International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 1

ISSN 2250-3153

An Approach to Detecting Duplicate Bug Reports using
N-gram Features and Cluster Chrinkage Technique

Phuc Nhan Minh*
* Faculty of Engineering and Technology, Tra Vinh University, Viet Nam

Abstract- Duplicate bug report describes problems for which
there is already a report in a bug repository. For many open
source projects, the number of duplicate reports represents a
significant percentage of the repository, so automatic
identification of duplicate reports are very important and need
let’s avoid wasting time a triager spends in searching for
duplicate bug reports of any incoming report. In this paper we
want to present a novel approach which it can help better of
duplicate bug report identification. The proposed approach has
two novel features: firstly, use n-gram features for the task of
duplicate bug report detection. Secondly, apply cluster shrinkage
technique to improve the detection performance. We tested our
approach on three popular open source projects: Apache, Argo
UML, and SVN. We have also conducted empirical studies. The
experimental results show that the proposed scheme can
effectively improve the detection performance compared with
previous methods.

Index Terms- Bug Reports, Duplicate Bug Detection, N-gram
feature, Bug Report Analysis, Cluster Shrinkage

l. INTRODUCTION

n software maintenance, discovering software abnormal

behavior is an important process to avoid serious damages.
Typically, these abnormal situations are collectively described in
bug reports which are submitted to a bug report management
system (BRMS) such as Bugzilla, Eclipse so on for further
handling. After the bug reports are submitted, one or more
triagers will be assigned to analyze them and then pass them to
the appropriate programmers for bug fixing. As reported in
recent literature [1, 4, 5, 6], an important concern of duplicate
detection on bug reports in bug report handling has been
addressed. The main reason behind this concern is that the
percentage of duplicate bug reports can be significantly up to
36% [1, 2, 5, 6], for example, the Eclipse dataset collected from
October 2001 to August 2005 has 18,165 bug reports, and 20%
of the reports are duplicate [1].The same paper also reports that
30% of 2,013 reports in the Firefox dataset collected from May
2003 to August 2005 are duplicate [1]. In 2006, Hiew reported
that the duplicate reports in the Firefox repository could even
reach 36% [4]. The significant number of the duplicate bug
reports shows the importance of how to properly process them in
the debugging and testing work. So, identifying duplicate bug
reports play very important role. First, the analysis time for
triaging bug reports can be highly reduced. Second, the
information contained in duplicate bug reports may be very
helpful in the debugging process because they provide more
information on software abnormal operations that was not
described in the first bug report (the master bug report).

1. DUPLICATION DETECTION
PROBLEM

The duplication detection problem in explained as follows:
As stated in [3, 8], the problem of duplication detection can be
characterized by identifying two or more bug reports that
describe the same software fault. In [5], the duplicates can be
further classified into two classes: (1) the duplicate bug reports
describe the same failure situation, and (2) the bug reports
describe the different failures with the same source of the
software fault. Since the second duplication type may involve
different vocabulary for different bug reports, its detection
cannot be effective by only exploring the textual information of
the bug reports [5, 7]. In order to detect effectively the second
type duplication requires program-specific information, such as
execution traces in [7]. However, this may raise the privacy
problem. Therefore, this research only focuses on detecting the
first type of duplication which only considers the textual
information of bug reports.

Issue #: 174 Platform: PC Reporter: a.m.dearder
Component: argouml| 05; Windows
98
Subcomponent: Other Version: 0.7 C€C;: None
Status: CLOSED Priority: P1 defined

Resolution: DUPLICATE Issue type: DEFECT
Target milestone: ---

Assigned to: issues@argouml

URL:
* Summary: Null pointer excaption under jdk1.3

Status whiteboard:

Attachments:
Issue 174 depends on:
Issue 174 blocks:
Votes for issue 174:
View issue activity | Format for printing | Format as XML

Show dependency tree

Wote for this issue

Description: Opened: Fri Jul 14 11:27:00 -0700 2000 Sort by: Oldest first | Newest first

Civjdkl.3Jars»java -Jjar argoumldTo,jar
making MultiEditcrPane
making Diagram
makitg Table
making DetailsPane
making ToDoltem
making WizDescription
Exception in thread "main” java.lang.HullPFointerExcsption
at Javax.swing.event.SwingPropertyChangeSupport.firePropertyChange (Unkn

Unknown Source)

at Jjavax.swing.sbstracthction. firePropertyChang
Javax. swing. AbstractAction. setEnabled (Unknown

Java:lg2)

------- Additional comments from Toby. Baier@gmyx. net Tue Jul 18 08:37: 59 -0700 2000 -------
please look into the bug database before posting one...

=** This bug has been marked as a duplicate of 108 **+

www ijsrp.org

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 2

ISSN 2250-3153

Figure 1: An example of a duplicate bug report in ArgoUML
project

To detect the duplicate bug reports, the textual information
contained in the bug reports must be first passed and extracted. A
bug report generally consists of some Meta- information, a short
summary, textual description, and some error messages. It may
also have some comments from other reporters. Figure 1 is an
example for the ArgoUML project. This bug report was
submitted to a bug tracking system Tigris by A. M. Dearden. In
the Description field, A. M. Dearden provided abundant
information about an exception in ArgoUML execution. If the
bug report is the original report for the software failure, it is
called the master bug report (MBR). Otherwise, it will be labeled
as duplicate after the triaging process. In Figure 1, this bug report
174 is identified as a duplicate in the Resolution field. On the
bottom of the figure, it can be seen that this bug report is a
duplicate of bug report # 108. In this case, these two bug reports
belong to the same report cluster (RC) in this paper.

The duplication detection problem in this research is
processed as follows. For a software project, the historical bug
reports are first classified into n report clusters (RCs). Each RC
has a master bug report (MBR). If an RC has more than one bug
report, the bug reports in the RC have the duplicate relationships.
For each incoming bug report BR,, the duplication detection is
performed to generate a recommendation list that shows the
likelihood order of BR, being a member of RC;. The duplication
relationship is determined if one of the following conditions is
satisfied:

1. For a master report BR,, a bug report BR; has been
resolved as duplicate with a reference to BR, in the bug tracking
system, and the report status is closed.

2. For two bug reports BR; and BR;, if they are marked as the
duplicate of BR, BR; is a duplicate of BR;, and vice versa.

3. If there is another bug report BRy that is marked as duplicate
of BR;, BRk isalso a duplicate of BR,,. This property is called the
transitivity.

The rest of the paper is organized into four sections. Section
Il gives a brief overview of related work. Section IV presents
the proposed scheme in which n-gram features and cluster
shrinkage are used to improve the performance of duplicate
detection. In section V, the empirical study on different open-
source projects is elaborated to demonstrate the effectiveness of
the proposed scheme. Finally, section VI concludes the paper.

11. RELATED WORK

This section presents the previous studies on the n-gram
approach and the cluster shrinkage technique.

In 2006, Hiew proposed an incremental clustering model
using natural language processing (NLP) techniques to identify
duplicate bug reports in his master thesis [4]. According to his
report, the detection recall rate can achieve 20%-50% in four
software projects when the recommendation list has 7 items
(Eclipse: 20%, Fedora: 31%, Apache: 32%, and Firefox: 50%).

In 2007, a study similar to Hiew’s work for Sony Ericsson
software projects was reported in [5]. Compared with Hiew’s
work the scheme proposed by Runeson, Alexandersson, and
Nyholm show that using only basic NLP techniques can achieve
comparable performance. In 2008, Jalbert and Weimer proposed
a detection scheme in which they used a specific feature
weighting equation and a graph cluster algorithm to improve the
detection performance [9]. However, their scheme only performs
up to 1% better than the work of [5].

In 2010, Sureka and Jalote proposed an n-gram-based
approach to detect duplicate bug reports [6]. However, the
performance of their scheme still remains moderate from their
experiments in which a 40.22% recall rate is achieved for the
top-10 recommendations. The indifferent performance is mainly
because their scheme uses character-level n-gram-based features
that may contain a lot of noisy information for similarity
computation.

Based on the observations of the previous studies, we
proposed a detection scheme based on the n-gram features and
the cluster shrinkage technique. With the n-gram features, the
proposed scheme effectively improves the classification power
for duplication detection. With the assistance of cluster
shrinkage, the divergence problem due to n-gram features is
mitigated.

V. DUPLICATION DETECTION
APPROACHES

The proposed approaches use the NLP technique, N-gram,
and the cluster Shrinkage technique. For a software project, the
historical bug reports are classified into n report clusters (RCs).
To form the clusters, we use the comments of bug reports to
create a mapping file. In a cluster that has more than one bug
report, we use the last bug report as the test data. In other words,
the largest bug ID in each cluster is the incoming bug report. The
other bug reports in the cluster are the historical data. In our
observation on bug reports, we find they may have weak
semantic similarity with other reports. The main reason is that
the submitter may not described the bug in details just use
different words to describe the same bug. In addition, there are
many compound words. Therefore, n-gram is used to extract
more information from these diversities. It can improve
similarity identification between reports of the same RC. Then,
we use the cluster shrinkage technique (CS) that can also
improve the similarity identification by reweighting the features
of bug reports. The proposed scheme has the following four basic
processing steps:

1. Feature extraction
2. Feature reweighting
3. Similarity calculation

4. Recommendation generation

www ijsrp.org

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 3
ISSN 2250-3153

word and his abbreviation. Third, we use word-level n-gram to
find the sequence relationship between the words. It also can find
the compound word. In section V, we will show the experiment
results and discuss the parameter settings.

Table 1.3 is an example SVN bug report that ID is 330.
Table 1.4 is the vector after our pre-processing approaches. We
can get more information from different tokenization and improve
the performance.

1 | NLP
N-Gram '

] - word-level

Docwment-base

S Cluster-based

Clustered
Historical Bug
Reports

Cluster Shrinkage

- char-level

NLP

. i | N-Gram H Recommendt
Incoming Bug —— i ' .
e 1| - word-level H H Duplicate Ra
Reports L | - charlevel ! 1 List

Figure 2: The processing flow

Table 1.3: SVN bug report context
-%\'_\' Bug Report 330

1. Feature extraction

1.1 Data Types

short description : §vn ci” cant deal with mixed-revision working copies

We have two types of bug reports historical bug reports and
incoming bug reports. The incoming bug report is a set that
include the largest bug report ID in all clusters. In other word, it
is collects the last bug report that be submitted in each cluster.
The historical bug report is already in our bug repository. For
each incoming bug report, the historical bug report set is the bug
report that bug ID is smaller than incoming bug report. We will

short description: svn ¢i” cant deal with mixed-revision working copies

WHO

Long Deseription : o sussman — BUG_WHEN @ 2001-03-19

10:41:03 — Ben rewrote the fs commit editor so that replace () would

call svn_fs_copy(} ifthe baserev argument was unexpected. This shonld

design the approaches in historical bug reports to help us find the
duplicate bug report.

1.2 Bug Report Cluster

The information that is marked as a duplicate in bug reports
helps to create a mapping file to form the report clusters (RCs).

result in a transaction beingbuilt that propely mirrors the mixed-revision
working copy.However- wefe now getting a conflict in merge() when we
commit the transaction. Mike Pilato is looking into it.WHO : sussman
— BUG_WHEN : 2001-03-19 10:48:39 — *** This bug has been marked

as a duplicate of 329 ***

An example mapping file is shown is in Table 1.1. The number
in Table 1.1 is the bug report ID and the sequence is sorted by
the bug report ID. The smallest of cluster size is 2. In other word,
the smallest of cluster combine by one incoming bug report and
one duplicate. In our case study to see the Table 1.2, we can find
the most of cluster size between 2 and 4.

Table 1.4: SVN bug report item

SVN Bug Repol[‘\t 330 Vector

[
result deal edit ...

NLP

Char-hased N-Gram mixed- ixed-r xed-re ...

Table 1.1: Duplicate bug report mapping file Word-based N-Gram mirrorsthemixed-revision mixedrevisionworking

revisionworkingcopy ...

Incoming Bug Report Duplicate Bug Report

2. Feature reweighting

1 330, 329,
We use the cluster shrinkage to help us find the semantics of
2 433. 387, bug report overlap. In this way, it will increase the member of
cluster relationship by the threshold. The first, we have to find a
center of cluster. The second, we shrink all of bug report to its
center.
n 2610, 2520,2407,525.
1. Centroid of Clusters: the centroid, we use it to represent the
Table 1.2: Cluster size cluster, is a center vector. Each cluster has a centroid that with all
Cluster Size 2 3 T 5 6 7 8 9 10 sum information in its cluster. We use the average vector that in a

by " ' cluster to calculate centroid. Because the submitter does not

SVN 3 %9 ; w135 . . A o
S 103 "4 6 1 1 0 0 0 0 135 always describe the bug in detail, it will make the similarity
ArgoUML 230 47 16 6 3 4 0 0 0 .. 307 calculation inefficient. The reason is two duplicate bug reports
Apache 138 43 118 7 1 2 0 0 .. @214 with seldom same words and it will make to determine whether

1.2 N-gram Feature Extraction

We use the vector space model to represent bug reports. In

this step, we use NLP and n-gram techniques to help us build bug i 0;-1_0_3 Clistors
report vector. The Word Vector Tool is a Java library that can rps

help us to calculate vectors. In WV Tool tool, we construct a bug

report with three parts. First, we use NLP that can help us to ,-_ =09

extract the tokens of word. Second, we use character-level n- o

gram that can help us to find the similarity between lexical words C

in detail that means is to find the common word between original

.org

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 4

ISSN 2250-3153

they are duplicate bug report become difficult. So the centroid
can help us increase similarity between duplicate bug reports, it
have more words.

Figure 3: Documents in each cluster are moved toward the
cluster centroid c in cluster shrinkage

2. Using Cluster Shrinkage: After we find the each centroid
of cluster, we shrink all of bug report to its centroid of cluster.
The symbol is a threshold. The symbol represents a bug report
vector. The symbol means the new vector.

For each cluster {
N is the number of bug reports in S

Compute its centroid:

c=3
For each bug report
{
=1-) +
Where 0
}

}
3. Similarity Computation

We follow the past research result that using cosine can get
the better performance. We have two similarity calculations. One
of the similarity calculations is document-based ranking and
another is cluster-based ranking. In the document-based ranking,
we compare the incoming bug report with all bug report in bug
repository and sort by similarity calculation value to determine
duplicate bug report. There is a problem in document-based
ranking. It is inevitable that different submitter use different
word to describe the bug. Although we use the cluster shrinkage
technique to resolve this problem, it cannot be completely
avoided. For example, a cluster has three bug reports, two bug
reports use the word “bug” to describe and one bug report uses
the word defect. The word “defect” will become a noise and the
bug report will has low similarity. So, we use cluster-based
ranking. In the cluster-based ranking, we re-calculate the cosine
value before determining duplicate bug report. We average the
cosine of members of cluster. Then we compare the incoming
bug report with all bug report with new cosine value in bug
repository and sort by similarity calculation value to determine
duplicate bug report. This way can resolve the seldom bug
reports in his cluster has low similarity.

4. Top-N Recommendation

We present the result like as previous work [4]. Using the
top-n recommendation system can help user to find the duplicate
bug reports. We list rank from 1 to 22 to and observe the
performance in every rank. Then, we compare the top-N
recommendation with past researches. In our approaches, we get
the better performance than others.

V. EXPERIMENTS

In this section, we introduce our experimental environment
and the experiments. The open-source data sets are considered in
our empirical study. We use ArgoUML, SVN, and Apache. We
also implement past research work for performance comparison.
In the work of Runeson et al. [5], we only use the cosine
similarity because it has the best performance in their study.

1. Environment

In the experimental environment, we have three open-source
projects. The bug reports of ArgoUML and SVN are respectively
collected from Tigris.org. The bug reports of Apache are
collected from Bugzilla.org. ArgoUML is a leading open-source
UML modeling tool which supports all standard UML diagrams.
The source code of the ArgoUML project is developed in Java
and can run on any Java platform. Apache is an open-source http
server project. SVN is an open-source software project that
performs version control. More descriptive statistics of Argo
UML, Apache, and SVN can be found in Table 1.5.

2. Experimental Setup

In our scheme, we have three parameters. The first n. is the
size of character-level n-gram (CN). The second n,, is the word-
level n-gram length. Both n. and n,, direct influence how many
features are extracted. In our experiments, we find that n. and n,,
are 6 and 3 to have a slightly better performance among other
values. The main reason is that on average the word length is
between 5 and 6. The symbols CBR and DBR denote the cluster-
based ranking and document-based ranking. The third parameter
is . In the experiments, =0.9 is used because it has the best

performance.

Table 1.5: Descriptive statistics of the experimental data.
Description ArgoUML Apache Subversion
Language Java Java C

Software Type UML Tool HTTP Server SCM Tool

SCM Subversion Subversion Subversion
Repository Tigris Bugzilla Tigris
Data Period 00/02-07/05 01/01-07/02 01/03-07/05
of Bug Repts. 4,613 2773 2,296
of Duplicates 294 588 305

To evaluate the detection schemes, we use the recall rate
metrics. The recall rate defined as the percentage of the
duplicates that can correctly find the corresponding master bug
reports in the top-n recommendations.

— 1)

Equation (1) illustrates how to calculate the recall rate, where
Neorr IS the number of duplicate reports that are correctly
identified, and Ny, is the total number of duplicate reports.

3. Performance Study

The performance evaluation is based on the duplicate bug
report recommendation list. The recommendation list can help

www ijsrp.org

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 5
ISSN 2250-3153

software analysts to rapidly find the duplicate bug reports. From

figure 4 to figure 9, the horizontal axis is the ranking size of the Zlezr 2822383z ES 923558 <5
- - - - - - - == = o] & W & — = (= = = e Loy o = e
list and the vertical axis is the recall rate. The ranking size is ~[fFFIEFRESTEERERRERRR
equal to the recommendation list size. Because n-gram and 2le 2 s g0t 58 22
Cluster Shrinkage have many parameter settings, different Mass FIFgascd s EEEesedgar
experiments have been conducted to study their influences. 2lzle e nvsssesscssqa85 ¢
The first experiment is to study the value in CS. In this Z<frRITFARRAT S EEEIRERRR
experiment, we only use the glmple NLP processing and CS. E Zldlzesssegsgrgazzzoag gy
From Tables 1.6 to 1.8, we can find that CS performs well when 2 |E<|FAESSTRRAEEEE T ES
=09 and =1.0. In the following experiments, we use =0.9 ER I P ER B ER R R R G e v ozx b
- - - - - - =1 vy 1 (=1 - = - =1 ol o} = = L=] L=] vt
because its performance is slightly better than =1.0 in three 'REI S 2 SR E R SR ETIE Y
rojects. z |7
The second experiment is to study the combinations of = <[§8FEFEEFTEFEAEEETETEEELEEED
different approaches. From figure 4 to figure 6, NLP means the g == Mmoo e e e . e = .
- . z Sl v v o o0l o oM = 08wy o] o] og = R
basic natural language processing, CN means character-level n- s l2d 25208523 z3 44 oo
gram, WN means word-level n-gram, CS means the cluster Z =y I— o . - .
. . . . o — noo r = = = e o2 o= xS~
shrinkage technique, and ALL means the combination of all £ HEEEEEEE R R
approaches. From these figures, we can find that ALL p - '
outperforms others. _'E sl 8358382853283 ¢8%5°2
. . . . z =7 = F F R ¥ E T 2 EF s 2 EREE = ~
The third experiment is to study n value in character-level n- 2z
. = |2l 2 &b =~ = 2 b~ e S S S B S B <=
gram. In Table 1.9, we can find these are no significant £ |=|T|2 2 2 7 Z g% ygcanR T oo T 2g
. . N : Bl A o= = T L - - - B - - - B
difference between different n values. In our experiments, we 2 | 3|~
. - . - - -— wy . ~
use n = 6 because its performance is slightly better. In figure 7 to 2|zl g =22 EEFg e ey g
. = | 2 AR D v S S FE DM YE EEE RO
figure 9, we also compare our approaches ALL+CBR and s [Ef~T T T T R S S
ALL+DBR with past work of Hiew[4], Runeson et al. [S], and 2 | 2|32 2 2 3 3222288535522 2 8 9
Sureka et al. [6]. We can see that our approache have the better = |Z| & & 3 3 5§ & 8 8 & % 8¢ &2 2% 8¢
performance than others. lz2ezcs28ses38ss33832c¢
g s d 53385 %2%s sz @ ¢¢
Slesrm o5 2299938388888
H E 2 g ¥ ¥ D0 E ¥ EEFEEEE 4
-] o = = v e w vy W e b= b= b= b= b b=
e
E—ﬁlwvwcrﬁxgz:h':ﬂiftf

www ijsrp.org

SO STOG ST6 ST06 STO6 0806 | TTSL TTSL Tl 9 [FLL 60" | BETE £R'FE LOFR I8 [TFE 6t'eR 6l

Fe SL°68 0868 0468 0568 SL68 [(NNSL TTSL LO9CL TIOE 9990 6079 | OF I8 LoFs SIE8 STES [Ltd £8'FR ®l
OURE OC88 CO8R CL8E 088 0068 | €U°FL SOFL OO0CL LO6L LO6L HOL | FEO8 SI'E8 TOTE BUYTH CIed £8'FR Ll
O£ SR COME OFEE SO0 OCHE | 99°eL 9eL TIFL 0P L96E oR'SL | HE6L BCTH 0608 BYTE TOTE t¥FR G
KV E8 STL8 SOER OGLE ST ONER | AL ITEL 99EL SORL DOFSL L9°6L | S9RL TOTE F08 BYTH VT8 LTFR <l

==NLP+CN
“+NLP+WN
-+NLP+CN+CS
“-NLP+WN+CN
-+ALL DBR

~NLP+CS

Fos r9s 0598 0998 098 0898 | TETL POl ITEL TIFRL SorL OOSL | 608L (608 BL6l 918 (608 918 ¥l

COCH VSR VR OCCE CTCR CTCR [BEIL OITL SOIL ITEL IIFL SOFRL | ECLL BEGL 1T6L [06L 0608 9F IR £l
Fes FE SOFR O0FS OSER O0FFR | 8600 S6'0E 9008 SO IL 6600 [THEL | L6 (T8l 1T6L EVLL S¥EL 0608 ol
FER (KFER OOFER SLTH STTR SOI8 [60°0L aF0d o0'0E 1208 EF 1L BRI | BTSL €970 €900 (oML £900 SURL Il
N I8 05718 08718 SL08 ST 05760 | €589 L6089 S8R9 OT6% FSOL £F 1L | O9EL RTSL FR'GL FRGL L6690 6ORL 0l

Size of recommendation list
SVN combination

123456789I10111213141516171819202122

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014

ISSN 2250-3153

WWW.ijsrp.org

008 CL8L 6L SEBL UL OCLL | IFL9 €949 IFLY 0800 0T6D L8969 | 00CL $TCL TEFRL TLFL OFOL OF9L 6
CTOL STOL 0S9L 0S9L STOL SLGCL| 6T L9 6T99 9690 €4L9 DEH0 | 00EL TLFL TERL TLPL PHSL FPRCL El L
SOFL OOFL SEEL OSFL SUEL OOFL | 6TFY FREY 1SFY OFSY £9%% 9699 | SEIL GIFRL 9UFRL 9IFL TR 9IRL L
COTL FTL OOFEL ODOEL OSIL OSTIL | 1919 819 S6T9 TOEY ISFY 90F) | 6L0L (BEL £0EL LFTL £0PEL £0EL 9 I <
CORO 6D (NG9 (P9 089 CLHO | SIT6S SE6S LT09 1919 1919 €819 | SHO9 TTOL 6L0L 6LOL LFTL SEIL < B m
05H9 STHY CTHY OSFD CUE9 CTEY | 69FC HOCE 0096 1846 POURS CTO6 | FOFD LIC0 R6°7L9 FCRO 6004 0169 ¥ [_mv
CUOUE (EO8 CUOT 00 SO0 S8 | TR K0S TT0S 6808 6808 SO6F | FLOY LO900 ETY 9ETY TH'TH HEEY £ [
COLF OS'LF O EF OORF STHE OS8F | IFTF 61TF BOEF SOEF SOEF 60 1F | (005 69715 6915 6FFS £6'EC LEES T
COTE OSTE SUTE O (LS (0FEE | INET 1ML €TLT SEHD 18T 9097 | [LEE £RF HFE OURE 9 ROLE I
e L L T e L e L L e I e e L e L e I Ll I O e e R e R L S (O I 11143 Ia
(A1) que] pasey- awmaog] -y ey CASICHY JUE PosEy-Wamn 0= N N0 Sy CHEC PR poseg- uaWnaog -NAS X ® ¥ XL L XX L oz o
S T S) S S S S)
WIRE -1 | DAD-IDEIAYD UT SN[T AP IO (G = Y SN N TING T TV 100 asueuuopiad vonaopp g, (5L agel m >N o0 ~ o i =t o ™
aley |eoay
600L BO0L L¥6Y £SR9 £9D 96F O0FY9 | EFIL EFIL IE0L SU89 S8E9 W S6T9 81 Rt SUIR STO8 0%l SLD SUIR 0508 STSL SLSL SLUL SUL9 059 | 81

B 06l 05TL

W0 TF6D TF6Y OWLO IS 9P TYEY | DL0L R60L TF6Y IFL9 ELFY T STTY I SL08 00D | SU0R UOSL SUSL O0L ULy @ | Ll

SLEY £CE0 O BOED 9609 TOED S6T9 SHTY | IN69 LE6Y OEE9 TS PEE9 05T €819 | 9l 0o CLBL SELL UEOL TR 00EY | 0008 oL TR 0S99 Gw | 9l

GRS IFLY ROUR O EUSD TUTR SR ERIY | 0T6R L6WRD 619 OFSY LIEY 919 R <l LUTS SURE OF9L STRY 00D 08119 | O6L STRL DOSL SLTL SLW0 SO0 0 £l

9o99 TEYP SHED ISEY W19 919 F609 | 0EHY ECR9 R ELH TLTY 6RO | fI STRL O STHL 0OL OORL OOL9 SLIY 0S09 | O0RL STLL SCRL OOEL 00R9 0SH9 0ST9 | bl

B 96Fr EOF 6EEY BEI9 LT08 TRGS | TV IFLD SRS Y RTTY TE6E BN £l [LIFE FLL (KOL STIL 00D SL65 SLRS | OS9L SL6L STEL (KO0 £T99 £079 089 £l
GrEE S0FR G S0TH 6F R BEGC BFRC | RITGD TOO9 (LD TS FOUD SU6L YTRC Tl CL6L 06L SUFL £T6Y 06E) OC8C OO | (KSL OSFRL O00TL 089 O0C9 (8°1% 0R 7l
TLTY TLTH Se'TH LT0% £6'8C 6YLC STOC | 90D D0FD 6EED tRI9 0%FeL IR LT Il 0t SLTL 1L 0899 &T19 0070 089% | (0L STTL STOL 0989 009 &068 ST8¢ [

COTD L0TY ELRI9 0968 BFRY LF9C OUCE | GRT9 TUED S0E9 60 FINRS w98 tes 0ol SLOL 0S0L STRY 00F9 05768 009 STOS | IK0L SL69 SO SOEY SL09 SO s o

OO FO0% LTOR 9TRS RIS 60FS TOFS | 1919 S0T9 THGS E6RS TeUY 69FY e 1] (68 SO (889 0819 SOIS 05FS OSES | (089 0029 009 STT9 SL8S U9 SLF [}
SE6E BEGY BFRY LFOY OESL BOTS [0TS | TS TE6S HPRS 65IS OGS eTS WIS L] [LIE] SLTY O06S SLSE STTS 0508 | (059 0SF9 SLTO 0N 0898 KL 0TS $
0096 0096 R'SS FOFS EI°ES SFOS SY6F | THUY 6YLE HOSE TG GFTS SR RRHF L 1549 CU6S O0S CUEC 0Cek DURE | ST 9w SLC DEES TIC ek L
6P 16FS 6L OFTY RIS WRF O TELE | £USC DRSS FURC E1ES 6808 66'iF OF 9 A (] SLOW STES LU0 05U 009 | 0568 L8RS SIS SOF DS S8 STLF 9
e 0T 680 BL6F LULF 600G £OUF | OFTC 06TS 6LIS TT0S FERE O 6NSE PORE < 1A A VI S AT O05EF | 0895 009% ST 0518 006 SE% ST S
66°LF 66LF BROF OLCF ECEF 6TTIF IY6E | I6F BERF O FPRF O CFOF POTF ROIF SRTOF ¥ CLIS 0508 ey 089F CLOF | STIC SL0S O6F STRY 009F 0FF (0FF ¥
IFey IFTF FOIF LOIF P8t £8'9F oFst | t9tF BOEF WTF LO0IF 6T6t (KLY (9% £ LYAN A A S G YA OOLE | O0sF STSF SOtF SLTF 080F 00F TR t
6FSE oFSE LTSt FOSE 9TeE @6l Nt | BPE BEOE 9% 6FSE TRFE 8Pt HIeE T CUFE 00 0S ({383 [YA YR vy wree T
FFEC FFED ITED 66T BWIT ITIT 860T | Fec FFET 1IFC IUFD SSF0 BRET 99T I CITT TSIt O0S1T | SETT 0SET 00K O0FD 00FT 86T |
Wi=Y &0=-Y¥ L£0-Y S0-Y €0=Y ['0=Y 00—Y|0I=Y 60-%¥ L0=-Y S0-Y £€0-Y 1'0=Y o=y | quey DI=Y 60-% L0-% €0-% €0=X¥ 1'0-¢ 00-Y|01=Y 60-Y¥ £0-%¥ €0-Y% £0-Y 10-¥ ¥ | oy

CH S} uuey] paseg-aasn]y CHEICH uey paseg-uawmaxgy (D) ey pos

(A0 Uy pase-mawnaog

"o anjen v uaiagip o) 1afoad - pnedng a1 o aoue

aad uonatap g, | e "Gy urangen y uasagp o) pakod apoudy) jo 2wy T uorgaopp

N TINEL

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014
ISSN 2250-3153

100% 100%
90% 90%
80% 80%
o 10% 70%
5 60% ==NLP+CS ¢ 60%
2 500, ~~NLP+CN @
' ~NLP+WN B 50% :liuera

0, neson
40% =NLP+CN+CS ™ 4, .

0 Hiew

30% - “=-NLP+WN-+CN

~ALL_DBR 30% ~—ALL_CBR
20% T T T T e e e 1 +ALL_DBR

12345678 910111213141516171819202122 20% ‘ ‘ T ‘ ‘ ‘
Size of recommendation list 1 23 456 78 91011121314151617 1819202122

Figure 5: ArgoUML combination Size of recommendation list

100% - Figure 8: Detection performance with previous work for the

0 ArgoUML project

90% - 100% -
80% - 90%
70% 80% -
¢ 0
5 00% ~~NLP+CS g%
] 14 ——Surcka
L ==NLP+CN = 60%
50% § ’ -#-Runeson
— 14
40% - NLP=WN 0% 1 Hiew
-+=NLP+CN+CS 40% —ALL CBR
30% ~-NLP+WN+CN ’ / ~~ALL DBR
30%
20% T T T T T T _\’- T L\L_DBR ’ /
12345678 910111213141516171819202122 20% b b b t ‘ ‘ C C
Size of recommendation list 1234567 g 9f 10 11 13} :3 lytm 1516 17 18 19 20 21 22
Ze O recommendation [is
Figure 6: Apache combination Figure 9: Detection performance with previous work for
100% .

’ the Apache project
90% VI. CONCLUSION
80% -

Duplication detection is an important issue for software

» 0% = maintenance in recent years. In this study, we propose a

5600 detection scheme using n-gram features and the cluster shrink-

3 ® /_,,**—0’""‘/ age technique. From the empirical experiments on three open-

2 500, i ~+Sureka source software projects, the proposed scheme shows its
“*Runeson effectiveness in duplication detection.

40% - Hiew There are some advanced issues in this research direction.

) /‘ ~ALL (BR For example, the se- mantic relationships among bug reports can
30% g _ALL ppr De extracted to identify the bug reports with similar semantic
0% - meaning. The implicit domain knowledge may also help the

0 T T T T T T T T T T T

1

2345678910111213141516171819202122

Size of recommendation list
Figure 7: Detection performance with previous work for
the SVN project

duplication detection work. We believe that the discussion of
these issues can further promote the performance advance in the
duplication detection work.

REFERENCES
[1] John Anvik, Lyndon Hiew, and Gail C. Murphy, Coping with an Open Bug
Repository, in Proceedings of the 2005 OOPSLA workshop on Eclipse
technology eX-change (eclipse *05), 2005, pp. 35-39.
[2] John Anvik, Lyndon Hiew, and Gail C. Murphy, Who Should Fix this
Bug? in Proceedings of the 28th International Conference on Software

www ijsrp.org

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014

ISSN 2250-3153

(3]

(4]
[5]

[6]

[71

(8]

[9]

Engineering (ICSE’06).New York, NY, USA: ACM, 2006, pp. 361-370.
Yguarata Cerqueira Cavalcanti, Eduardo Santana de Almeida, Carlos
Eduardo Al- buquerque da Cunha, Daniel Lucrédio, and Silvio Romero
de Lemos Meira, An Initial Study on the Bug Report Duplication
Problem, in Proceedings of the 14th European Conference on Software
Maintenance and Reengineering, 2010, pp. 264-276

Lyndon Hiew, Assisted Detection of Duplicate Bug Reports, Master
Thesis, The University of British Columbia, May 2006.

Per Runeson, Magnus Alexandersson, and Oskar Nyholm, Detection of
Duplicate Defect Reports Using Natural Language Processing, in
Proceedings of the 29th International Conference on Software Engineering
(ICSE 2007), 2007, pp. 499-510.

Ashish Sureka and Pankaj Jalote, Detecting Duplicate Bug Report Using
Character N-Gram-based Features, in Proceedings of the 17th Asia
Pacific Software Engineering Conference, 2010, pp. 366-374

Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun, An
Approach to Detecting Duplicate Bug Reports using Natural Language
and Execution Information, in Proceedings of the 30th International
Conference on Software Engineering (ICSE *08).New York, NY, USA:
ACM, 2008, pp. 461-470.

Yguarat™ a Cerqueira Cavalcanti, Paulo Anselmo da Mota Silveira Neto,

Ed-uardo Santana de Almeida, Daniel Lucr” edio, Carlos Eduardo
Albuquerque da Cunha, and Silvio Romero de Lemos Meira, “One Step
More to Understand the Bug Report Duplication Problem,” in
Proceedings of the 24th Brazilian Symposium on Software Engineering
(SBES’10), 2010, pp- 148-157. [Online]. Auvailable:
http://dx.doi.org/10.1109/SBES.2010.12.

Nicholas Jalbert and Westley Weimer, “Automated Duplicate Detection for
Bug Tracking Systems,” in Proceedings of the 38th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2008), 2008, pp. 52-61.

AUTHORS

Phuc Nhan Minh - received the B.Sc in Information
Technology from the University of Natural Sciences- Ho Chi
Minh City, Viet Nam and M.Sc in Computer Science from
Yuan Ze University, Taiwan. He is now working in Tra Vinh

University, Viet Nam. Email: nhanminhphuc@tvu.edu.vn.

www ijsrp.org

http://dx.doi.org/10.1109/SBES.2010.12

