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Abstract- In generalized transportation problem(GTP), the cost 

of transportation cij per unit product from the i
th

 origin to the j
th

 

destination is considered as independent of amount of transported 

commodity  xij. But in real life problems, there are many 

situations, e.g. quantity discount, price break etc., in which cost 

of transportation cij depends upon the amount of transported 

commodity xij. Based on these situations, in this paper, we 

consider a new type of discounted generalized transportation 

problem in which the cost of transportation cij per unit product 

depends on the amount of transported commodity xij. Thereby, 

we develop a new algorithm for obtaining the optimum solution 

of this problem. Finally, a numerical example is illustrated to 

support the algorithm. 

 

Index Terms- Generalized transportation problem, Step function, 

Discount, Discounted generalized transportation problem 

 

I. INTRODUCTION 

itchcock [15] was pioneer of the basic transportation 

problem, Dantzig [13], Charnes and Cooper [11], Appa [1] 

developed further. Now a days, there are several procedures to 

solve the transportation problems. Arsham and Khan [2] 

considered simplex-type algorithm for general transportation 

problems. Basu et. al. [7,8,9] considered different types of 

transportation problems. 

        But in real life, there are many situations, e.g. quantity 

discount, price breaks etc. where the transportation cost may not 

be linear. Non linearity depends upon the character of the 

objective function as well as the character of the constraints. 

Cooper and Dredes [12] considered an approximate solution 

method for the fixed charge problem. Bhatia et. al. [10] 

considered time-cost trade-off in a transportation problem. 

Klingman and Russel [16] considered solving constrained 

transportation problems. Thirwani [17] considered fixed charge 

bi-criterion transportation problem with enhanced flow. 

        There are many business problems, industrial problems, 

machine assignment problems, routing problems, etc. that have 

the characteristics in common with generalized transportation 

problem that has been studied by several authors. Balas and 

Ivanescu [4] introduced on the generalized transportation 

problem. Balachandrana and Thompson [3] considered an 

operator theory of parametric programming for the generalized 

transportation Problem. In 1987, Hadley [14] gave the detailed 

solution procedure for solving generalized transportation 

problem. Basu and Acharya [5,6] considered different types of 

generalized transportation problem. 

        Day by day, the importance of discounted generalized 

transportation problem is increasing practically in a great deal, 

but the method for finding the optimum solution of this kind of 

generalized transportation problems, however, lacks of the 

desired attention. 

        There are several differences between classical 

transportation problem and generalized transportation problem 

which are given as follows: 

         1. The rank of the co-efficient matrix of [xij]mn in 

generalized transportation problem is (m+n), where as in 

classical transportation problem it is (m+n – 1) 

        2. In generalized transportation problem the value of xij may 

not be integer though it must be integer in classical transportation 

problem. 

        3. The activity vector in generalized transportation problem 

is pij = dij ei + em+j, where dij = positive constants rather than 

unity. 

        Where as in classical transportation problem it is given by 

pij = ei + em+j. 

         4. In generalized transportation problem, it need not be true 

that cells corresponding to basic solution form a tree. 

         5. In generalized transportation problem that = 

 is not necessary. 

         In this paper we develop a new algorithm to find the 

solution of discounted generalized transportation problem where 

the cost function is taken as step function. Thereby we illustrate 

this problem numerically. 

 

 

II. PROBLEM FORMULATION 

Let the discounted generalized transportation problem consists of „m‟ origins and „n‟ destinations, where 

      xij = the amount of product transported from the i
th

 origin to the j
th

 destination, 

      cij = the cost involved in transporting per unit product from the i
th

 origin to the j
th

 destination, 

       ai = the number of units available at the origin i, 

      bj  = the number of units required at the destination j, 

       dij = positive constants rather than unity. 

 

         Then the cost minimizing discounted generalized transportation problem can be stated as:       

H 
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                                                                            (1) 

 

subject to,                     ;       for i=1,2,3,……….,m.                                             (2) 

 

                                       ;       for  j = 1,2,3,……….,n.                                            (3) 

 

                           and                                                                               (4) 

 

       where       >  > > ………. >  and  xij  0. 

 

Net Evaluation 

Introducing slack variables, the problem P1 can be written as 

 

                                                                                                       (5) 

subject to,                            ;         for  i = 1,2,3,……….,m.                      (6) 

                                             ;        for  j = 1,2,3,……….,n,n+1.                     (7) 

   

       where dij=positive constants rather than unity, xij   0  for all (i,j), and the values of cij are given in (4). 

 

Let       ui (1 i  m) and vj (1 j  n+1) be the dual variables. 

So that,    dijui + vj = cij          for 1  I  m, 1  j  n.  

                               ui = 0           for 1 I  m, j = n + 1.                                                              (8) 

     where   ui, vj are unrestricted for all (i,j). 

 

        Now for any standard Primal L.P.P. with basis B and associated cost vector cB, the associated solution to its dual problem WB, is 

given by WB =  cB B
-1

. Thus, if pj is the j
th

 column of the primal constraint matrix, then an expression for evaluating the net-evaluation 

for minimization problem is given by 

                      Zj –  cj = cB ( B
-1

 pj ) –  cj                                                                                 (9) 

                                  = WB  pj –  cj                 j. 

 

         But, in the present case of rectangular transportation problem, the dual solution can be represented by (u,v) = ( u1,u2, ……, 

um,v1,v2, ………, vn ) and therefore the net evaluations are analogously obtained by simply replacing cj  cij, WB  (u,v), pj  pij in 

the above formula. Thus we have the net evaluation as: 

                  Zij –  cij =(u,v) pij –  cij 

                                =( u1,u2,….., um,v1,v2,…….,vn ) [ dijei + em+j] –  cij                                                    (10) 

                                =( dij ui + vj ) –  cij            for   i=1,2,……..,m; j=1,2,………,n+1. 

 

        where pij(= dijei+em+j) is the column vector of the constraint matrix associated with the rectangular variable xij. For simplicity, we 

shall denote the net evaluation  Zij –  cij   by  ij  in all our further discussion. 

 

        Theorem:  A solution of the discounted generalized transportation problem will be feasible solution if for any cell (q,r),   xqr < 

 (xqr + yqr), where 1 k<l  g also yqr>0 and >  for 1 q  m, 1  r  n. 

        Proof:  Let Z1 be the total cost and F1 be the total flow where (q,r) be one of its allocated cell and xqr be its allocation where 

(  < xqr  ). 

     Then                       (11) 

  and                      where     < xqr        (12)  
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        Also let Z2 be the total cost and F2  be the total flow if (xqr + yqr) where  < xqr + yqr   , be allocated at the (q,r) cell and all 

other allocations are same as in flow F1. Therefore 

                                              (13) 

and              where    < (xqr +yqr )        (14) 

Obviously    F1 + yqr > F1 where  < (xqr +yqr )  

 

        Let us assume that the given condition  xqr> (xqr+yqr)  does not hold. Then  

            Z1 –  Z2 =  xqr –  cqr (xqr + yqr )  0;           =>   Z_1 > Z_2 

 

        But     F2 > F1;    So    Z1  >  Z2    =>   F1  <  F2, which is a contradiction. 

So, our assumption is wrong.   Hence the theorem. 

 

III. ALGORITHM 

        Step 1. Find the initial solution  with the associated cost vector  and the corresponding cost  Z
1
 by using North West Corner 

Rule. 

        Step 2.  Set r=1. 

        Step 3. Write   with the associated vector   and corresponding cost Z
r
. 

        Step 4. Calculate dual variables  ui (1  i   m)  and  vj (1   j  n). 

        Step 5. Calculate net evaluation ij   (i,j)  B. If  ij  0   (i,j)  B. Then go to step 10. 

        Step 6. Calculate st = Max  {ij  : ij > 0 }.  Then (s,t) cell enters into the basis. 

        Step 7. Let        ;            1 i  m. 

                                  ;             1 j  n+1.   

where pst=dst es + em+t. After determining    we calculate  

                         
Then (k,l) cell leaves the basis. 

        Step 8. The improved solution is    for  (i,j)B and (i,j)  (s,t) 

                                                                       =                          for  (i,j) = (s,t) 

        Step 9. Set r=r+1, goto step 3. 

        Step 10. Write the optimum solution is X
*
=  with the associated cost vector  =  and the minimum cost is Z

*
 = Z

r
. 

Step 11. Stop. 

 

IV. NUMERICAL EXAMPLE 

We consider the following problem given in Table 1 

 

Table  1 

 D1 D2 D3 D4 Sl
ac
k 

ai 

O1 c11 

d11=
0.35 

c12 

d12=
0.5 

c13 

d13=0.
35 

c14 

d14=0.5 
0 
1 

200 

O2 c21 
d21=
0.9 

c22 

d22=
0.84 

c23 

d23=0.
3 

c24 

d24=0.4 
0 
1 

500 

O3 c31 
d31=
0.8 

c32 

d22=
0.4 

c33 

d23=0.
74 

c34 

d24=0.9 
0 
1 

400 

bj 200 400 500 1000   
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The variable costs are given below: 

         c11 = 203     if   0  x11  100                                 c12 = 401   if   0  x12  100  

                = 201 if 100 < x11   150                               = 400   if  100 < x12  300 

                = 200  if  x11>150                                                = 399    if   x12>300 

         c13 = 400     if   0  x13  150                                  c14 = 751   if   0  x14  400  

                = 399 if 150 < x13   350                               = 750   if  400 < x14  700 

                = 398  if  x13>350                                                = 749    if   x14>700 

         c21 = 502     if   0  x21  100                                 c22 = 604   if   0  x22  100  

                = 500 if 100 < x21   150                               = 600   if  100 < x22  300 

                = 498  if  x21>150                                                = 599    if   x22>300 

          c23 = 602     if   0  x23  200                                 c24 = 752   if   0  x24  350  

                = 600 if 200 < x23   400                                = 750   if  350 < x24  600 

                = 599  if  x23>400                                                 = 749    if   x24>600 

         c31 = 401     if   0  x31  100                                   c32 = 502   if   0  x32  150  

                = 400 if 100 < x31   150                                 = 500   if  150 < x32  300 

                = 398  if  x31>150                                                 = 499    if   x32>300 

         c33 = 602   if   0  x33  200                                     c34 = 901   if   0  x34  500  

                = 600 if 200 < x33   350                                 = 900   if  500 < x34  750 

                = 599  if  x33>350                                                 = 899    if   x34>750 

 

Applying step 1, we get the following result in Table 2 

Table – 2 

 D1 D2 D3 D4 Slack ai 

O1 200 

200 

0.35 

400 

260 

0.5 

400 

 

0.35 

751 

 

0.5 

0 
 
1 

 
200 

O2 502 
 
0.9 

600 

140 

0.84 

599 

500 

0.3 

750 

581 

0.4 

0 
 
1 

 
500 

O3 398 
 
0.8 

502 

 
0.4 

599 

 
0.74 

901 

419 

0.9 

0 

22.9 

1 

 
400 

bj 200 400 500 1000   
 

Applying step 2, set r=1. 

        Applying step 3, we get  = {x11 = 200, x12 = 260, x22 = 140, x23 = 500, x24 = 581, x34 = 419, x3S = 22.9} with the associated 

cost vector  = {c11 = 200, c12 = 400, c22 = 600, c23 = 599, c24 = 750, c34 = 901, c3S = 0} and the corresponding cost Z
1
 = 1340769. 

        Applying step 4, we get dual variables are u1=  1034.2, u2=377.5, u3=0, v1=561.97, v2=917.1, v3=712.25 and v4=901. 

        Applying step 5, we get the values of ij   (i,j)  B  are 13 = 49.72, 14 = 367.1, 1S =1034.2, 21 = 275.78, 2S = 377.5, 

31 = 163.97, 32 = 415.1 and 33 = 113.25. 

        Applying step 6, we get st = Max {163.97, 415.1, 113.25 } = 415.1 at (3,2) cell. Therefore (3,2) cell enter into the basis. 

        Applying step 7, we get the values of  are =0, =0, =1, =0, =2.1, =2.1 and =1.49. 

   = min { 140, 199.5} =140 = . Therefore (2,2) cell leaves the basis. 

        Applying step 8, we get the values of    are  =200,   = 260, =500, =875, =140, =125, =231.5 and 

tabulated in Table 3. 

Table – 3 

 

 D1 D2 D3 D4 Slack ai 

O1 200 

200 

0.35 

400 

260 

0.5 

399 

 

0.35 

751 

 

0.5 

0 
 
1 

 
200 

O2 502 
 
0.9 

600 

 

0.84 

599 

500 

750 

875 

0 
 
1 

 
500 
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0.3 0.4 

O3 398 
 
0.8 

502 

140 

0.4 

602 

 
0.74 

901 

125 

0.9 

0 

231.5 

1 

 
400 

bj 200 400 500 1000   
 

        Applying step 9, set r = r + 1 and go to Step 3. The values of   with the associated cost vector  give in Table 3 and the 

corresponding cost Z
2
=1281780. Proceeding in this way the final table given by Table 4. 

 

Table - 4 

 D1 D2 D3 D4 Slack ai 

O1 203 

71.5 

0.35 

401 
 
0.5 

398 

500 

0.35 

751 

 

0.5 

0 
 
1 

 
200 

O2 500 
 
0.9 

600 

 
0.84 

602 
 
0.3 

749 

1000 

0.4 

0 

100 

1 

 
500 

O3 400 

128.5 

0.8 

499 

400 

0.4 

602 

 
0.74 

901 
 
0.9 

0 

137.2 

1 

 
400 

bj 200 400 500 1000   
 

        Applying step 10, the optimum solution is X
*
={ x11= 71.5, x13=500, x24=1000, x31=128.5, x32=400 }, with the associated cost 

vector ={c11=203, c13=398, c24=749, c31=400, c32=499 } and the optimum cost Z
*
= 1213514.5 

 

REMARK:  
        If we consider the problem 

                                                                                                           

subject to,                             ;               for  i = 1,2,3,……….,m.                                                                                         

 ;                for  j = 1,2,3,……….,n.                                       

        where the values of cij are given in equation (2.4),    and   xij  0   (1  i  m, 1  j  n).  

 

        Then this problem (P
1
) can easily be converted to our proposed problem (P1) by transformation         =wij    for  (1  i  m, 1 

 j  n); 
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