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Abstract- Structural Equation Modeling (SEM) is a multivariate 
data analysis, and one of the requirements in using SEM is that 
the data has interval scale. Some researchers argue that Likert 
scale is an interval, yet many others assume that this type of data 
is ordinal, and therefore transformation is important to apply to 
uplift the measurement scale. This paper tries to identify whether 
there is a difference in the result of analysis between SEM 
analysis using Likert scale with no transformation and with 
transformation, by employing secondary data. The results 
revealed that RMSEA (Root Mean Square Error of 
Approximation) values without and with transformation were 
0.000 and 0.000, respectively. Therefore, both are close fit. It can 
be stated that the results of both treatments, without and with 
transformation, come to the same conclusion. 
 
Index Terms- Likert scale, transformation, Structural Equation 
Modeling (SEM) 
 

I. INTRODUCTION 
any researches in economy, social, education and 
psychology, as well as medical field generally involve 

multi variables and multi relations. The variables in these fields 
of study are usually qualitative in nature, such as attitude, 
motivation, performance, commitment, satisfaction, behavior, 
strategy, loyalty, and so forth, and therefore, they are observable. 
In order to reach a reliable result, a method of data analysis 
which is simultaneous and integrated is necessary. SEM 
(Structural Equation Modeling) is a multivariate analysis which 
is able to be applied in multivariable and multi relations data 
simultaneously, and able to test complicated relations between 
variables. The relationships can be built between one or more 
dependent variable and one or more independent variable. From 
each variable, factor can be built (a construct built from some 
indicator variables). In addition, SEM is also a measurement 
model which can be used to test validity and reliability of an 
instrument. 
        One of the requirements in using SEM is the data should 
have interval scale. In many fields of study, the data are often in 
the form of Likert scale. Some researchers assume that Likert 
scale data is interval data, yet many others assume that it is 
ordinal data. Joreskog (1994) states that ordinal data describes 

multi-level category like Likert scale. Meanwhile, Deny (2007) 
mentions that Likert scale can be analyzed parametrically. This is 
due to the fact that Likert scale can be taken as interval data, in 
which the range between points is the same, and therefore Likert 
scale should be arranged so that the data can be categorized as 
interval data. This is supported by Clason & Dormody (2004) 
stating that 5-point Likert scale can be categorized as interval 
scale. This paper will discuss further whether or not there is a 
difference between SEM analysis using questionnaire data which 
employs Likert scale without transformation and the one with 
transformation. 
 

II. THEORETICAL FRAMEWORK 
Measurement Scale 
        If the respondents are the data source, we need a scale that 
can measure an attitude becoming characteristics of a population. 
There are two types of scale measurement based on social 
phenomenon, namely a scale to measure attitude and personality 
(scale for morale, the result of character test, social participation) 
and the scale for measuring other cultural aspects and social 
condition. According to Riduwan and Kuncoro (2007), alongside 
the development of sociology and psychology, research 
instrument is now focusing on measurement. 
Researches in social studies use some measurement scale such as 
Likert, Guttman, semantic differential, Rating, and Thurstone. 
 

1. Likert Scale  
        This scale is used to measure psychological attitudes to be 
measured mathematically. Riduwan and Kuncoro (2007) explain 
that the Likert scale is used to measure the attitude, opinion and 
perception of a person or group of people about social 
phenomena. On the Likert scale, the variables to be measured are 
translated into variable indicators. Each answer is related to a 
question or attitude support expressed in words, for instance, for 
positive statements: Strongly Agree (5), Agree (4), Neutral (3), 
Disagree (2) and Strongly Disagree (1); or negative statements: 
Strongly disagree (1), Disagree (2), Neutral (3), Agree (4) and 
Strongly Agree (5). 
        The Likert scale is easy to create and implement, and there 
is freedom to include questions in the questionnaire, as long as it 
is still in the context of the problem. 
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2. Guttman Scale  

This type of measurement scale has two possible firm answers of 
a question: ’yes’ – ’no’ so that it can produce interval or rational 
dichotomy data. 
 

3. Semantic Differential Scale 
        This scale contains a set of bipolar characteristics (two 
poles) used to measure attitudes, only the form is neither multiple 
choice nor checklist, but is arranged in a continuous line whose 
”very positive” answer lies at the right of the line, and the ”very 
negative” answer lies in the left side of the line, or vice versa. 
The resulting data is an interval scale. 
 

4. Rating Scale  
        The raw data obtained in the form of numbers is then 
interpreted in a qualitative sense. In Rating Scale, respondents 
choose one of the quantitative answers that have been provided. 
Therefore, Rating Scale is more flexible, not limited to attitude 
measurement but to measure respondent’s perception of other 
phenomena, such as scale to measure socioeconomic status, 
knowledge, ability and others. Rating Scale should be able to 
interpret every number given in the answer of each question. 
Answer number 2, by a certain person is not necessarily 
meaningful to another person who also chooses answer 2. 
 

5. Thurstone Scale  
         Thurstone-scale data are obtained from respondents who 
are asked to select an approved answer from several different 
statements. In general, each question has an association of values 
between 1 to 10, but these values are unknown to the 
respondents. The scoring is based on the specified number of 
statements selected by the respondent regarding the question. 
 
Method of Successive Interval (MSI) 
        Analysis of quantitative data that is often encountered in 
exact sciences is so far more well known. Social research uses a 
lot of qualitative data as a reflection of abstract concepts, or 
cannot be measured directly. Therefore, the analysis used is 
limited to descriptive analysis or non parametric analysis. Today, 
research in the field of social science has been developed and 
many quantitative analyses has been done, yet qualitative 
variables that produce Likert scale are classified as ordinal data 
(Waryanto and Millafati, 2006). 
        Deny (2007) suggests using Method of Succesive Interval 
(MSI) to transform ordinal data using Likert scale into interval 
data for regression analysis to be applied. 
        A list of questions answered with a Likert-scale approach 
will yield ordinal data that does not show a comparison of one 
answer with the other answer to the same question. In the interval 
data, the comparison between the actual answers will look 
sharper so it can be processed to obtain the value of the 
respondent’s answer (Sukawati, 2007). 
        According to Riduwan and Kuncoro (2007), transforming 
ordinal data into interval data is useful to meet some 
requirements of parametric analysis. The steps of transforming 
ordinal data into intervals using MSI are as follows: 

1. On each point of the answer, the calculated 
frequencies are scored 1, 2, 3, 4, and 5 

2. Each frequency is divided by the number of 
respondents, the result is called proportion 

3. The cumulative proportion value is determined by 
summing the proportions in sequence per score 
column 

4. Normal Distribution Table is used to calculate the Z 
value of each cumulative proportion 

5. The high density for each value of Z is then 
determined (using the High-Density table) 

6. Scale value (NS) is determined with this formula: 
 

)()(

)()(

LimitLowerBelowAreaLimitUpperBelowArea

LimitUpperatDensityLimitLoweratDensity
NS

−

−
=

(2.1) 
 

7. Transformation value (Y) is determined by this 
formula: 

    Y= NS + [ 1 + |NSmin| ]                 (2.2) 
in which NSmin is minimum scale value. 
    
Path Analysis 
        Path analysis is used to determine the direct influence of a 
number of variables based on cross coefficients. Path analysis is 
not a method for finding causes, but only testing the theoretical 
truths that have been theorized. In the path analysis, it can be 
drawn conclusions about which exogenous variables have a 
strong influence on endogenous variables. 
        According to Riduwan and Kuncoro (2007), the assumption 
of path analysis is as the following: 

1. The relationship between variables is linear and 
additive. 

2. There is only a one-direction causal flow system, 
which means no direction of causality is reversed 

3. Minimum response (endogenous) variable in the 
interval scale 

4. The variables studied can be observed directly 
5. The model analyzed is correctly specified based on 

relevant theories and concepts that means 
theoretical models are examined or tested based on 
a particular theoretical framework that is able to 
explain the causal relationship between the 
variables studied. 

Simple path diagrams can be described as follows: 
 
   
 
 
    
 
 
 
 
Figure 2.1 Simple Path Diagram 
(Hair, Anderson, Tatham &  Black, 2006) 
 
        One-way arrow (X1 → Y1) shows the direct influence of 
variable X1 to variable Y1. While the two-way arrow between the 
variables X1 and X2 shows the existence of unanalyzed influence, 
which is the influence of two exogenous variables are mutually 

  X1 B 

A   Y1 

C   X2 
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correlated. Figure 2.1 explains that two correlated exogenous 
variables (X1 and X2) predict Y1, and can be written in the 
equation: 
Y1 = b1 X1 + b2 X2 
 
        Path analysis allows researchers to use simple correlation 
coefficients between the variables involved to predict the 
magnitude of the causality relationships b1 and b2 (Hair, 
Anderson, Tatham & Black, 2006). The correlation coefficient 
between two variables X and Y ( ρ ) is assumed by the 
correlation coefficient of example r ,i.e.: (Walpole, 1988) 
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        A is the correlation between X1 and X2, B is the effect of X1 
in predicting Y1 and C is the effect of X2 in predicting Y1. 

2,1 xxρ  = A 

2,1 xxρ  = B+AC 

2,1 xxρ  = C+AB 
 
Confirmatory Factor Analysis 
        Factor analysis is one of interdependence analysis between 
variables. The general purpose of factor analysis is to reduce the 
variables, so that the information contained in the origin variable 
can be explained by the variable resulting from the reduction 
which has less number (Hair, et.al., 2006). 
        An example of a factor analysis model is presented in 
Figure 2.2. 
 

 
Figure 2.2 Factor Analysis Model (Sharma, 1996) 
 
        The Factor analysis model in Figure 2.2 can be written in 
the following equation: 

22221212

12121111

εξλξλ
εξλξλ

++=
++=

x
x

 
where  

 pξ
 = the latent variable to -p or can also be referred to 

as the P-th factor  
λij  = loading from -i variable to -j variable which shows the 
importance of j-factor in the composition of the i-th variable  
εp = error 
The Factor Analysis Model is : 
X1 = c11 F1 + c12 F2 + c13 F3 + ... + c1m Fm + ε 
X2 = c21 F1 + c22 F2 + c23 F3 + ... + c2m Fm + ε2 
X3 = c31 F1 + c32 F2 + c33 F3 + ... + c3m Fm + ε3 
... 
Xp = cp1 F1 + cp2 F2 + cp3 F3 + ... + cpm Fm + εp 
 
 or 
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(p x 1)                (p x m)                        (m x1) 
 
X= c F + ε               (2.4) 
 where,  
X1, X2,.., Xp are origin variables 
F1, F2,..., Fm are common factors 
cij is the loading of the origin variable i on the j-th factor   
p is error 
 
        The prediction method of loading in factor analysis, among 
others, is the main component method. The input data can be 
either a correlation matrix or a covariance matrix. From the 

covariance matrix (S) or the correlation (R),  jλ  (eigen values) 
and aj (eigen vectors) are obtained. Loading factor is: 
 

jjiij ac λ=
               (2.5) 

 
Matters relating to factor analysis (Soemarno, 2003): 

1. Variety of Origin Variables (X) 
Variety of X variables is divided into two components, namely 
communal (hi

2) and ϕi. 
 Var (Xi) = ci1

2 + ci2
2 + … + cip

2 + ϕi                     
(2.6) or 

 Var (Xi) = hi
2 + ϕI; where hi

2 = 
∑

j
ijc 2

             
(2.7) 
 
        The hi

2 component is called a comunality which denotes the 
proportion of variance X that can be explained by the common 
factor p. The component ϕI represents the proportion of the range 
of X caused by either a specific factor or an error. 
        The magnitude of the variety of Xi that can be explained by 
Fj is: 

λ22 

λ21 

λ22 λ11 
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 Var (Xi) that is explained by Fj = 
∑

j
ij

ij

c

c
2

2

 x 100%              
(2.8) 

2. Factor of Significance 
The factor that is considered significant is if the value is larger 
than one (λ >1) or the cumulative diversity is approximately 
75%. 

3. The Covariance between X and F 
The covariance between Xi and Fj is as follows: 
Cov (Xi, Fj) = c¬ij      
  (2.9) 
Factor loading is used to interpret every significant factor. Factor 
with large loading means it is the largest constituent component 
of a variable, while the sign (positive and negative) indicates the 
direction. Thus, the factor as a new variable that is unobservable 
can determine the origin of variable X. 

4. Factor Rotation 
Where significant factors are significant, it is often found that 
interpretation of factors as new or unobservable variables is 
difficult. This is due to the overlap of factors that exist as 
components of the compilers of variables X. To overcome this, 
factor rotation is applied. 

5. Factor Score 
        Often, factor analysis is a preliminary analysis of a problem 
in a research, namely the effort to get a new variable or 
unobservable variable. Thus, the new variable must have data, 
which is the factor score. If the input matrix is a covariant matrix 
(S), the factor score is calculated by the formula: 
S-Fa = c'S-1 (xj -)     
 (2.10) 
However, if the input matrix is the correlation matrix (R), the 
factor score is calculated by the formula: 
S-Fa = c'R-1Zj      (2.11) 
 
        According to Sharma (1996), in the confirmatory factor 
analysis, the structure of the factor model has been underlied by a 
theory. Therefore, the number of factors that are formed is 
already known in advance. This is in contrast to exploratory 
factor analysis, where the previous researcher did not have a 
theory or hypothesis that made up the factor structure. 
Confirmatory factor analysis is a continuation of exploratory 
factor analysis. In this case, once a researcher finds new variables 
resulting from exploration of variables owned before, the 
researcher need to confirm the new variables to check the 
validity and reliability. The factor as a new variable resulting 
from exploratory factor analysis process is unobservable, and it is 
often called latent variable. This factor cannot be observed 
directly by researchers because it is a collection of several sizes 
or observations. 
 
Simultaneous Equation Model 
        The simultaneous equation model is a model containing 
more than one dependent variable and more than one equation. 
This model is useful for predictions as in regression. The typical 
feature of the simultaneous equation model is that the dependent 
variable in an equation may appear as a variable explaining in 

other equations in the model. In this model, a number of 
equations form a system of equations which describes the 
dependence among the variables in the equations. Before 
completing the simultaneous equation model, the equations 
contained in the model must be shown first that they have 
satisfied the proper identification conditions.  
        The identification for the function of a simultaneous model 
is (Imam, 2000): 
1. if K – k > m – 1, the function is overidentified. 
2. if K – k = m – 1, the function is just identified. 
3. if K – k < m – 1, the function is underidentified.  
where m is the number of endogenous variables in a particular 
single function 
K is the number of exogenous variables in the simultaneous 
model 
k is the number of exogenous variables in a particular single 
function. 
 
Structural Equation Modeling (SEM) 
        SEM is a statistical technique used to construct and test a 
causal model. SEM is a technique that includes confirmatory 
aspects of factor analysis, path analysis and regression that can 
be considered a special case in SEM. From the definition. it can 
be said that SEM has characteristics that are as analytical 
techniques to be more confirm than explanation, meaning that 
SEM is more suitable to be used to determine the validity of a 
model than to use it to find a model fit, although SEM analysis 
also includes elements for explanation. The most critical error in 
model development is the existence of specification error, that is 
when one or more predictor variables is not involved. 
        There are two models in SEM that are structural model and 
measurement model. The structural equation is formulated as a 
means to express the relationship of mutuality between 
constructs with the following guidelines: 
        Endogenous Variables = Exogenous Variables + 
Endogenous Variables + Error. The general structural modeling 
equation can be written as follows (Hayduk, 1987 in Wijayanto, 
2008): 
 

1221133221 ...... ζξη nnmm ++++++++= ξγξγγηβηβηβ
 

2221133112 ...... ζξη nnmm ++++++++= ξγξγγηβηβηβ
 
. 
. 
. 

mnnmmm ζξη ++++++++= −− ξγξγγηβηβηβ ...... 2211113311

 
Or (in matrix): 

ζΓξBηη ++=               
(2.12) 
where: 
η  :   eta, matrix (sized m x 1) endogenous latent variable 
(dependent)  
 B:  beta, matrix (sized m x m) coefficient of the influence 
of endogenous variable toward other endogenous variables  
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Γ :  gamma, matrix (sized m x n) coefficient of the influence 
of exogenous variable toward endogenous variable  
ζ :  zeta, matrix (sized m x 1) structural error 
ξ :    matrix (sized n x 1 ) exogenous latent variable  
 
Measurement model for exogenous variable can generally be 
written as:  

1x  = 111 δξ +λ  

2x  = 222 δξ +λ  
. 
. 
. 

qx
= qqq δξ +λ

 
Or in matrix it is written: 

x = δξΛx +                
(2.13) 
where:  
x :  matrix (sized q x 1) indicator of exogenous 
variable  

xΛ :   matrix (sized q x n) loading factor of exogenous 
variable 
δ    :    matrix (sized q x 1) measurement error 
 
Measurement model for endogenous variable can generally be 
written as: (Hayduk, 1987 in Wijayanto, 2008): 

1y  = 111 εηλ +  

2y  = 222 ελ +ξ  
. 
. 
. 

py
= pppξ ελ +

 
 
Or in matrix it is written:  

y = 
εηΛy +

                
(2.14) 
where: 
y :  matrix (sized p x 1) indicator of endogenous 
variable  

yΛ
:  matrix (sized p x m) loading factor of endogenous 

variable 
ε  :   matrix (sized p x 1) measurement error for 
endogenous variable  
  
        The three stages of SEM are: a) examining of the validity 
and reliability of the instrument (confirmatory factor analysis), b) 
testing the relationship model among the latent variables to 
determine the determinant factor (path analysis), c) the 
acquisition of a useful model for prediction equivalent to the 
structural model or regression (Sarwono & Narimawati, 2007). 
The terms of SEM are as the following: 

1. Large sample size 
        Sample size plays an important role in the estimation and 
interpretation of SEM analysis results. There is no single 
criterion explaining how many sample sizes are required in SEM. 
However, for estimation using maximum likelihood, the 
recommended sample size ranges from 100-200. If the sample 
size exceeds 400, the possibility of goodness of fit will indicate a 
model mismatch. 

2. Continuous measurement scale (interval) 
        The scale of measurement of variables in SEM analysis is 
the most controversial and much debated. This controversy arises 
because the treatment of ordinal variables is considered a 
continuous variable. Generally, the measurement of indicators of 
a latent variable uses 5-point Likert scale, namely strongly 
disagree, disagree, neutral, and strongly agree, which actually is 
the ordinal scale (rank). Many researchers change this ordinal 
Likert scale into an interval scale with successive interval (MSI) 
methods. 
The assumptions in SEM are as follows (Hair, et. al., 2006): 
1. All relationships are linear 
Examining the linearity of relationship can be done with the 
Curve Fit approach and applying the principle of parsimony, i.e. 
when all models are significant or non-significant, the model 
chosen is the simplest model that is linear (Ljung, 2003). 

2. Normality 
        Basically the normality assumption for using SEM analysis 
is not very critical when the observation data reaches 100 or 
more because based on the Central Limit Theorm of a large 
sample size can be generated average samples close to normal 
distribution. (Mendenhall, et.al., 1981). 

3. Data does not contain outliers 
        Univariate outliers and multivariate outliers must be 
examined.        For univariate outliers, observations with z-score 
≥  3.0 will be categorized as outliers, and for large samples 
above 80 observations, evaluation guidelines are the threshold 
values of z-scores ranging from 3 to 4 (Hair, et.al., 2006). As for 
multivariate outliers, it can be detected by the distance of 
Mahalanobis. The Mahalanobis distance between the i and j- 
individuals is expressed by equations (Senior, 2000): 

2
ijd

= 
-1

i j i j(x - x )'S (x - x )                              
(2.15) 

 
2
ijd

 :  Mahalanobis distance between the i- 
and j- individuals  

  ix    :  average vectors of i- individual 
observation  

  jx
  :  average vectors of j- individual 

observation 
   S-1  :  inverse of covariance matrix 
 
The test of outliers is done by looking at the value from 
Mahalanobis distance, with the hypothesis: 
Ho: there is no outliers 
H1: there are outliers 
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  If 
2
ijd

<
2

)(αχ p ,  where p is the number of indicators, then it is 
concluded that there is no outliers. 
According to Bollen and Long (in Wijayanto, 2008), SEM 
modeling is made through 
several stages: 
1. Model specification 
2. Identification 
3. Assumption 
4. Evaluation 
5. Re-specification 
One of the evaluation criteria model is RMSEA (Root Mean 
Square Error Approximation), which can be calculated by the 
formula 2.16 for interval data and 2.17 for ordinal data.  
RMSEA for ordinal data 

RMSEA = 1
1))(,(
−

−
Σ

Ndb
SF θ

           (2.17) 
 
RMSEA for interval data 

RMSEA = dbN
db
)1(

2

−
−χ

             (2.16) 
 

                   where      ))(,()1(2 θχ Σ−= SFN  
 

III. RESEARCH METHODOLOGY 
        The data used in this study were secondary data from the 
research result of a student of Faculty of Agricultural 
Technology Universitas Brawijaya entitled “Analysis of the 
Relationship between Productivity and Quality to Internal 
Company Business Process with Structural Equation Modeling 
(SEM) Method” (Pramudiya, 2006). The variables in this study 
are: 

Latent Variable  Indicator 
1. Productivity 
 
  
 
 
2. Quality 
 
 
 
3. The Process of 
Company’s Internal 
Business 

X11.  Workers’ 
productivity  
X12.  Extra value  
X13.  Operation level 
X14.  Machine error  
 
X21. Process error 
X22. Product error 
X23. Customers’ claim  
 
Y1. Innovation process 
Y2. Operation process 
 

 
Method 
The stages in this research are: 

1. Transforming data by MSI method 
2. Applying SEM (Structural Equation Modeling) on 

data without transformation and with 
transformation with the following steps: 

a. Estimating model parameter with maximum 
likelihood method using Equation 2.16 

b. Evaluating the whole model through the Root 
Mean Square Error of Approximation 
(RMSEA) criterion, using Equation 2.16 for 
interval data and equation 2.17 for ordinal data 

c. Comparing the model of SEM analysis results 
from data without transformation and data with 
transformation using the RMSEA goodness of 
fit criteria         

 

IV. RESULTS AND DISCUSSION 
        The comparison of two or more estimation models can be 
performed if the quantities used as comparators are the same. In 
order to compare the two models, the RMSEA criterion is used in 
this study. Therefore, in the first step it is necessary to prove that 
the RMSEA of the model generated from ordinal data is the same 
or equivalent to RMSEA for the model generated from interval 
data. 
 
Analysis of RMSEA 
 
According to Joreskog (1994), RMSEA for ordinal data is 

                      dbN
db
)1(

2

−
−χ

    
Meanwhile, RMSEA for interval data is (Scermelleh & Muller, 
2003): 

           1
1))(,(
−

−
Σ

Ndb
SF θ

     
  

Substitution ))(,()1(2 θχ Σ−= SFN  which is one of the 
statistical analysis of the goodness of fit into RMSEA as  a model 
of ordinal data will result in: 

RMSEA  = dbN
dbSFN

)1(
))(,()1(

−
−Σ− θ

 

  = 1
1))(,(
−

−
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which is also the formula for RMSEA for interval data. 
Therefore, RMSEA can be used as a comparison factor for the 
obtained model from ordinal and interval data. 
 
The Results of Parameter Estimates and RMSEA on Data 
With and Without Transformation 
 
The summary of parameter estimation results in data without 
transformation is presented in the following table. 
 
Table 4.5 The Results of Parameter Estimates on Data 2 Without 
Transformation with Standardized Loading Factor  
 

Loading Factor Estimates p 
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value value 
Business process_internal <- 
Productivity        

0.453 0.213 

Business process_internal <--- 
Quality       

0.376 0.233 

x14 <----------------- Productivity        0.180  
x13 <----------------- Productivity        0.681 0.239 
x12 <----------------- Productivity   0.520 0.194 
x11 <----------------- Productivity      0.242 0.324 
x23 <---------------------- Quality      0.280  
x22 <---------------------- Quality 0.189 0.332 
x21 <---------------------- Quality       0.572 0.415 
y1 <--------- Business 
process_internal 

0.696  

y2 <--------- Business 
process_internal 

0.548 0.030 

 
The result of conversion of line diagram into structural model is 

127.0213.0453.0 211 ++= ξξη  

in which  1η  : internal business process 

    1ξ  : productivity 

    2ξ  : quality 
 
        The biggest contribution to internal business processes is 
given by productivity variables. This can be seen from the value 
of the standardized coefficients for productivity variables is the 
largest, which is 0.45 (Table 4.5). Both productivity and quality 
variables contribute positively to internal business processes. The 
model analyzed is a recursive model (there is no reciprocal 

relationship). From the analysis, it was obtained 
2
hitungχ

= 21.257 
and p-value = 0.678, meaning that at the error rate of 5%, the 
hypothesis stating that the model is in accordance with empirical 
data, is received. RMSEA value obtained for data without 
transformation is 0.000 (Figure 4.5), which is included in the 
close fit category. 
 
The result of parameter estimation for data with transformation is 
presented in Table 4.7 
 

Table 4.7 The Results of Parameter Estimates on Data 2 
With Transformation with Standardized Loading Factor 

 
Loading Factor Estimates 

value 
p 
value 

Business 
process_internal <- 
Productivity        

0.450 0.352 

Business 
process_internal <--- 
Quality     

0.374 0.242 

x14 <----------------- 
Productivity        

0.134  

x13 <----------------- 
Productivity        

0.659 0.388 

x12 <----------------- 0.446 0.350 

Productivity       
x11 <----------------- 
Productivity        

0.311 0.419 

x23 <---------------------
- Quality      

0.281  

x22 <---------------------
- Quality      

0.186 0.348 

x21 <---------------------
- Quality     

0.568 0.431 

y1 <--------- Business 
process_internal 

0.684  

y2 <--------- Business 
process_internal 

0.546 0.038 

 
The result of conversion of line diagram into structural model is 

239.0374.0450.0 211 ++= ξξη  
 
        From the overall model evaluation, it was obtained RMSEA 
for Data 2 With Transformation of 0.000; and because the 
RMSEA is less than 0.05, it is included into the close fit 
category. 
 
        Comparison of RMSEA Value 
The statistical value of RMSEA for each data, with and without 
transformation can be seen in table 4.9. 
 

Tabel 4.9 RMSEA for each data 
 

Without 
transformation 

With 
transformation 

0.000 0.000 
 
        Table 4.9 shows that RMSEA value for the data without and 
with transformation is included into close fit data, in which both 
shows RMSEA<0.05. 
 

V. CONCLUSION 
        Based on the results of this study, it can be concluded that 
there is no difference in the SEM analysis result in the 
questionnaire data in Likert scale with and without 
transformation. This is shown by the RMSEA value in both data 
which come into the same conclusion in testing model suitability. 
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