On $\pi g(\alpha g)^*$ – continuous maps and $\pi g(\alpha g)^*$ - irresolute maps in Topological Spaces

R.Savithiri1, A.Manonmani2, M.Anandhi3

$^1, ^2, ^3$ Department of Mathematics, L.R.G. Govt. Arts college(w), Tirupur, Tamil Nadu, India.

1 savi3_141@yahoo.com

2 manonmani_velu@yahoo.com

3 rravichandran1996@gmail.com

DOI: 10.29322/IJSRP.10.04.2020.p10094
http://dx.doi.org/10.29322/IJSRP.10.04.2020.p10094

Abstract: In this paper, we have introduced the concept of continuous, irresolute and homeomorphism maps of $\pi g(\alpha g)^*$ closed set. Some of the fundamental properties of this set are studied. And their application also given namely, $\pi g(\alpha g)^*$ – $T_{1/2}$ – space.

Keywords: $\pi g(\alpha g)^*$- closed set, $\pi g(\alpha g)^*$- continuous map, $\pi g(\alpha g)^*$- irresolute map, $\pi g(\alpha g)^*$ – $T_{1/2}$ – space

1. Introduction

Levine[5] introduced the class of g-closed sets, a super class of closed sets in 1970. Dontchev and Noiri [19] have introduced the concept of πg-closed sets and studied their most fundamental properties in topological spaces. Also, Ekici and Noiri [21] have introduced a generalization of πg-closed sets and πg-open sets. Recently, a new class of $\pi g(\alpha g)^*$-closed sets in topological spaces introduced and studied by R.Savithiri, A.Manonmani and M.Anandhi [29]. In this paper, we have made a study on $\pi g(\alpha g)^*$- continuous map, $\pi g(\alpha g)^*$- irresolute map and $\pi g(\alpha g)^*$-homeomorphism. Also, Applications of $\pi g(\alpha g)^*$-closed sets are analyzed.

2. Preliminaries

For a subset H of a space (X,τ), $cl(H)$ and $int(H)$ denote the closure and the interior of H respectively. The class of all closed subsets of a space (X,τ) is denoted by $C(X,\tau)$. The smallest closed (resp. α-closed) set containing a subset H of (X,τ) is called the closure (resp. α-closure) of H and is denoted by $cl(H)$ (resp. $\alpha cl(H)$).

Definition 2.1: 1) A π open set [21] of X is a finite union of all r-open sets in (X,τ).

2) A subset H of a space X is called α-generalized closed (briefly αg-closed) [13] if $\alpha cl(H) \subseteq U$ whenever $H \subseteq U$ and U is open in X.

3) A subset H of a space X is called π-generalized closed set $\pi g(\alpha g)^*$-closed set [29] (briefly $\pi g(\alpha g)^*$- closed set) if $\pi cl(H) \subseteq U$, whenever $H \subseteq U$ and U is π open in X.
Remark 2.2:

\(g^{(ag)} \)-closed set is independent with the following closed sets: gp-closed set, rg-closed set, s-closed set, wg-closed set, w\(\pi g \)-closed set, b*-closed set, b-closed set, gs-closed set, gb-closed set and \(\pi gp \)-closed set.

3. On \(\pi (ag)^* \)-continuous map.

Definition 3.1:

A map \(\theta: (X, \tau_1) \rightarrow (Y, \tau_2) \) is called

1) continuous[5] if the inverse image of every closed set of \((Y, \tau_2)\) is a closed set of \((X, \tau_1)\).
2) \(g \)-continuous[5] if the inverse image of every closed set of \((Y, \tau_2)\) is \(g \)-closed set of \((X, \tau_1)\).
3) \(g \)-continuous[4] if the inverse image of every closed set of \((Y, \tau_2)\) is \(g \)-closed set of \((X, \tau_1)\).
4) \(ag \)-continuous[13] if the inverse image of every closed set of \((Y, \tau_2)\) is \(ag \)-closed set of \((X, \tau_1)\).
5) \(ga \)-continuous[13] if the inverse image of every closed set of \((Y, \tau_2)\) is \(ga \)-closed set of \((X, \tau_1)\).
6) \(\pi g \)-continuous[21] if the inverse image of every closed set of \((Y, \tau_2)\) is \(\pi g \)-closed set of \((X, \tau_1)\).
7) \(\pi ga \)-continuous [25] if the inverse image of every closed set of \((Y, \tau_2)\) is \(\pi ga \)-closed of \((X, \tau_1)\).
8) s-continuous [6] if the inverse image of every closed set of \((Y, \tau_2)\) is s- closed set of \((X, \tau_1)\).
9) gp-continuous[23] if the inverse image of every closed set of \((Y, \tau_2)\) is gp- closed set of \((X, \tau_1)\).
10) rg-continuous[28] if the inverse image of every closed set of \((Y, \tau_2)\) is rg- closed set of \((X, \tau_1)\).
11) wg-continuous[15] if the inverse image of every closed set of \((Y, \tau_2)\) is wg- closed set of \((X, \tau_1)\).
12) w\(\pi g \)-continuous[15] if the inverse image of every closed set of \((Y, \tau_2)\) is w\(\pi g \)-closed of \((X, \tau_1)\).
13) b*-continuous[26] if the inverse image of every closed set of \((Y, \tau_2)\) is b*-closed set of \((X, \tau_1)\).
14) b-continuous[16] if the inverse image of every closed set of \((Y, \tau_2)\) is b- closed set of \((X, \tau_1)\).
15) gs-continuous[29] if the inverse image of every closed set of \((Y, \tau_2)\) is gs- closed set of \((X, \tau_1)\).
16) gb-continuous[27] if the inverse image of every closed set of \((Y, \tau_2)\) is gb-closed set of \((X, \tau_1)\).
17) \(\pi gp \)-continuous[24] if the inverse image of every closed set of \((Y, \tau_2)\) is \(\pi gp \)-closed of \((X, \tau_1)\).
18) \(\alpha \)-continuous [11] if the inverse image of every closed set of \((Y, \tau_2)\) is \(\alpha \)-closed set of \((X, \tau_1)\).

Definition 3.2:

A map \(\theta: (X, \tau_1) \rightarrow (Y, \tau_2) \) is called a \(\pi (ag)^* \)-continuous if the inverse image of every closed set of \((Y, \tau_2)\) is \(\pi (ag)^* \)-closed set of \((X, \tau_1)\).

Theorem 3.3:

Every continuous map, \(g \)-continuous map, \(\alpha \)-continuous map and \(ag \)-continuous map is \(\pi (ag)^* \)-continuous.

Proof:

(i) Take \(\theta: (X, \tau_1) \rightarrow (Y, \tau_2) \) be continuous map. Let \(W \) be closed set of \((Y, \tau_2)\) then inverse image of \(W \) is closed of \((X, \tau_1)\). Inverse image of \(W \) is \(\pi (ag)^* \)-closed of \((X, \tau_1)\), since closed \(\rightarrow \pi (ag)^* \)-closed. Hence \(\theta \) is \(\pi (ag)^* \)-continuous of \((X, \tau_1)\).

(ii) Take \(\theta: (X, \tau_1) \rightarrow (Y, \tau_2) \) be \(g \)-continuous map. Let \(W \) be closed set of \((Y, \tau_2)\) then inverse image of \(W \) is \(g \)-closed of \((X, \tau_1)\). Inverse image of \(W \) is \(\pi (ag)^* \)-closed of \((X, \tau_1)\), since \(g \)-closed \(\rightarrow \pi (ag)^* \)-closed. Hence \(\theta \) is \(\pi (ag)^* \)-continuous of \((X, \tau_1)\).

(iii) Take \(\theta: (X, \tau_1) \rightarrow (Y, \tau_2) \) be \(\alpha \)-continuous map. Let \(W \) be closed set of \((Y, \tau_2)\) then inverse image of \(W \) is \(\alpha \)-closed of \((X, \tau_1)\). Inverse image of \(W \) is \(\pi (ag)^* \)-closed of \((X, \tau_1)\), since \(\alpha \)-closed \(\rightarrow \pi (ag)^* \)-closed. Hence \(\theta \) is \(\pi (ag)^* \)-continuous of \((X, \tau_1)\).

(iv) Take \(\theta: (X, \tau_1) \rightarrow (Y, \tau_2) \) be \(ag \)-continuous map. Let \(W \) be closed set of \((Y, \tau_2)\) then inverse image of \(W \) is \(ag \)-closed of \((X, \tau_1)\). Inverse image of \(W \) is \(\pi (ag)^* \)-closed of \((X, \tau_1)\), inverse image of \(W \) is \(\pi (ag)^* \)-closed. Hence \(\theta \) is \(\pi (ag)^* \)-continuous of \((X, \tau_1)\).
since \(\alpha g\)-closed \(\rightarrow\) \(\pi g(\alpha g)^*\) -closed . Hence \(\theta\) is \(\pi g(\alpha g)^*\) -continuous of \((X, \tau_1)\).

The converse of the above theorem need not be true from the following example.

Example 3.4:

Take \(X = Y = \{a, b, c\}\) and \(\tau_1 = \{X, \emptyset, \{a\}\}\), \(\tau_2 = \{Y, \emptyset, \{a\}\}\). Define \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2)\) as \(\theta(a) = a\), \(\theta(b) = b\), \(\theta(c) = c\). Here inverse image of all \(\tau^c\) are \(\pi g(\alpha g)^*\) -closed of \((X, \tau_1)\) but not closed, \(g\)-closed, \(\alpha\)-closed and \(\alpha g\)-closed of \((X, \tau_1)\). This implies converse not true.

Theorem 3.5:

Every \(g\) -continuous map and \(g\alpha\)-continuous map is \(\pi g(\alpha g)^*\) -continuous.

Proof:

(i) Take \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2)\) be \(g\) -continuous map. Let \(W\) be closed set of \((Y, \tau_2)\) then inverse image of \(W\) is \(g\) -closed of \((X, \tau_1)\). Inverse image of \(W\) is \(\pi g(\alpha g)^*\) -closed of \((X, \tau_1)\), since \(g\) -closed \(\rightarrow\) \(\pi g(\alpha g)^*\) -closed . Hence \(\theta\) is \(\pi g(\alpha g)^*\) -continuous of \((X, \tau_1)\).

(ii) Take \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2)\) be \(g\alpha\)-continuous map. Let \(W\) be closed set of \((Y, \tau_2)\) then inverse image of \(W\) is \(g\alpha\)-closed of \((X, \tau_1)\). Inverse image of \(W\) is \(\pi g(\alpha g)^*\) -closed of \((X, \tau_1)\), since \(g\alpha\)-closed \(\rightarrow\) \(\pi g(\alpha g)^*\) -closed . Hence \(\theta\) is \(\pi g(\alpha g)^*\) -continuous of \((X, \tau_1)\).

The converse of the above theorem need not be true from the following example.

Example 3.6:

Take \(X = Y = \{a, b, c\}\) and \(\tau_1 = \{X, \emptyset, \{c\}\}, \tau_2 = \{Y, \emptyset, \{b\}\}\). Define \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2)\) as \(\theta(a) = a\), \(\theta(b) = b\), \(\theta(c) = c\). Here inverse image of all \(\tau^c\) are \(\pi g(\alpha g)^*\) -closed of \((X, \tau_1)\) but not \(g\alpha\)-closed and \(g\) -closed of \((X, \tau_1)\). This implies converse not true.

Theorem 3.7:

Every \(\pi g\)-continuous map is \(\pi g(\alpha g)^*\) -continuous.

Proof:

Take \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2)\) be \(\pi g\)-continuous map. Let \(W\) be closed set of \((Y, \tau_2)\) then inverse image of \(W\) is \(\pi g\)-closed of \((X, \tau_1)\). Inverse image of \(W\) is \(\pi g(\alpha g)^*\) -closed of \((X, \tau_1)\), since \(\pi g\)-closed \(\rightarrow\) \(\pi g(\alpha g)^*\) -closed . Hence \(\theta\) is \(\pi g(\alpha g)^*\) -continuous of \((X, \tau_1)\).

The converse of the above theorem need not be true from the following example.

Example 3.8:

Take \(X = Y = \{a, b, c, d\}\) and \(\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{Y, \emptyset, \{a\}, \{b\}\}\). Define \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2)\) as \(\theta(a) = a\), \(\theta(b) = b\), \(\theta(c) = c\), \(\theta(d) = d\). Here inverse image of all \(\tau^c\) are \(\pi g(\alpha g)^*\) -closed of \((X, \tau_1)\) but not \(\pi g\) -closed of \((X, \tau_1)\). This implies converse not true.

Theorem 3.9:

Every \(\pi g\alpha\)-continuous map is \(\pi g(\alpha g)^*\) -continuous but not converse.

Proof:

Take \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2)\) be \(\pi g\alpha\)-continuous map. Let \(W\) be closed set of \((Y, \tau_2)\) then inverse image of \(W\) is \(\pi g\alpha\)-closed of \((X, \tau_1)\). Inverse image of \(W\) is \(\pi g(\alpha g)^*\) -closed of \((X, \tau_1)\), since \(\pi g\alpha\)-closed \(\rightarrow\) \(\pi g(\alpha g)^*\) -closed . Hence \(\theta\) is \(\pi g(\alpha g)^*\) -continuous of \((X, \tau_1)\).

Remark 3.10:

The composition of two \(\pi g(\alpha g)^*\)-continuous map is need not be a \(\pi g(\alpha g)^*\)-continuous map.

Example 3.11

Take \(X = Y = Z = \{a, b, c\}\) and \(\tau_1 = \{X, \emptyset, \{a\}, \{b\}\}, \tau_2 = \{X, \emptyset, \{a\}, \{b\}\}\) and \(\tau_3 = \{Y, \emptyset, \{a\}, \{b\}\}\). Define \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2)\) and \(h : (Y, \tau_2) \rightarrow (Z, \tau_3)\) be an identity maps. Let \(\theta\) and \(h\) be a \(\pi g(\alpha g)^*\)-continuous maps . But \((h \circ \theta)^{-1}(\{a\}) = \theta^{-1}((h^{-1}(\{a\}))=\{a\}\) is not \(\pi g(\alpha g)^*\)-closed of \((X, \tau_1)\). Hence \(\theta\) is not \(\pi g(\alpha g)^*\)-continuous.

Theorem 3.12:

A map \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2)\) is \(\pi g(\alpha g)^*\)-continuous and \(h : (Y, \tau_2) \rightarrow (Z, \tau_3)\) is continuous , then \(h \circ \theta : (X, \tau_1) \rightarrow (Z, \tau_3)\) is \(\pi g(\alpha g)^*\)-continuous.

Proof:

Take \(W\) be any closed set in \((Z, \tau_3)\) and.so \(h^{-1}(W)\) of \(W\) is closed of \((Y, \tau_2)\). Since \(h\) is continuous. \((h \circ \theta)^{-1}(W) = h^{-1}(W)\) is \(\pi g(\alpha g)^*\)-closed of \((X, \tau_1)\). Since \(h \circ \theta\) is \(\pi g(\alpha g)^*\)-continuous . Hence \(h \circ \theta\) is \(\pi g(\alpha g)^*\)-continuous.

Theorem 3.13:

A map \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2)\) is \(\pi g(\alpha g)^*\)-continuous if and only if inverse image of every open set in
(Y, τ₂) is πg(ag)*-open set in (X, τ₁).

Proof:

Take θ : (X, τ₁) → (Y, τ₂) be πg(ag)*-continuous map and W be open set in (Y, τ₂) then W is closed in (Y, τ₂). Inverse image of W is πg(ag)* -closed of (X, τ₁) since θ is πg(ag)*-continuous . But θ⁻¹(W⁻) = (θ⁻¹(W))². Hence inverse image of W is πg(ag)*-open of (X, τ₁).

Conversely, Assume, For every open set W of (Y, τ₂), inverse image of W is πg(ag)*-open of (X, τ₁). If W of (Y, τ₂) be a closed set, then W⁻ is closed set of (Y, τ₂) be a open set. By assumption , inverse image of W⁻ is πg(ag)*-open set of (X, τ₁). But θ⁻¹(W⁻) = (θ⁻¹(W))². Hence inverse image of W is πg(ag)*-closed set of (X, τ₁). This implies θ is πg(ag)*-continuous

Diagram-I

```
  a-continuous
     |
   g-continuous
     |
  gα-continuous
     |
  πgα-continuous
```

4. On πg(ag)*-open map.

Definition 4.1:

A map θ : (X, τ₁) → (Y, τ₂) is called a πg(ag)*-open map if the image of every open set of (X, τ₁) is πg(ag)*-open set of (Y, τ₂).

Theorem 4.2:

Every open map, g-open map, gα-open map, πg-open map, and gα-open map is πg(ag)*-open map.

Proof:

Follows from the fact that “Every open set, g-open set, gα-open set, πg-open set, and gα-open set is πg(ag)*-open set”.

The converse of the above theorem need not be true from the following example.

Example 4.3:

Take X = Y = {a,b,c} and τ₁ = {X,Φ, {a},{b,c}}, τ₂ = {Y,Φ, {a}}. Define θ : (X, τ₁) → (Y, τ₂) as θ(a) = a, θ(b) = b, θ(c) = c. Here W = {b,c} be a be open set of (X, τ₁) . But image of W is πg(ag)*-open set of (Y, τ₂) but not open set, g-open set, α-open set, gα-open set of (Y, τ₂) . This implies converse of above theorem not true.

5. On πg(ag)*-irresolve map.

Definition 5.1:

A map θ : (X, τ₁) → (Y, τ₂) is called a πg(ag)*-irresolve if the inverse image of every πg(ag)*-closed set of (Y, τ₂) is πg(ag)*-closed set of (X, τ₁).

Theorem 5.2:

Every πg(ag)*-irresolve map is πg(ag)*-continuous map.

Proof:

Take a map θ : (X, τ₁) → (Y, τ₂) be πg(ag)*-irresolve map. Let W be closed set of (Y, τ₂) then W be a πg(ag)*-closed set of (Y, τ₂), since closed → πg(ag)*-closed. But inverse image of W is πg(ag)*-closed of (X, τ₁). Hence θ is πg(ag)*-continuous.

The converse of the above theorem need not be true from the following example.

Example 5.3:

Take X = Y = {a,b,c} and τ₁ = {X,Φ, {a},{b,c}}, τ₂ = {Y,Φ, {a}}. Define θ : (X, τ₁) → (Y, τ₂) as θ(a) = a, θ(b) = b, θ(c) = c, θ(d) = d. Here inverse image of all τ₂⁻ are of πg(ag)*-closed of (X, τ₁) so θ is πg(ag)*-continuous. But inverse image of all πg(ag)*-closed of (X, τ₁) are not πg(ag)*-closed of (Y, τ₂) are not πg(ag)*-irresolve map.

Theorem 5.4:

A map θ : (X, τ₁) → (Y, τ₂) is πg(ag)*-irresolve and h : (Y, τ₂) → (Z, τ₃) is πg(ag)*-continuous , then h o θ : (X, τ₁) → (Z, τ₃) is πg(ag)*-continuous.

Proof:

Take W be any closed set of (Z, τ₃) and so h⁻¹ of W is πg(ag)*-closed of (Y, τ₂). Since h is πg(ag)*-continuous. (h o θ)⁻¹(W) = θ⁻¹ (h⁻¹(W)) is πg(ag)*-closed of (X, τ₁). Since θ is πg(ag)*-irresolve. Hence h o θ is πg(ag)*-continuous.

Theorem 5.5:
A map \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2) \) is \(\pi g(\alpha g)^* \)-irresolute and h : (Y, \tau_2) \rightarrow (Z, \tau_3) is \(\pi g(\alpha g)^* \)-irresolute , then h o \(\theta : (X, \tau_1) \rightarrow (Z, \tau_3) \) is \(\pi g(\alpha g)^* \)-irresolute.

Proof:

Take W be any \(\pi g(\alpha g)^* \)-closed set of (Z, \tau_3) and so \(h^{-1}(W) \) is \(\pi g(\alpha g)^* \)-closed of (Y, \tau_2), Since h is \(\pi g(\alpha g)^* \)-irresolute. (h o \(\theta \))\(^{-1}\)(W) is \(\pi g(\alpha g)^* \)-closed of (X, \tau_1). Since \(\theta \) is \(\pi g(\alpha g)^* \)-irresolute. Hence h o \(\theta \) is \(\pi g(\alpha g)^* \)-irresolute.

Theorem 5.6:

A map \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2) \) is \(\pi g(\alpha g)^* \)-irresolute if and only if inverse image of every \(\pi g(\alpha g)^* \)-open set in (Y, \tau_2) is \(\pi g(\alpha g)^* \)-open set in (X, \tau_1).

Proof:

Similar to Theorem 3.13.

6. On \(\pi g(\alpha g)^* \)-homeomorphisms.

Definition 6.1:

A bijective map \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2) \) is called a \(\pi g(\alpha g)^* \)-homeomorphism if a map is both \(\pi g(\alpha g)^* \)-continuous and \(\pi g(\alpha g)^* \)-open.

Remark 6.2:

For a bijective map \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2) \), the following statement are equivalent:

(i) \(\theta^{-1} \) is \(\pi g(\alpha g)^* \)-continuous , (ii) \(\theta \) is \(\pi g(\alpha g)^* \)-open ,

(iii) \(\theta \) is \(\pi g(\alpha g)^* \)-closed .

Theorem 6.3:

Every homeomorphism is a \(\pi g(\alpha g)^* \)-homeomorphism.

Proof:

Follows from the fact that “Every continuous map is \(\pi g(\alpha g)^* \)-continuous map and Every open map is \(\pi g(\alpha g)^* \)-open map”.

The converse of the above theorem need not be true from the following example.

Example 6.4:

Take X = Y= \{a,b,c\} and \(\tau_1 = \{X,\Phi,\{a\},\{b\},\{a,b\}\} \), \(\tau_2 = \{Y,\Phi,\{a\},\{a,b\}\} \).

Define \(\theta : (X, \tau_1) \rightarrow (Y, \tau_2) \) as bijective map. Now \(\theta \) is \(\pi g(\alpha g)^* \)-homeomorphism but not a homeomorphism. Since \(\theta (\{b\}) = \{b\} \) is not in open set of (Y, \tau_2).

Remark 6.5:

The composition of two \(\pi g(\alpha g)^* \)-homeomorphism map is need not be a \(\pi g(\alpha g)^* \)-homeomorphism map.

7. Applications of \(\pi g(\alpha g)^* \)-closed set.

Definition 7.1:

1) A topological space (X,\(\tau \)) is called \(T_{1/2} \) - space [5] if every g-closed in (X,\(\tau \)) is closed in (X,\(\tau \)).

2) A topological space (X,\(\tau \)) is called \(T_b \) - space [14] if every g\(s \)-closed in (X,\(\tau \)) is closed in (X,\(\tau \)).

3) A topological space (X,\(\tau \)) is called \(T_b \)-space[17] if every \(\pi g(\alpha g) \)-closed in (X,\(\tau \)) is closed in (X,\(\tau \)).

Definition 7.2:

A topological space (X, \(\tau \)) is called \(\pi g(\alpha g)^* \)-\(T_{1/2} \) - space if every \(\pi g(\alpha g)^* \)-closed set of (X, \(\tau \)) is closed of (X, \(\tau \)).

Theorem 7.3:

Every \(\pi g(\alpha g)^* \)-\(T_{1/2} \) - space is a \(T_{1/2} \) - space.

Proof:

Assume that (X, \(\tau \)) is a \(\pi g(\alpha g)^* \)-\(T_{1/2} \) - space. Let H be a g-closed set. But every g-closed set is a \(\pi g(\alpha g)^* \)-closed set. By assumption, (X, \(\tau \)) is a \(T_{1/2} \) - space.

Theorem 7.4:

Every \(\pi g(\alpha g)^* \)-\(T_{1/2} \) - space is a \(T_b \) - space.

Proof:

Assume that (X, \(\tau \)) is a \(\pi g(\alpha g)^* \)-\(T_{1/2} \) - space. Let H be a a\(g \)-closed set. But every a\(g \)-closed set is an \(\pi g(\alpha g)^* \)-closed set. By assumption, (X, \(\tau \)) is a \(T_b \) - space.

Remark 7.5:

\(\pi g(\alpha g)^* \)-\(T_{1/2} \) - space and \(T_b \) - space are independent spaces.

Theorem 7.6:
A space \((X, \tau)\) is a \(\pi g(\alpha g)^* -T_{1/2}\) space if and only if every singleton of \(X\) is either \(\pi\)-closed set or \(\alpha g\) –open.

Proof:

Assume that \((X, \tau)\) is a \(\pi g(\alpha g)^* -T_{1/2}\) space. Let \(y\) be an element in \(X\) and \(\{y\}\) is not in \(\pi\)-closed, then \(X\)-\(\{y\}\) is not in \(\pi\)-open and then \(X\)-\(\{y\}\) is \(\pi g(\alpha g)^*\) –closed. By assumption , \(X\)-\(\{y\}\) is \(\alpha g\)-closed. Hence \(\{y\}\) is \(\alpha g\)-open. The converse is similar.

Theorem 7.7:

A map \(\theta : (X, \tau_1) \to (Y, \tau_2)\) and \(h : (Y, \tau_2) \to (Z, \tau_3)\) be two maps and if \(\theta\) is \(\alpha g\)-irresolute and \(h\) is a \(\pi g(\alpha g)^*\) –continuous and \(Y\) is a \(\pi g(\alpha g)^* -T_{1/2}\) – space, then \(h \circ \theta : (X, \tau_1) \to (Z, \tau_3)\) is \(\alpha g\)-continuous.

Proof:

Take \(W\) be any closed set in \((Z, \tau_1)\). Here \((Y, \tau_2)\) is a \(\pi g(\alpha g)^* -T_{1/2}\) – space and \(h^{-1}\) of \(W\) is \(\pi g(\alpha g)^*\)-closed of \((Y, \tau_2)\). Since \(h\) is \(\pi g(\alpha g)^*\)-continuous. But \((h \circ \theta)^{-1}(W) = \theta^{-1}(h^{-1}(W))\) is \(\alpha g\)-closed \((X, \tau_1)\), Since \(\theta\) is \(\alpha g\)- irresolute. Hence \(h \circ \theta\) is \(\alpha g\)-continuous.

References

http://dx.doi.org/10.29322/IJSRP.10.04.2020.p10094
www.ijsrp.org

