
International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013 1
ISSN 2250-3153

www.ijsrp.org

Analysis of Object Oriented Metrics

Priyanka Yadav
1
, Khalid Hussain

2
, Ashima Gambhir

3

 1 M.Tech Student of Computer Science Department,

Amity University Haryana

2 Faculty of Computer Science Department,

Amity University Haryana

3 Faculty of Computer Science Department,

Amity University Haryana

Abstract: Object oriented design, is becoming very popular in

software development environment. Object oriented design

metrics is an essential part of software environment. Object

oriented measurements are used to measure quality of software.

The metrics for object oriented design focus on measurements

that are applied to the classand design characteristics. These

measurements permit designers to access the softwareearly in

process, making changes that will reduce complexity and

improve the continuingcapability of the design.

This paper summarizes the existing metrics, which will guide the

designers to support their design. We have categorized metrics

and discussed in such a way that novicedesigners can apply

metrics in their design as needed.

 Index Terms: Software metrics, Object-oriented metrics, CK

metric suite

I. INTRODUCTION

oftware metrics are the quantitative measurement of the

complexity of the software or its design; therefore, they are

good candidates for guiding the selection of testing techniques.

Object-oriented metrics have been studied and proposed as good

predictors for fault-prone modules/classes, for program

maintainability and for software productivity [1]. Object-oriented

programming has many useful features, such as information

hiding, encapsulation, inheritance, polymorphism and

dynamicbinding. These object-oriented features facilitate

software reuse and component-based development. However,

they might cause some typesof faults that are difficult to detect

using traditional testing techniques.

Object oriented metrics are used to measure properties of object

oriented designs. Object-oriented software metrics provide such

quantitative view about the implementation of object-oriented

constructs in software design for the improvement of the

software quality. The necessary features of the preferred object

oriented metrics are recognized as capability of covering all

quality and design related features, capability of representing

diverse system aspects that are measured, capability of obtaining

measurement values for a given system at different time,

capability to have an experimental validation and capability of

reliable operation. [7]

In this paper, we basically analyze CK metrics and their impact

on object oriented software.

Next section describes the prior work in the field of object

oriented software metrics. Since the third section of this paper

describes impact of metrics on software. Fourth section is result

and analysis. Finally last section presents some conclusions and

future work.

II. LITERATURE REVIEW

A significant number of object oriented metrics have been

developed. For example, metrics proposed by Abreu [2], CK

metrics [3], Li and Henry [4] metrics, MOOD metrics [5],

Lorenz and Kidd [6] metrics etc.

One of the most widely referenced sets of Object Oriented

software metrics has been proposed by Chidamber and Kemerer

(CK). The authors have proposed six class-based design metrics

for Object. The CK metrics suite defines class-oriented software

metrics that focus on the class and the class hierarchy.

Chidamber and Kemerer worked in collaboration with

experienced software engineers and collected data from two

different commercial projects. They made some interesting and

practically useful observations on when analyzing their results.

2.1 Weighted Method per Class (WMC)
This is defined as the sum of the complexity of all the methods

defined in a class. If all the Methodcomplexities are reduced to

unity, then WMC becomes equal to the number of methods.

WMC = sum of cyclomatic complexities of all the methods [8].

Let C be a set of classes each with the number of methods Mi . . .

. Mn. Let Ci . . ., Cn be the complexity (weights) of the classes.

WMC = 𝐶𝑖
𝑛
𝑖

S

International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013 2
ISSN 2250-3153

www.ijsrp.org

The number of methods and the complexity of methods involved

is a predictor of how much time and effort is required to develop

and maintain the class. Classes with large number of methods are

likely to be more application specific, limiting the possibility of

reuse. [13]

High value of WMC indicates the class is more complex than

that of low values. So class with less WMC is better. As WMC is

complexity measurement metric, we can get an idea of required

effort to maintain a particular class.

2.2.Response for a Class (RFC)

The RFC is defined as the total number of methods that can be

executed in response to a message to a class. This count includes

all the methods available in the whole class hierarchy. If a class

is capable of producing a vast number of outcomes in response to

a message, it makes testing more difficult for all the possible

outcomes. [8]

Definition: RFC = | RS | where RS is the response set for the

class.

Theoretical basis: The response set for the class can be expressed

as:

RS = { M } ∪ all i {Ri} where { Ri } = set of methods called by

method i and { M } = set of all methods in the class The response

set of a class is a set of methods that can potentially be executed

in response to a message received by an object of that class. The

cardinality of this set is a measure of the attributes of objects in

the class. Since it specifically includes methods called from

outside the class, it is also a measure of the potential

communication between the class and other classes [13].

Pressman [10] States, since RFC increases, the effort required for

testing also increases because the test sequence grows. If RFC

increases, the overall design complexity of the class increases

and becomes hard to understand. On the other hand lower values

indicate greater polymorphism. Some cases the higher value can

be 100- it depends on project to project.

It is the union of all methods in the class and all methods called

by methods in the class. It is only counted on one level of call.

RFC = |RS|

This metric is calculated for each class.

If a large number of methods can be invoked in response to a

message, the testing and debugging of the class becomes more

complicated since it requires a greater level of understanding

required on the part of the tester. The larger the number of

methods that can be invoked from a class, the greater the

complexity of the class. A worst case value for possible

responses will assist inappropriate allocation of testing time.

2.3. Coupling between objects (CBO)

In object oriented software, we can define coupling as the use of

methods or attributes in another class. Two classes will be

considered coupled when methods declared in one class use

methods or instance variables defined by the other

class.Coupling is symmetric. If class A is coupled to class B,

then B is coupled to A. The coupling betweenobject classes

(CBO) metric will be the count of the number of other classes to

which it is coupled. This metric is calculated for each class. [9]

The idea of this metrics is that an object is coupled to another

object if two object act upon each other. A class is coupled with

another if the methods of one class use then methods or attributes

of the other class.CBO counts the number of classes to which a

particular class is coupled.

2.4.Lack of Cohesion in Methods (LCOM)

A module (or class) is cohesive if everything is closely related.

The lack of cohesion in methods metric tries to measure the lack

of cohesiveness.This metric uses the notion of degree of

similarity of methods. LCOM measures the amount of

cohesiveness present, how well a system has been designed and

how complex a class is [15]. LCOM is a count of the number of

method pairs whose similarity is zero, minus the count of method

pairs whose similarity is not zero.

Raymond discussed for example, a class C with 3 methods M1,

M2, and M3. Let I1={a, b, c, d, e}, I2= {a, b, e}, and I3= {x, y,

z}, where I1 is the set of instance variables used by method M1.

So two disjoint set can be found: I1 intersection I2 (= {a, b, e}).

I2intersection I3 is null and I3 intersection I1 is also null. Here,

one pair of methods who share at least one instance variable (I1

and I2). So LCOM = 2-1 =1.

2.5.Depth of Inheritance Tree (DIT)

The depth of a class within the inheritance hierarchy is the

maximum number of steps from the class node to the root of the

tree and is measured by the number of ancestor classes. In cases

involving multiple inheritances, the DIT will be the maximum

length from the node to the root of the tree[14]. Inheritance can

add to complexity of software. This metric is calculated for each

class. [9]

If DIT increases, it means that more methods are to be expected

to be inherited, which makes it more difficult to calculate a

class’s behavior. Thus it can be hard to understand a system with

many inheritance layers. Deeper trees constitute greater design

complexity, since more methods and classes are involved. On the

other hand, a large DIT valueindicates that many methods might

be reused.

2.6. Number of Children (NOC)

Not only is the depth of the inheritance tree significant, but the

width of the inheritance tree. This metric is calculated for each

class. [9] The NOC is the number of immediate subclasses of a

class in a hierarchy. It is a measure of how many subclasses are

going to inherit the methods of the parent class.

International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013 3
ISSN 2250-3153

www.ijsrp.org

 Greater the number of children, greater the reuse, since

inheritance is a form of reuse.

 Greater the number of children, the greater the

likelihood of improper abstraction of the parent class. If

a class has a large number of children, it may be a case

of misuse of sub-classing.

 The number of children gives an idea of the potential

influence a class has on the design. If a class has a large

number of children, it may require more testing of the

methods in that class. [13]

III. IMPACT OF OBJECT ORIENTED METRICS ON

OBJECT ORIENTED SOFTWARE

Table 1: Interpretation Guidelines

METRIC OBJECTIVE

Cyclometic Complexity Low

Lines of Code Low

Comment Percentage 20-30%

Weighted Method per Class Low

Response For a Class Low

Lack of Cohesion High

Coupling Between Objects Low

Depth of Inheritance Low(Tradeoff)

Number of Children Low(Trade off)

WMC-High value of WMC indicates the class is more complex

than that of low values. So class with less WMC is better.

CBO-High CBO is undesirable. An increase of CBO indicates

the reusability of a class will decrease. CBO values for each class

should be kept as low as possible.

LCOM-LCOM measures how well a system has been designed

and how complex it is. Great values of LCOM increases

complexity. So it should be kept as low as possible.

DIT-High values of DIT means more classes are inherited, which

makes it more difficult to calculate a class behavior. Which

makes it more difficult to calculate a class’s behavior. On other

hand,a large DIT value indicates that many methods might be

reused.

NOC- High value of NOC means reuse increases. On the other

hand, as NOC increases, the amount of testing will also increase.

IV. ANALYSIS OF RESULT

Metrics have a number of interesting characteristics for providing

development support. Some of them are simple, precise, general

and scalable to large size software systems. In this paper, we

analyzed some metrics by using semi automated tool. In our

analysis we use two java packages tomeasure object oriented

metrics. Project1 contains 12 classes, and the total line of code

(LOC) is 2223. Project2 contains 14 classes and LOC is 900. The

main reason to choose those packages is both of the packages

have around 2000 line of code and it is faster to execute. In this

paper, we focused mainly WMC, RFC, DIT, NOC and CBO,

LCOM metrics.

Descriptive Statistics

Within each case study, the distribution (mean, median) and

variance (standard deviation) of each measure is examined.

Low variance measures do not differentiate classes very well and

therefore are not likely to be useful. Analyzing and presenting

the distribution of measures is important for the comparison of

different case studies.

Table 2: Descriptive Statistics Report of Project1

Descriptive statistics

Metrics N Min Max Mean Std. Dev

LCOM 12 50.00 50.00 50.0000 .00000

DIT 13 2.00 2.00 2.0000 .00000

CBO 12 3.00 12.00 6.2500 3.49350

NOC 12 .00 .00 .0000 .00000

RFC 12 14.00 14.00 14.0000 .00000

WMC 13 2.00 2.00 2.0000 .00000

Valid N

(listwise)

12

A statistics report is generated using a tool. Minimum,

maximum, mean, std. deviation values are generated for all

classes for value of each metrics(LCOM, DIT, CBO, NOC,RFC,

WMC) as shown in table 2 and 3.

Table 3: Descriptive Statistics Report of Project2

Descriptive Statistics

Metrics N Min Max Mean Std. Dev

LCOM 14 .00 71.00 20.000 26.20922

DIT 16 1.00 11.00 3.1250 2.96367

CBO 15 1.00 22.00 8.8000 6.97137

NOC 13 .00 .00 .0000 .00000

RFC 14 13.00 721.00 218.50 329.66481

WMC 15 1.00 3.00 2.1333 .74322

Valid N

(listwise)

13

International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013 4
ISSN 2250-3153

www.ijsrp.org

Following are the observations made from applying these metrics

on projects.

 There are only 12.5% of the total classes that have high

coupling metric values. There are 4.1% of classes with

deep hierarchy. Since earlier empirical studies suggest

that classes with more coupling and deep hierarchy are

fault prone, the identified classes (16.6 %) must be

thoroughly checked during testing.

 The maximum value of RFC is high for all the projects

as it also counts the method invocations. RFC measures

the complexity of the software by counting the number

of methods in the class and also captures the

information about the coupling of the class to other

classes.

 The values for WMC are same as method complexities

are generally considered to be unity. Values of WMC

are not too much high for both projects. It means

projects are not too much complex.

 CBO value is generally less in sample data, hence

classes are easy to understand, reuse and maintain.

 LCOM value is 50 for project1 and 71 for project2.

Because the number of pairs of methods having access

to common attributes is less than the number of pairs of

methods having no common attributes. It implies that

the classes are less cohesive.

 The DIT values are medium in all the projects; this

shows that inheritance is used in most of the classes to

optimum level. Depth inheritance tree values are not too

much high for both projects. So it conclude that both

projects are not too much complex .But it limits the

concepts of reusability.

 NOC metric measures the number of direct subclass of a

class. Since more children in a class have more

responsibility, thus it is harder to modify the class and

requires more testing. So NOC with less value is better

and more NOC may indicate a misuse of sub classing.

In our analysis, both project1 and projecct2 have 0 and

0 NOC respectively. So it means there is no direct

subclass for any parent class or super class in both

project1 and project2.

V. CONCLUSION AND FUTURE WORK

Theoretical analysis of these metrics suggest that out of many

OO metrics, 6 metrics (WMC, DIT, CBO RFC, DAC, LCOM,

and NOC) provide sufficient information for usage and other

metrics are either subset of these metrics or are providing same

information in different format. This simplysupports the

conclusions drawn from theoretical analysis i.e. many of the

metrics proposed are based on comparable ideas and therefore

provide somewhat redundant information.

The measures could not be evaluated over a large data set but this

is a problem that has plagued much of empirical software

engineering research. We plan to replicate our study on large

data set and industrial object-oriented software system.The most

obvious extension of this work is to analyze the degree to which

these metrics correlate with managerial performance indicators

such as testing, maintenance effort and quality. Another future

prospect would be to have the data set as project withidentical

requirements done in different object oriented languages.

REFERENCES

[1]: Mei-Huei Tang, Ming-Hung Kao And Mei-Hwa

Chen.Computer Science DepartmentSUNY at Albany.Albany,

NY 12222, “An Empirical Study On Object-Oriented Metrics”.

 [2]: Abreu, Fernando B., Carapuca, Rogerio: “Candidate Metrics

for Object Oriented Software within a Taxonomy Framework.”,

Journal of System software 26, 1(July 1994).

[3]: Chidamber, Shyam, Kemerer, Chris F. “A Metric suite for

Object oriented Design.” M.I.T. Sloan School of Management

E53-315, 1993.

[4]: Li, Wei, Henry, Salley: “Maintenance Metrics for the Object

Oriented Paradigm”, First International Software Metrics

Symposium. Baltimore, Maryland, May 21-22. 1993. Loss

Alamitos, California: IEEE Computer Society press, 1993.

[5]: Abreu, Fernando B: “The MOOD Metrics Set”, proc.

ECOOP’ 95 Workshop on Metrics, 1995.

[6]: Lorenz, Mark and Kidd, Jeff, Object Oriented Software

metrics, Prentice Hall Publishing, 1994.

[7]:Aman Kumar Sharma, Arvind Kalia, Hardeep Singh.

“Empirical Analysis of Object Oriented Quality Suites.”

International Journal of Engineering and Advanced Technology

(IJEAT) ISSN: 2249 – 8958, Volume-1, Issue-4, April 2012.

[8]:Amjan Shaik, C. R. K. Reddy, Bala Manda, Prakashini. C,

Deepthi. K, “Metricsfor Object Oriented Design Software

Systems: A Survey”, Journal of Emerging Trends in Engineering

and Applied Sciences (JETEAS) 1 (2): 190-198,Scholarlink

Research Institute Journals, 2010 (ISSN: 2141-7016)

jeteas.scholarlinkresearch.org.

[9] David A. Gustafson, “Software Engineering”,Schaum’s

Outline Series Mcgraw-HILL

Copyright © 2002 by The McGraw-Hill Companies,Inc.

 [10]:Roger S. Pressman: “Software Engineering”, Fifth edition,

ISBN 0077096770

International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013 5
ISSN 2250-3153

www.ijsrp.org

[11]: [LI98] Li W., “Another metric Suite for Object Oriented

Programming”, The Journal of System and Software, Vol. 44,

Issue 2, December 1998.

[12]: S.R.Chidamber and Kemerer, “A Metrics Suite for Object

Oriented Design”, IEEE Transactions on Software Engineering,

Vol.20, No 1, Jan, 1994.

[13]:Seyyed Mohsen Jamali , “Object Oriented Metrics(A Survey

Approach)”

[14]:K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika

Malhotra , “Empirical Study of Object-Oriented Metrics”, Vol. 5,

No. 8, November-December 2006

[15]:Harrison, R., Counsell, S.J. Nithi, R.V: "An Investigation

into the Applicability and Validity of Object-Oriented Design

Metrics", technical report.

