
International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 1
ISSN 2250-3153

www.ijsrp.org

An Approach to Detecting Duplicate Bug Reports using

N-gram Features and Cluster Chrinkage Technique

Phuc Nhan Minh*

* Faculty of Engineering and Technology, Tra Vinh University, Viet Nam

 Abstract- Duplicate bug report describes problems for which

there is already a report in a bug repository. For many open

source projects, the number of duplicate reports represents a

significant percentage of the repository, so automatic

identification of duplicate reports are very important and need

let’s avoid wasting time a triager spends in searching for

duplicate bug reports of any incoming report. In this paper we

want to present a novel approach which it can help better of

duplicate bug report identification. The proposed approach has

two novel features: firstly, use n-gram features for the task of

duplicate bug report detection. Secondly, apply cluster shrinkage

technique to improve the detection performance. We tested our

approach on three popular open source projects: Apache, Argo

UML, and SVN. We have also conducted empirical studies. The

experimental results show that the proposed scheme can

effectively improve the detection performance compared with

previous methods.

 Index Terms- Bug Reports, Duplicate Bug Detection, N-gram

feature, Bug Report Analysis, Cluster Shrinkage

I. INTRODUCTION

n software maintenance, discovering software abnormal

behavior is an important process to avoid serious damages.

Typically, these abnormal situations are collectively described in

bug reports which are submitted to a bug report management

system (BRMS) such as Bugzilla, Eclipse so on for further

handling. After the bug reports are submitted, one or more

triagers will be assigned to analyze them and then pass them to

the appropriate programmers for bug fixing. As reported in

recent literature [1, 4, 5, 6], an important concern of duplicate

detection on bug reports in bug report handling has been

addressed. The main reason behind this concern is that the

percentage of duplicate bug reports can be significantly up to

36% [1, 2, 5, 6], for example, the Eclipse dataset collected from

October 2001 to August 2005 has 18,165 bug reports, and 20%

of the reports are duplicate [1].The same paper also reports that

30% of 2,013 reports in the Firefox dataset collected from May

2003 to August 2005 are duplicate [1]. In 2006, Hiew reported

that the duplicate reports in the Firefox repository could even

reach 36% [4]. The significant number of the duplicate bug

reports shows the importance of how to properly process them in

the debugging and testing work. So, identifying duplicate bug

reports play very important role. First, the analysis time for

triaging bug reports can be highly reduced. Second, the

information contained in duplicate bug reports may be very

helpful in the debugging process because they provide more

information on software abnormal operations that was not

described in the first bug report (the master bug report).

II. DUPLICATION DETECTION

PROBLEM

The duplication detection problem in explained as follows:

As stated in [3, 8], the problem of duplication detection can be

characterized by identifying two or more bug reports that

describe the same software fault. In [5], the duplicates can be

further classified into two classes: (1) the duplicate bug reports

describe the same failure situation, and (2) the bug reports

describe the different failures with the same source of the

software fault. Since the second duplication type may involve

different vocabulary for different bug reports, its detection

cannot be effective by only exploring the textual information of

the bug reports [5, 7]. In order to detect effectively the second

type duplication requires program-specific information, such as

execution traces in [7]. However, this may raise the privacy

problem. Therefore, this research only focuses on detecting the

first type of duplication which only considers the textual

information of bug reports.

I

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 2

ISSN 2250-3153

www.ijsrp.org

Figure 1: An example of a duplicate bug report in ArgoUML

project

To detect the duplicate bug reports, the textual information

contained in the bug reports must be first passed and extracted. A

bug report generally consists of some Meta- information, a short

summary, textual description, and some error messages. It may

also have some comments from other reporters. Figure 1 is an

example for the ArgoUML project. This bug report was

submitted to a bug tracking system Tigris by A. M. Dearden. In

the Description field, A. M. Dearden provided abundant

information about an exception in ArgoUML execution. If the

bug report is the original report for the software failure, it is

called the master bug report (MBR). Otherwise, it will be labeled

as duplicate after the triaging process. In Figure 1, this bug report

174 is identified as a duplicate in the Resolution field. On the

bottom of the figure, it can be seen that this bug report is a

duplicate of bug report # 108. In this case, these two bug reports

belong to the same report cluster (RC) in this paper.

The duplication detection problem in this research is

processed as follows. For a software project, the historical bug

reports are first classified into n report clusters (RCs). Each RC

has a master bug report (MBR). If an RC has more than one bug

report, the bug reports in the RC have the duplicate relationships.

For each incoming bug report BRx, the duplication detection is

performed to generate a recommendation list that shows the

likelihood order of BRx being a member of RCi. The duplication

relationship is determined if one of the following conditions is

satisfied:

1. For a master report BRm, a bug report BRi has been

resolved as duplicate with a reference to BRm in the bug tracking

system, and the report status is closed.

2. For two bug reports BRi and BRj, if they are marked as the

duplicate of BRm, BRi is a duplicate of BRj, and vice versa.

 3. If there is another bug report BRk that is marked as duplicate

of BRi, BRk is also a duplicate of BRm. This property is called the

transitivity.

The rest of the paper is organized into four sections. Section

III gives a brief overview of related work. Section IV presents

the proposed scheme in which n-gram features and cluster

shrinkage are used to improve the performance of duplicate

detection. In section V, the empirical study on different open-

source projects is elaborated to demonstrate the effectiveness of

the proposed scheme. Finally, section VI concludes the paper.

III. RELATED WORK

This section presents the previous studies on the n-gram

approach and the cluster shrinkage technique.

In 2006, Hiew proposed an incremental clustering model

using natural language processing (NLP) techniques to identify

duplicate bug reports in his master thesis [4]. According to his

report, the detection recall rate can achieve 20%-50% in four

software projects when the recommendation list has 7 items

(Eclipse: 20%, Fedora: 31%, Apache: 32%, and Firefox: 50%).

In 2007, a study similar to Hiew´s work for Sony Ericsson

software projects was reported in [5]. Compared with Hiew´s

work the scheme proposed by Runeson, Alexandersson, and

Nyholm show that using only basic NLP techniques can achieve

comparable performance. In 2008, Jalbert and Weimer proposed

a detection scheme in which they used a specific feature

weighting equation and a graph cluster algorithm to improve the

detection performance [9]. However, their scheme only performs

up to 1% better than the work of [5].

In 2010, Sureka and Jalote proposed an n-gram-based

approach to detect duplicate bug reports [6]. However, the

performance of their scheme still remains moderate from their

experiments in which a 40.22% recall rate is achieved for the

top-10 recommendations. The indifferent performance is mainly

because their scheme uses character-level n-gram-based features

that may contain a lot of noisy information for similarity

computation.

Based on the observations of the previous studies, we

proposed a detection scheme based on the n-gram features and

the cluster shrinkage technique. With the n-gram features, the

proposed scheme effectively improves the classification power

for duplication detection. With the assistance of cluster

shrinkage, the divergence problem due to n-gram features is

mitigated.

IV. DUPLICATION DETECTION

APPROACHES

The proposed approaches use the NLP technique, N-gram,

and the cluster Shrinkage technique. For a software project, the

historical bug reports are classified into n report clusters (RCs).

To form the clusters, we use the comments of bug reports to

create a mapping file. In a cluster that has more than one bug

report, we use the last bug report as the test data. In other words,

the largest bug ID in each cluster is the incoming bug report. The

other bug reports in the cluster are the historical data. In our

observation on bug reports, we find they may have weak

semantic similarity with other reports. The main reason is that

the submitter may not described the bug in details just use

different words to describe the same bug. In addition, there are

many compound words. Therefore, n-gram is used to extract

more information from these diversities. It can improve

similarity identification between reports of the same RC. Then,

we use the cluster shrinkage technique (CS) that can also

improve the similarity identification by reweighting the features

of bug reports. The proposed scheme has the following four basic

processing steps:

1. Feature extraction

2. Feature reweighting

3. Similarity calculation

4. Recommendation generation

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 3

ISSN 2250-3153

www.ijsrp.org

Figure 2: The processing flow

1. Feature extraction

1.1 Data Types

We have two types of bug reports historical bug reports and

incoming bug reports. The incoming bug report is a set that

include the largest bug report ID in all clusters. In other word, it

is collects the last bug report that be submitted in each cluster.

The historical bug report is already in our bug repository. For

each incoming bug report, the historical bug report set is the bug

report that bug ID is smaller than incoming bug report. We will

design the approaches in historical bug reports to help us find the

duplicate bug report.

1.2 Bug Report Cluster

The information that is marked as a duplicate in bug reports

helps to create a mapping file to form the report clusters (RCs).

An example mapping file is shown is in Table 1.1. The number

in Table 1.1 is the bug report ID and the sequence is sorted by

the bug report ID. The smallest of cluster size is 2. In other word,

the smallest of cluster combine by one incoming bug report and

one duplicate. In our case study to see the Table 1.2, we can find

the most of cluster size between 2 and 4.

1.2 N-gram Feature Extraction

We use the vector space model to represent bug reports. In

this step, we use NLP and n-gram techniques to help us build bug

report vector. The Word Vector Tool is a Java library that can

help us to calculate vectors. In WVTool tool, we construct a bug

report with three parts. First, we use NLP that can help us to

extract the tokens of word. Second, we use character-level n-

gram that can help us to find the similarity between lexical words

in detail that means is to find the common word between original

word and his abbreviation. Third, we use word-level n-gram to

find the sequence relationship between the words. It also can find

the compound word. In section V, we will show the experiment

results and discuss the parameter settings.

Table 1.3 is an example SVN bug report that ID is 330.

Table 1.4 is the vector after our pre-processing approaches. We

can get more information from different tokenization and improve

the performance.

2. Feature reweighting

We use the cluster shrinkage to help us find the semantics of

bug report overlap. In this way, it will increase the member of

cluster relationship by the threshold. The first, we have to find a

center of cluster. The second, we shrink all of bug report to its

center.

1. Centroid of Clusters: the centroid, we use it to represent the

cluster, is a center vector. Each cluster has a centroid that with all

information in its cluster. We use the average vector that in a

cluster to calculate centroid. Because the submitter does not

always describe the bug in detail, it will make the similarity

calculation inefficient. The reason is two duplicate bug reports

with seldom same words and it will make to determine whether

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 4

ISSN 2250-3153

www.ijsrp.org

they are duplicate bug report become difficult. So the centroid

can help us increase similarity between duplicate bug reports, it

have more words.

Figure 3: Documents in each cluster are moved toward the

cluster centroid c in cluster shrinkage

2. Using Cluster Shrinkage: After we find the each centroid

of cluster, we shrink all of bug report to its centroid of cluster.

The symbol is a threshold. The symbol represents a bug report

vector. The symbol means the new vector.

For each cluster {

 N is the number of bug reports in S

 Compute its centroid:

 C=

∑

 For each bug report

 {

 =(1 -) +

 Where 0

 }

 }

3. Similarity Computation

We follow the past research result that using cosine can get

the better performance. We have two similarity calculations. One

of the similarity calculations is document-based ranking and

another is cluster-based ranking. In the document-based ranking,

we compare the incoming bug report with all bug report in bug

repository and sort by similarity calculation value to determine

duplicate bug report. There is a problem in document-based

ranking. It is inevitable that different submitter use different

word to describe the bug. Although we use the cluster shrinkage

technique to resolve this problem, it cannot be completely

avoided. For example, a cluster has three bug reports, two bug

reports use the word “bug” to describe and one bug report uses

the word defect. The word “defect” will become a noise and the

bug report will has low similarity. So, we use cluster-based

ranking. In the cluster-based ranking, we re-calculate the cosine

value before determining duplicate bug report. We average the

cosine of members of cluster. Then we compare the incoming

bug report with all bug report with new cosine value in bug

repository and sort by similarity calculation value to determine

duplicate bug report. This way can resolve the seldom bug

reports in his cluster has low similarity.

4. Top-N Recommendation

We present the result like as previous work [4]. Using the

top-n recommendation system can help user to find the duplicate

bug reports. We list rank from 1 to 22 to and observe the

performance in every rank. Then, we compare the top-N

recommendation with past researches. In our approaches, we get

the better performance than others.

V. EXPERIMENTS

In this section, we introduce our experimental environment

and the experiments. The open-source data sets are considered in

our empirical study. We use ArgoUML, SVN, and Apache. We

also implement past research work for performance comparison.

In the work of Runeson et al. [5], we only use the cosine

similarity because it has the best performance in their study.

1. Environment

In the experimental environment, we have three open-source

projects. The bug reports of ArgoUML and SVN are respectively

collected from Tigris.org. The bug reports of Apache are

collected from Bugzilla.org. ArgoUML is a leading open-source

UML modeling tool which supports all standard UML diagrams.

The source code of the ArgoUML project is developed in Java

and can run on any Java platform. Apache is an open-source http

server project. SVN is an open-source software project that

performs version control. More descriptive statistics of Argo

UML, Apache, and SVN can be found in Table 1.5.

2. Experimental Setup

In our scheme, we have three parameters. The first nc is the

size of character-level n-gram (CN). The second nw is the word-

level n-gram length. Both nc and nw direct influence how many

features are extracted. In our experiments, we find that nc and nw

are 6 and 3 to have a slightly better performance among other

values. The main reason is that on average the word length is

between 5 and 6. The symbols CBR and DBR denote the cluster-

based ranking and document-based ranking. The third parameter

is . In the experiments, =0.9 is used because it has the best

performance.

To evaluate the detection schemes, we use the recall rate

metrics. The recall rate defined as the percentage of the

duplicates that can correctly find the corresponding master bug

reports in the top-n recommendations.

 (1)

Equation (1) illustrates how to calculate the recall rate, where

Ncorr is the number of duplicate reports that are correctly

identified, and Ntotal is the total number of duplicate reports.

3. Performance Study

The performance evaluation is based on the duplicate bug

report recommendation list. The recommendation list can help

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 5

ISSN 2250-3153

www.ijsrp.org

software analysts to rapidly find the duplicate bug reports. From

figure 4 to figure 9, the horizontal axis is the ranking size of the

list and the vertical axis is the recall rate. The ranking size is

equal to the recommendation list size. Because n-gram and

Cluster Shrinkage have many parameter settings, different

experiments have been conducted to study their influences.

The first experiment is to study the value in CS. In this

experiment, we only use the simple NLP processing and CS.

From Tables 1.6 to 1.8, we can find that CS performs well when
= 0.9 and =1.0. In the following experiments, we use =0.9

because its performance is slightly better than =1.0 in three

projects.

The second experiment is to study the combinations of

different approaches. From figure 4 to figure 6, NLP means the

basic natural language processing, CN means character-level n-

gram, WN means word-level n-gram, CS means the cluster

shrinkage technique, and ALL means the combination of all

approaches. From these figures, we can find that ALL

outperforms others.

The third experiment is to study n value in character-level n-

gram. In Table 1.9, we can find these are no significant

difference between different n values. In our experiments, we

use n = 6 because its performance is slightly better. In figure 7 to

figure 9, we also compare our approaches ALL+CBR and

ALL+DBR with past work of Hiew[4], Runeson et al. [5], and

Sureka et al. [6]. We can see that our approache have the better

performance than others.

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 6

ISSN 2250-3153

www.ijsrp.org

Figure 4: SVN combination

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 7

ISSN 2250-3153

www.ijsrp.org

Figure 5: ArgoUML combination

Figure 6: Apache combination

 Figure 7: Detection performance with previous work for

the SVN project

Figure 8: Detection performance with previous work for the

ArgoUML project

Figure 9: Detection performance with previous work for

 the Apache project

VI. CONCLUSION

Duplication detection is an important issue for software

maintenance in recent years. In this study, we propose a

detection scheme using n-gram features and the cluster shrink-

age technique. From the empirical experiments on three open-

source software projects, the proposed scheme shows its

effectiveness in duplication detection.

 There are some advanced issues in this research direction.

For example, the se- mantic relationships among bug reports can

be extracted to identify the bug reports with similar semantic

meaning. The implicit domain knowledge may also help the

duplication detection work. We believe that the discussion of

these issues can further promote the performance advance in the

duplication detection work.

REFERENCES
[1] John Anvik, Lyndon Hiew, and Gail C. Murphy, Coping with an Open Bug

Repository, in Proceedings of the 2005 OOPSLA workshop on Eclipse

technology eX-change (eclipse ’05), 2005, pp. 35–39.

[2] John Anvik, Lyndon Hiew, and Gail C. Murphy, Who Should Fix this
Bug? in Proceedings of the 28th International Conference on Software

International Journal of Scientific and Research Publications, Volume 4, Issue 5, May 2014 8

ISSN 2250-3153

www.ijsrp.org

Engineering (ICSE’06).New York, NY, USA: ACM, 2006, pp. 361–370.

 [3] Yguaratã Cerqueira Cavalcanti, Eduardo Santana de Almeida, Carlos
Eduardo Al- buquerque da Cunha, Daniel Lucrédio, and Silvio Romero

de Lemos Meira, An Initial Study on the Bug Report Duplication

Problem, in Proceedings of the 14th European Conference on Software
Maintenance and Reengineering, 2010, pp. 264–276

 [4] Lyndon Hiew, Assisted Detection of Duplicate Bug Reports, Master

Thesis, The University of British Columbia, May 2006.
 [5] Per Runeson, Magnus Alexandersson, and Oskar Nyholm, Detection of

Duplicate Defect Reports Using Natural Language Processing, in

Proceedings of the 29th International Conference on Software Engineering
(ICSE 2007), 2007, pp. 499–510.

 [6] Ashish Sureka and Pankaj Jalote, Detecting Duplicate Bug Report Using

Character N-Gram-based Features, in Proceedings of the 17th Asia
Pacific Software Engineering Conference, 2010, pp. 366–374

 [7] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun, An

Approach to Detecting Duplicate Bug Reports using Natural Language
and Execution Information, in Proceedings of the 30th International

Conference on Software Engineering (ICSE ’08).New York, NY, USA:

ACM, 2008, pp. 461–470.
 [8] Yguarat˜ a Cerqueira Cavalcanti, Paulo Anselmo da Mota Silveira Neto,

Ed-uardo Santana de Almeida, Daniel Lucr´ edio, Carlos Eduardo

Albuquerque da Cunha, and Silvio Romero de Lemos Meira, “One Step
More to Understand the Bug Report Duplication Problem,” in

Proceedings of the 24th Brazilian Symposium on Software Engineering

(SBES’10), 2010, pp. 148–157. [Online]. Available:
http://dx.doi.org/10.1109/SBES.2010.12.

 [9] Nicholas Jalbert and Westley Weimer, “Automated Duplicate Detection for
Bug Tracking Systems,” in Proceedings of the 38th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN

2008), 2008, pp. 52–61.

AUTHORS

Phuc Nhan Minh - received the B.Sc in Information

Technology from the University of Natural Sciences- Ho Chi

Minh City, Viet Nam and M.Sc in Computer Science from

Yuan Ze University, Taiwan. He is now working in Tra Vinh

University, Viet Nam. Email: nhanminhphuc@tvu.edu.vn.

http://dx.doi.org/10.1109/SBES.2010.12

