR | S ¢ S PR | PR

_ (a3t i3 1 {14 13 a+ Qg ll'13,13"\1;3

2 . " . .
T (GR) T g P e P
2 7 7 \ i
T (o)t + (o) ! g T+ gy bt
+ T (R A e P e b Y s 1TGs

+ P (@)t ot Qs ' Ay TGt Qg P Qs t s TG
=l+(&f%)l i3 ! i14,15"\124"'(114 1l'13,1573}:0

+

_ 2+ ()2 g 2 { _2+(a®)2+ g 2

_ 2+ (G2 + e 2 My 2Gr+ Q7 2 e 2 G

_ 2+ (R) 2 e 2 iz a7 Tt @7 204617 Tiy
+ 2 H+(E@)2+ My 2 e 2Get Qe 2 My 2Gy
_ 2+ (uf}) 2 16 2 {17 16 iz + @7 2i16,16T116
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2 2

+ (CR) 2 H(GR) 2+ e 2+ My 2 2
G L () K PR PO
+ =22+ (G) 2 + (&) 2+ e >+ Mz > _ % Mg °GCg
+ 2 H(ER)P+ M ? Qs P My PGt Q7 2 Qs * e 2 G
_2H(af)? e iz 18Tt Q7 216,18 Tis }=0
+
A i P (i) o B
(@R Mo P M PG+ 6y P o 2TG
_ (@) 20 % ior, 0™t Q1 %l
+ (6B M P Mo Qo+ Gy P oM TG
3R i P it @ %i0,20 Y
T (@) @) e P A © L °
=32+ (683) 3 + (65) 3 Gy 4 iy * _ 3
+ =32+ (68)° +(GB) %+ Mo °+ Mw 2 _3° M2 ®'Q
+ 2 H(GR) P Mo P e P ha PG+ Gy oGy ? oMo G
() G P i 2t 6 *ia0,22Y}=0
+
R () I PYSER R SR (%) I P
(@) M s Qs+ Gys f f 4G,
R N (% 7) N PYRR N IPY RIS AL 4 SRR PYRPR &
+ (R s Y M TGt Gy s Cs
B N (%) IR PYSR N (P RPYRS SR« SRR IPYRPYS

2 " . \ .
I S (4 7) I () I S (PR S 1 - S

WWwWWw.ijsrp.org

62



International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012
ISSN 2250-3153

N A IR ) IR B PYRC IS PR
YT (GR)PH(EE) May  Ms t _f Me 1TQe
+ (@) N Gy * Mos *Gs+ s * Gy * Ma *7°Gy

RN A iy * izs,ze"\fs*'(zés T2 26 }=0
+
_ S+ (@) ° g0 ° { _ 2+ (&H)° + My °
Z (B + Mg ° Mo ° Qo+ Gye ° Mg ° Qg
_ S+ (G8)° M o920 Yot Qo ®i2s,20 Ve
+ % (6B + My ° Mg °Gg+ Gy ° Mo ° G
_ S+ (G8B)° M o9, Vot Qo ®i2s. 28V
2 " . . .
Z 0 T (GRS AH(EHR) O+ Mg P+ My O _°
2 5. 5 \ \
_ % T+ (6B)° +(a5)° g ° + 9 ° _°
% T (G AH(GHR)C A+ Mg O+ Mg 0 % Neo ° Qo
+ %+ (68) O+ g ° G ° Mo Qg+ Ghg ° Gy ° Mg °Gg
_ S+ (a®)° i ° i29,30"\1?9"'(1%9 > 28,30 ¥ }=0
+
_ (B e O { (B Ny ®
(GO + N O May Gt dy O Mz °TQ
_ () ® iz © i33,33"¥3+a%3 ® i3, 23" %

6

+ O () M N CG+ Gy Mz °"Gs

_tH(®)° iz °© 33,32 Y+ G333 6l'32,32"&?2

6 2

+ () (6RO + Mgy O+ Mgz 0 _ °

6 2

+ (6B)° + (i) igp O+ i3 & _°
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2
+ _ 6

+ (CR)C + (GG + My O+ Mg & _ ¢ M °7Q
+ _ O+ (@) + Ny, © Gyg © fag ©°Ga+ Gyg © Gy © Nz °7G,
=6+(J§%)6 iz °© i33,34"¥3+(1é3 6i32,34“@7'2}:0

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and
this proves the theorem.
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