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   Abstract- Duplicate bug report describes problems for which 

there is already a report in a bug repository. For many open 

source projects, the number of duplicate reports represents a 

significant percentage of the repository, so automatic 

identification of duplicate reports are very important and need 

let’s avoid wasting time a triager spends in searching for 

duplicate bug reports of any incoming report. In this paper we 

want to present a novel approach which it can help better of 

duplicate bug report identification. The proposed approach has 

two novel features: firstly, use n-gram features for the task of 

duplicate bug report detection. Secondly, apply cluster shrinkage 

technique to improve the detection performance. We tested our 

approach on three popular open source projects:  Apache, Argo 

UML, and SVN. We have also conducted empirical studies. The 

experimental results show that the proposed scheme can 

effectively improve the detection performance compared with 

previous methods. 

 

   Index Terms- Bug Reports, Duplicate Bug Detection, N-gram 

feature, Bug Report Analysis, Cluster Shrinkage 

I. INTRODUCTION 

n software maintenance, discovering software abnormal 

behavior is an important process to avoid serious damages. 

Typically, these abnormal situations are collectively described in 

bug reports which are submitted to a bug report management 

system (BRMS) such as Bugzilla, Eclipse so on for further 

handling. After the bug reports are submitted, one or more 

triagers will be assigned to analyze them and then pass them to 

the appropriate programmers for bug fixing. As reported in 

recent literature [1, 4, 5, 6], an important concern of duplicate 

detection on bug reports in bug report handling has been 

addressed. The main reason behind this concern is that the 

percentage of duplicate bug reports can be significantly up to 

36% [1, 2, 5, 6], for example, the Eclipse dataset collected from 

October 2001 to August 2005 has 18,165 bug reports, and 20% 

of the reports are duplicate [1].The same paper also reports that 

30% of 2,013 reports in the Firefox dataset collected from May 

2003 to August 2005 are duplicate [1]. In 2006, Hiew reported 

that the duplicate reports in the Firefox repository could even 

reach 36% [4]. The significant number of the duplicate bug 

reports shows the importance of how to properly process them in 

the debugging and testing work. So, identifying duplicate bug 

reports play very important role. First, the analysis time for 

triaging bug reports can be highly reduced. Second, the 

information contained in duplicate bug reports may be very 

helpful in the debugging process because they provide more 

information on software abnormal operations that was not 

described in the first bug report (the master bug report). 

II. DUPLICATION DETECTION 

PROBLEM 

The duplication detection problem in explained as follows: 

As stated in [3, 8], the problem of duplication detection can be 

characterized by identifying two or more bug reports that 

describe the same software fault. In [5], the duplicates can be 

further classified into two classes: (1) the duplicate bug reports 

describe the same failure situation, and (2) the bug reports 

describe the different failures with the same source of the 

software fault. Since the second duplication type may involve 

different vocabulary for different bug reports, its detection 

cannot be effective by only exploring the textual information of 

the bug reports [5, 7]. In order to detect effectively the second 

type duplication requires program-specific information, such as 

execution traces in [7]. However, this may raise the privacy 

problem. Therefore, this research only focuses on detecting the 

first type of duplication which only considers the textual 

information of bug reports. 

I 
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Figure 1: An example of a duplicate bug report in ArgoUML 

project 

To detect the duplicate bug reports, the textual information 

contained in the bug reports must be first passed and extracted. A 

bug report generally consists of some Meta- information, a short 

summary, textual description, and some error messages. It may 

also have some comments from other reporters. Figure 1 is an 

example for the ArgoUML project. This bug report was 

submitted to a bug tracking system Tigris by A. M. Dearden. In 

the Description field, A. M. Dearden provided abundant 

information about an exception in ArgoUML execution. If the 

bug report is the original report for the software failure, it is 

called the master bug report (MBR). Otherwise, it will be labeled 

as duplicate after the triaging process. In Figure 1, this bug report 

# 174 is identified as a duplicate in the Resolution field. On the 

bottom of the figure, it can be seen that this bug report is a 

duplicate of bug report # 108. In this case, these two bug reports 

belong to the same report cluster (RC) in this paper. 

The duplication detection problem in this research is 

processed as follows. For a software project, the historical bug 

reports are first classified into n report clusters (RCs). Each RC 

has a master bug report (MBR). If an RC has more than one bug 

report, the bug reports in the RC have the duplicate relationships. 

For each incoming bug report BRx, the duplication detection is 

performed to generate a recommendation list that shows the 

likelihood order of BRx being a member of RCi. The duplication 

relationship is determined if one of the following conditions is 

satisfied: 

1. For a master report BRm, a bug report BRi has been 

resolved as duplicate with a reference to BRm in the bug tracking 

system, and the report status is closed. 

2. For two bug reports BRi and BRj, if they are marked as the 

duplicate of BRm, BRi is a duplicate of BRj, and vice versa.   

    3. If there is another bug report BRk that is marked as duplicate 

of BRi, BRk is also a duplicate of BRm. This property is called the 

transitivity. 

The rest of the paper is organized into four sections.  Section 

III gives a brief overview of related work. Section IV presents 

the proposed scheme in which n-gram features and cluster 

shrinkage are used to improve the performance of duplicate 

detection. In section V, the empirical study on different open-

source projects is elaborated to demonstrate the effectiveness of 

the proposed scheme. Finally, section VI concludes the paper. 

III. RELATED WORK 

This section presents the previous studies on the n-gram 

approach and the cluster shrinkage technique. 

In 2006, Hiew proposed an incremental clustering model 

using natural language processing (NLP) techniques to identify 

duplicate bug reports in his master thesis [4]. According to his 

report, the detection recall rate can achieve 20%-50% in four 

software projects when the recommendation list has 7 items 

(Eclipse: 20%, Fedora: 31%, Apache: 32%, and Firefox: 50%). 

In 2007, a study similar to Hiew´s work for Sony Ericsson 

software projects was reported in [5]. Compared with Hiew´s 

work the scheme proposed by Runeson, Alexandersson, and 

Nyholm show that using only basic NLP techniques can achieve 

comparable performance. In 2008, Jalbert and Weimer proposed 

a detection scheme in which they used a specific feature 

weighting equation and a graph cluster algorithm to improve the 

detection performance [9]. However, their scheme only performs 

up to 1% better than the work of [5].  

In 2010, Sureka and Jalote proposed an n-gram-based 

approach to detect duplicate bug reports [6]. However, the 

performance of their scheme still remains moderate from their 

experiments in which a 40.22% recall rate is achieved for the 

top-10 recommendations. The indifferent performance is mainly 

because their scheme uses character-level n-gram-based features 

that may contain a lot of noisy information for similarity 

computation. 

Based on the observations of the previous studies, we 

proposed a detection scheme based on the n-gram features and 

the cluster shrinkage technique. With the n-gram features, the 

proposed scheme effectively improves the classification power 

for duplication detection. With the assistance of cluster 

shrinkage, the divergence problem due to n-gram features is 

mitigated. 

IV. DUPLICATION DETECTION 

APPROACHES 

The proposed approaches use the NLP technique, N-gram, 

and the cluster Shrinkage technique. For a software project, the 

historical bug reports are classified into n report clusters (RCs). 

To form the clusters, we use the comments of bug reports to 

create a mapping file. In a cluster that has more than one bug 

report, we use the last bug report as the test data. In other words, 

the largest bug ID in each cluster is the incoming bug report. The 

other bug reports in the cluster are the historical data. In our 

observation on bug reports, we find they may have weak 

semantic similarity with other reports. The main reason is that 

the submitter may not described the bug in details just use 

different words to describe the same bug. In addition, there are 

many compound words. Therefore, n-gram is used to extract 

more information from these diversities. It can improve 

similarity identification between reports of the same RC. Then, 

we use the cluster shrinkage technique (CS) that can also 

improve the similarity identification by reweighting the features 

of bug reports. The proposed scheme has the following four basic 

processing steps: 

1. Feature extraction 

2. Feature reweighting 

3. Similarity calculation 

4. Recommendation generation 
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Figure 2: The processing flow 

1. Feature extraction 

1.1 Data Types 

We have two types of bug reports historical bug reports and 

incoming bug reports. The incoming bug report is a set that 

include the largest bug report ID in all clusters. In other word, it 

is collects the last bug report that be submitted in each cluster. 

The historical bug report is already in our bug repository. For 

each incoming bug report, the historical bug report set is the bug 

report that bug ID is smaller than incoming bug report. We will 

design the approaches in historical bug reports to help us find the 

duplicate bug report. 

1.2 Bug Report Cluster 

The information that is marked as a duplicate in bug reports 

helps to create a mapping file to form the report clusters (RCs). 

An example mapping file is shown is in Table 1.1. The number 

in Table 1.1 is the bug report ID and the sequence is sorted by 

the bug report ID. The smallest of cluster size is 2. In other word, 

the smallest of cluster combine by one incoming bug report and 

one duplicate. In our case study to see the Table 1.2, we can find 

the most of cluster size between 2 and 4. 

 

1.2 N-gram Feature Extraction 

We use the vector space model to represent bug reports. In 

this step, we use NLP and n-gram techniques to help us build bug 

report vector. The Word Vector Tool is a Java library that can 

help us to calculate vectors. In WVTool tool, we construct a bug 

report with three parts. First, we use NLP that can help us to 

extract the tokens of word. Second, we use character-level n-

gram that can help us to find the similarity between lexical words 

in detail that means is to find the common word between original 

word and his abbreviation. Third, we use word-level n-gram to 

find the sequence relationship between the words. It also can find 

the compound word. In section V, we will show the experiment 

results and discuss the parameter settings. 

Table 1.3 is an example SVN bug report that ID is 330. 

Table 1.4 is the vector after our pre-processing approaches. We 

can get more information from different tokenization and improve 

the performance. 

2. Feature reweighting 

We use the cluster shrinkage to help us find the semantics of 

bug report overlap. In this way, it will increase the member of 

cluster relationship by the threshold. The first, we have to find a 

center of cluster. The second, we shrink all of bug report to its 

center. 

1. Centroid of Clusters: the centroid, we use it to represent the 

cluster, is a center vector. Each cluster has a centroid that with all 

information in its cluster. We use the average vector that in a 

cluster to calculate centroid. Because the submitter does not 

always describe the bug in detail, it will make the similarity 

calculation inefficient. The reason is two duplicate bug reports 

with seldom same words and it will make to determine whether 
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they are duplicate bug report become difficult. So the centroid 

can help us increase similarity between duplicate bug reports, it 

have more words. 

Figure 3: Documents in each cluster are moved toward the 

cluster centroid c in cluster shrinkage 

2. Using Cluster Shrinkage: After we find the each centroid 

of cluster, we shrink all of bug report to its centroid of cluster. 

The symbol is a threshold. The symbol   represents a bug report 

vector. The symbol    means the new vector. 

For each cluster { 

           N is the number of bug reports in S  

                           Compute its centroid: 

                           C=
 

 
∑    

                            For each bug report       

                            { 

                                      =(1 -  )   +    

                                    Where  0        

                             } 

                      } 

3. Similarity Computation 

We follow the past research result that using cosine can get 

the better performance. We have two similarity calculations. One 

of the similarity calculations is document-based ranking and 

another is cluster-based ranking. In the document-based ranking, 

we compare the incoming bug report with all bug report in bug 

repository and sort by similarity calculation value to determine 

duplicate bug report. There is a problem in document-based 

ranking. It is inevitable that different submitter use different 

word to describe the bug. Although we use the cluster shrinkage 

technique to resolve this problem, it cannot be completely 

avoided. For example, a cluster has three bug reports, two bug 

reports use the word “bug” to describe and one bug report uses 

the word defect. The word “defect” will become a noise and the 

bug report will has low similarity. So, we use cluster-based 

ranking. In the cluster-based ranking, we re-calculate the cosine 

value before determining duplicate bug report. We average the 

cosine of members of cluster. Then we compare the incoming 

bug report with all bug report with new cosine value in bug 

repository and sort by similarity calculation value to determine 

duplicate bug report. This way can resolve the seldom bug 

reports in his cluster has low similarity. 

4. Top-N Recommendation 

We present the result like as previous work [4]. Using the 

top-n recommendation system can help user to find the duplicate 

bug reports. We list rank from 1 to 22 to and observe the 

performance in every rank. Then, we compare the top-N 

recommendation with past researches. In our approaches, we get 

the better performance than others. 

V. EXPERIMENTS 

In this section, we introduce our experimental environment 

and the experiments. The open-source data sets are considered in 

our empirical study. We use ArgoUML, SVN, and Apache. We 

also implement past research work for performance comparison. 

In the work of Runeson et al. [5], we only use the cosine 

similarity because it has the best performance in their study. 

1. Environment 

In the experimental environment, we have three open-source 

projects. The bug reports of ArgoUML and SVN are respectively 

collected from Tigris.org. The bug reports of Apache are 

collected from Bugzilla.org. ArgoUML is a leading open-source 

UML modeling tool which supports all standard UML diagrams. 

The source code of the ArgoUML project is developed in Java 

and can run on any Java platform. Apache is an open-source http 

server project. SVN is an open-source software project that 

performs version control. More descriptive statistics of Argo 

UML, Apache, and SVN can be found in Table 1.5. 

2. Experimental Setup 

In our scheme, we have three parameters. The first nc is the 

size of character-level n-gram (CN). The second nw is the word-

level n-gram length. Both nc and nw direct influence how many 

features are extracted. In our experiments, we find that nc and nw 

are 6 and 3 to have a slightly better performance among other 

values. The main reason is that on average the word length is 

between 5 and 6. The symbols CBR and DBR denote the cluster-

based ranking and document-based ranking. The third parameter 

is  . In the experiments,   =0.9 is used because it has the best 

performance. 

 

To evaluate the detection schemes, we use the recall rate 

metrics. The recall rate defined as the percentage of the 

duplicates that can correctly find the corresponding master bug 

reports in the top-n recommendations.  

             
     

      
                          (1)    

Equation (1) illustrates how to calculate the recall rate, where 

Ncorr is the number of duplicate reports that are correctly 

identified, and Ntotal is the total number of duplicate reports. 

3. Performance Study 

The performance evaluation is based on the duplicate bug 

report recommendation list. The recommendation list can help 
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software analysts to rapidly find the duplicate bug reports. From 

figure 4 to figure 9, the horizontal axis is the ranking size of the 

list and the vertical axis is the recall rate. The ranking size is 

equal to the recommendation list size. Because n-gram and 

Cluster Shrinkage have many parameter settings, different 

experiments have been conducted to study their influences.  

The first experiment is to study the   value in CS. In this 

experiment, we only use the simple NLP processing and CS. 

From Tables 1.6 to 1.8, we can find that CS performs well when   
= 0.9 and   =1.0. In the following experiments, we use   =0.9 

because its performance is slightly better than   =1.0 in three 

projects.  

The second experiment is to study the combinations of 

different approaches. From figure 4 to figure 6, NLP means the 

basic natural language processing, CN means character-level n-

gram, WN means word-level n-gram, CS means the cluster 

shrinkage technique, and ALL means the combination of all 

approaches. From these figures, we can find that ALL 

outperforms others.  

The third experiment is to study  n value in character-level n-

gram. In Table 1.9, we can find these are no significant 

difference between different n values. In our  experiments, we 

use n = 6 because its performance is slightly better. In figure 7 to 

figure 9, we also compare our approaches ALL+CBR and 

ALL+DBR with past work of Hiew[4], Runeson et al. [5], and 

Sureka et al. [6]. We can see that our approache have the better 

performance than others.  
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Figure 4: SVN combination 
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Figure 5: ArgoUML combination 

 

Figure 6: Apache combination 

 

               Figure 7: Detection performance with previous work for  

the  SVN project 

 

Figure 8: Detection performance with previous work for the 

ArgoUML project 

Figure 9: Detection performance with previous work for 

 the Apache project 

VI. CONCLUSION 

Duplication detection is an important issue for software 

maintenance in recent years. In this study, we propose a 

detection scheme using n-gram features and the cluster shrink-

age technique. From the empirical experiments on three open-

source software projects, the proposed scheme shows its 

effectiveness in duplication detection. 

      There are some advanced issues in this research direction. 

For example, the se- mantic relationships among bug reports can 

be extracted to identify the bug reports with similar semantic 

meaning. The implicit domain knowledge may also help the 

duplication detection work. We believe that the discussion of 

these issues can further promote the performance advance in the 

duplication detection work. 
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