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Abstract- This paper model and forecast monthly exchange rates of US Dollar to Sri Lankan Rupee using Constant Elasticity of 
Variance (CEV) Model. In this study, five models are formulated considering five elasticity factors 0, 1

2� , 1, 3
2� and 2. Monthly 

exchange rates from January, 1995 to December, 2016 were obtained from the official website of Central Bank of Sri Lanka. Among 
this data, 254 observations were used to estimate the parameters and other 10 observations were used to test the validity of the models. 
To estimate the parameters, maximum likelihood estimation method is used and the exchange rates are generated using Euler- 
Maruyama method. The Monte Carlo technique is used for simulation and the accuracy of the forecasts is compared with Root Mean 
Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). The model which has the minimum RMSE and MAPE is 
chosen as the best model to predict the monthly exchange rate of LKR/USD. 
 
Index Terms- Constant Elasticity of Variance Model, Maximum likelihood estimation, Monte Carlo technique, Euler- Maruyama 
method, Exchange rate 
 
 
 
INTRODUCTION 
Most countries use their own currencies as a medium of exchange, similar to the Rupee in Sri Lanka and the Dollar in the United 
States. Whenever a country with its own unique currency has to make payments to other countries which have different currencies, it 
has to exchange its currency with other currencies at a given rate of exchange. The rate at which one currency may be exchanged 
against another is called “the exchange rate”. The exchange rate is formally defined as the number of units of one currency that can be 
exchanged for a unit of another [3]. Exchange rate is very important in financial market, because it determines the level of imports and 
exports. Hence modeling and forecasting exchange rate is most important for the people who are doing international businesses to 
minimize the risk.  

 
There are two pure approaches to forecast foreign exchange rates, fundamental and technical approach. The fundamental approach is 
based on a wide range of data regarded as fundamental economic variables that determine exchange rates. The technical approach 
focuses on a smaller subset of the available data. In general, it is based on price information. The analysis is "technical" in the sense 
that it does not rely on a fundamental analysis of the underlying economic determinants of exchange rates or asset prices, but only on 
extrapolations of past price trends. Technical analysis looks for the repetition of specific price patterns. Generally, econometric 
models, time series models or a combination of both methods are used to forecast the exchange rate. 

 
 

Stochastic differential equation (SDE) models can be used in many fields of science especially in finance. Black-Scholes model is the 
famous model among them. The constant elasticity of variance (CEV) model is a diffusion model with the instantaneous volatility 
specified to be a power function of the underlying spot price.  

 
In this research, LKR/USD exchange rate is modeled using the CEV model and forecast the exchange rate using that model.  Five 
elasticity factors 0, 1

2�  ,1, 3
2�  and 2 were considered and the best model is selected from these five models. Monthly exchange rates 

from January, 1995 to December, 2016 were obtained from the official website of Central bank of Sri Lanka. Among these data, 254 
observations are used to estimate the parameters and other 10 observations are used to test the validity of the model. Maximum 
likelihood estimation method is used to estimate the parameters and. to approximate the solution of the SDE, Euler- Maruyama 
method is used. The Monte Carlo technique is used for simulation purpose and the accuracy of the forecasts is compared with Root 
Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE).  
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I. LITERATURE REVIEW 
In literature, many studies were carried out to model and forecast the exchange rate. Booth and Glassman (1987), compared the 
exchange rate forecasting models considering forecast accuracy and profitability. Tenti (1996), proposed the use of recurrent neural 
networks to forecast foreign exchange rates. Nabni et al. (1996), described how modern machine learning techniques can be used in 
conjunction with statistical methods to forecast short term movements in exchange rates. Vinod and Samantha (1997), applied eight 
SDE models to exchange rate dynamics and evaluated the best model. They used three estimation methods, generalized method of 
moments (GMM), small sigma asymptotic estimating function (SSA-EF) and numerical conditional variance (NCV) method. Soofi 
and Cao (1999), performed out-of-sample predictions on daily Peseta–Dollar spot exchange rates using a simple nonlinear 
deterministic technique of local linear predictor. Gencay (1999), investigated the predictability of spot foreign exchange rate returns 
from past buy-sell signals of the simple technical trading rules by using the nearest neighbors and the feed forward network 
regressions.   
 
Majhi, Panda and Sahoo (2009), developed two novel ANN models, functional link artificial neural network (FLANN) and cascaded 
functional link artificial neural network (CFLANN) involving nonlinear inputs and simple ANN structure with one or two neurons. 
Rime, Sarno and Sojli (2010) examined the linkages between exchange rate movements, order flow and expectations of 
macroeconomic variables. Jalil and Fleriden (2010) explained the exchange rate movements in the Pakistan foreign exchange market 
using the market micro structure approach. Simpson and Grossman (2010) used a relative purchasing power parity (PPP) model to 
construct a time-varying equilibrium exchange rates.  
 
Abdorrahman et al. (2011), developed three decision making models to maximize profit of trades during a specific period and 
forecasted the direction of exchange rate over a specific period on the basis of values of indicators in previous time period. Pacelli 
(2012) analyzed and compared different mathematical models such as artificial neural networks, ARCH and GARCH models. Irena 
and Andrius (2013) discussed the advantages and drawbacks of the main fundamental exchange rate forecasting models. Yuan (2013), 
presented the polynomial smooth support vector machine (PSSVM) learning model. Minakhi et al. (2014), proposed a hybrid 
prediction model by combining an adaptive autoregressive moving average (ARMA) architecture and differential evolution (DE) 
based training of its feed-forward and feed-back parameters.  Mehreen et al. (2014), explored Neuro- evolution and evaluated for its 
application in devising prediction models for foreign currency exchange rates. Tlegenova (2015), modeled yearly exchange rates 
between USD/KZT, EUR/KZT and SGD/KZT, and compared the actual data with developed forecasts using time series analysis over 
the period from 2006 to 2014. Urrutia et al. (2015), formulated a mathematical model to forecast exchange rate of the Philippines from 
the 1st Quarter of 2015 up to the 4th Quarter of 2020 using Autoregressive integrated Moving Average (ARIMA). 

II. THE METHODOLOGY 
The monthly exchange rate of LKR/USD for the period from January, 1995 to December, 2016 is represented in Figure 1. It can be 
observed that there is an upward trend of monthly exchange rate of LKR/USD in this period.  

 

 
 

Figure 1: Monthly Exchange Rates of LKR/USD from January, 1995 to December, 2016 
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The diffusion process of 𝑋(𝑡) at time 𝑡 in a CEV model can be expressed as, 

𝑑𝑋(𝑡) = 𝜇𝑋(𝑡)𝑑𝑡 + 𝜎�𝑋(𝑡)�
𝛽
2� 𝑑𝑊(𝑡)    0 ≤ 𝛽 < 2  (1) 

where 𝑋(𝑡) is the exchange rate at month 𝑡,  𝜇𝑋(𝑡) is the drift coefficient, 𝜎�𝑋(𝑡)�
𝛽
2� is the diffusion coefficient, 𝑊(𝑡) is a Weiner 

process and 𝛽 is the elasticity factor. If 𝛽 = 2, the CEV model returns to the conventional Black–Scholes model in which the variance 
rate is independent of the stock price. If  𝛽 = 0, it is the Ornstein–Uhlenbeck model.  
The solution of the equation (3.1) can be approximated using Euler-Maruyama method and it is given by, 

𝑋(𝑡) = 𝑋(𝑡 − 1) + 𝜇𝑋(𝑡 − 1)∆𝑡 + 𝜎𝑋(𝑡 − 1)
𝛽
2� (𝑊(𝑡) −𝑊(𝑡 − 1))  (2) 

 

In this research, five cases of 𝛽 were considered. They are 0, 1
2

, 1, 3
2
 and 2. First of all, the parameters of the equation (1) must be 

calculated.  For this purpose, maximum likelihood estimation method [1] is used.  
 
Let 𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑁 are observed values of 𝑋(𝑡) at the respective uniformly distributed times 𝑡𝑖  = 𝑖𝛥𝑡 for 𝑖 =  0, 1, . . . ,𝑁 where, 
 𝛥𝑡 =  𝑇/𝑁. Let 𝑝(𝑡𝑘, 𝑥𝑘|𝑡𝑘−1, 𝑥𝑘−1;  𝜃) be the transition probability density of (𝑡𝑘, 𝑥𝑘) starting from (𝑡𝑘−1, 𝑥𝑘−1) given the vector 𝜃. 
Suppose that the density of the initial state is  𝑝0(𝑥0|𝜃). 
 
In maximum likelihood estimation of 𝜃, the joint density 

𝐷(𝜃) = 𝑝0(𝑥0|𝜃)�𝑝(𝑡𝑘, 𝑥𝑘|𝑡𝑘−1, 𝑥𝑘−1;  𝜃) 
𝑁

𝑘=1

 

is maximized over 𝜃 ∈ ℝ𝑚  . It is more convenient to minimize the function 
𝐿(𝜃)  =  −𝑙𝑛 (𝐷(𝜃)) 

which has the form 
 

𝐿(𝜃) = − ln�𝑝0(𝑥0|𝜃)� −� ln�𝑝(𝑡𝑘, 𝑥𝑘|𝑡𝑘−1, 𝑥𝑘−1;  𝜃)�
𝑁

𝑘=1

 

One difficulty in finding the optimal value 𝜃∗ is that the transition densities are not generally known. However, by considering the 
Euler approximation and letting 𝑋(𝑡𝑘−1) =  𝑥𝑘−1 at 𝑡 = 𝑡𝑘−1  

𝑋(𝑡𝑘)  ≈  𝑥𝑘−1  +  𝜇𝑥𝑘−1𝛥𝑡 +  𝜎𝑥𝑘−1
𝛽
2� √𝛥𝑡 𝜂𝑘 

where 𝜂𝑘~𝑁(0,𝛥𝑡). 
This implies that 

𝑝(𝑡𝑘, 𝑥𝑘|𝑡𝑘−1, 𝑥𝑘−1;  𝜃) =
1

�2𝜋𝜎𝑘2
𝑒𝑥𝑝�

−(𝑥𝑘 − 𝜇𝑘)2

2𝜎𝑘2
� 

where  𝜇𝑘 =  𝑥𝑘−1  +  𝜇𝑥𝑘−1𝛥𝑡  and  𝜎𝑘  = 𝜎𝑥𝑘−1
𝛽
2� √𝛥𝑡.  

 
This transition density can be substituted into the expression for 𝐿(𝜃) which can subsequently be minimized over ℝ𝑚.   
Then, the parameters 𝜇̂ and 𝜎� can be calculated using the equations: 

 

𝜇̂ =
∑ (𝑥𝑘+1−𝑥𝑘)

𝑥𝑘𝛽−1
𝑁
𝑘=0

∆𝑡 ∑ 𝑥𝑘2−𝛽𝑁
𝑘=0

 

and 

𝜎� = �∑ 𝑥𝑘+1 �𝑥𝑘−
𝛽
2� − (1 + 𝜇∆𝑡)𝑥𝑘1−

𝛽
2� �

2
𝑁
𝑘=0

∆𝑡
 

for 0 ≤ 𝛽 < 2. 
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After estimating parameters, sample paths for the exchange rates can be generated for each value of 𝛽. To simulate these sample 
paths, Monte Carlo method is used. Monte Carlo means using random numbers as a tool to compute something that is not random. It 
can be used to solve any problem having a probabilistic interpretation. By the law of large numbers, integrals described by the 
expected value of some random variable can be approximated by taking the empirical mean of independent samples of the variable. 
 
As an example, let 𝑋 be a random variable and write its expected value as 𝐴 = 𝐸(𝑋). If we can generate  𝑋1,𝑋2, … ,𝑋𝑛 , 𝑛 independent 
random variables with the same distribution, then we can make the approximation, 

𝐴𝑛� =
1
𝑛
�𝑋𝑖

𝑛

𝑖=1

. 

By law of large numbers, 𝐴𝑛� → 𝐴 as 𝑛 → ∞. 𝑋𝑖 and 𝐴𝑛�  are random and could be different each time we run the program. Still, the 
target number 𝐴 is not random. 
In this research work, forecasting is an important task. According to the five CEV models which are considered, future exchange rates 
can be forecasted using Monte Carlo simulation. Finally, the accuracy of forecasting is calculated using two methods, root mean 
square error (RMSE) and mean absolute percentage error (MAPE). The equations are given by, 
 

𝑅𝑀𝑆𝐸 = ��
(𝑥𝑖 − 𝑥𝚤�)2

𝑚

𝑚

𝑖=1

 

and 

𝑀𝐴𝑃𝐸 = �
�∑ �𝑥𝑖−𝑥𝚤�

𝑥𝑖
�𝑚

𝑖=1 �
𝑚
� � × 100 

where 𝑥𝑖 is the observed value, 𝑥𝚤�  is the forecasted value  at time 𝑡 = 𝑖 and 𝑚 is the number of observations. Minimum value of these 
values indicate the best model. 

 
III. RESULTS AND FINDINGS 

In this research, five CEV models are considered. According to the value of elasticity factor(𝛽), parameter estimations of each CEV 
model is given in the Table I. To estimate the parameters, 254 observations are used. 
 

Table I: Estimated Parameter Values for Five CEV Models 
 
Elasticity factor (𝛽) 𝜇̂ 𝜎� 

0 0.0417 61.7786 

1
2�  0.0435 19.1334 

1 0.0456 5.9481 

3
2�  0.0481 1.8568 

2 0.0508 0.5822 

 
By substituting the values of the Table I to the equation (2), Euler-Maruyama approximations of each model can be obtained. Then, by 
taking the initial value as the exchange rate of January, 1995 more sample paths can be generated. From Figure 2 to Figure 6 represent 
five sample paths for each CEV model.  
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Figure 2: Five Sample Paths for the CEV Model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟒𝟏𝟕𝑿(𝒕)𝒅𝒕 + 𝟔𝟏.𝟕𝟕𝟖𝟔𝒅𝑾(𝒕) 

 

 

Figure 3: Five Sample Paths for the CEV Model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟒𝟑𝟓𝑿(𝒕)𝒅𝒕 + 𝟏𝟗.𝟏𝟑𝟑𝟒�𝑿(𝒕)�
𝟏
𝟒� 𝒅𝑾(𝒕) 
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Figure 4: Five Sample Paths for the CEV Model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟒𝟓𝟔𝑿(𝒕)𝒅𝒕 + 𝟓.𝟗𝟒𝟖𝟏�𝑿(𝒕)�
𝟏
𝟐� 𝒅𝑾(𝒕) 

 

IV.  

Figure 5: Five Sample Paths for the CEV Model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟒𝟖𝟏𝑿(𝒕)𝒅𝒕 + 𝟏.𝟖𝟓𝟔𝟖�𝑿(𝒕)�
𝟑
𝟒� 𝒅𝑾(𝒕) 
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Figure 6: Five Sample Paths for the CEV Model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟓𝟎𝟖𝑿(𝒕)𝒅𝒕 + 𝟎.𝟓𝟖𝟐𝟐𝑿(𝒕)𝒅𝑾(𝒕) 

In this study, LKR/USD monthly exchange rates for nine months are forecasted by considering the initial value as 143.9594 Rs/$ 
which is the exchange rate of March, 2016.  
 
The generated monthly exchange rates of a time point is different to one sample path to another. Hence by generating one sample path, 
a fixed value for the exchange rate cannot be obtained. Because of that, Monte- Carlo simulation is used to obtain the convergent 
monthly exchange rate. Figure 7 to Figure 11 illustrate the convergence of exchange rate when the large number of sample paths are 
generated. 
 

 
 

Figure 7: Convergence of Exchange Rate on April, 2016 for the model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟒𝟓𝟔𝑿(𝒕)𝒅𝒕 + 𝟓.𝟗𝟒𝟖𝟏�𝑿(𝒕)�
𝟏
𝟐� 𝒅𝑾(𝒕) 
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Figure 8: Convergence of Exchange Rate on April, 2016 for the model 

𝒅𝑿(𝒕) = 𝟎.𝟎𝟒𝟑𝟓𝑿(𝒕)𝒅𝒕 + 𝟏𝟗.𝟏𝟑𝟑𝟒�𝑿(𝒕)�
𝟏
𝟒� 𝒅𝑾(𝒕) 

 

 

 
Figure 9: Convergence of Exchange Rate on April, 2016 for the model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟒𝟓𝟔𝑿(𝒕)𝒅𝒕 + 𝟓.𝟗𝟒𝟖𝟏�𝑿(𝒕)�

𝟏
𝟐� 𝒅𝑾(𝒕) 
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Figure 10: Convergence of Exchange Rate on April, 2016 for the model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟒𝟖𝟏𝑿(𝒕)𝒅𝒕 + 𝟏.𝟖𝟓𝟔𝟖�𝑿(𝒕)�

𝟑
𝟒� 𝒅𝑾(𝒕) 

 
 

 
 

Figure 11: Convergence of Exchange Rate on April, 2016 for the model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟓𝟎𝟖𝑿(𝒕)𝒅𝒕 + 𝟎.𝟓𝟖𝟐𝟐𝑿(𝒕)𝒅𝑾(𝒕 
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By generating 200000 sample paths and taking the average of each point forecasted exchange rates are obtained. Table II represents 
the actual exchange rates and forecasted values for each model from April, 2016 to December, 2016. 
 

Table II: Actual and Forecasted LKR/USD Exchange Rates from April, 2016 to December, 2016 
 

Month Actual 𝜷 = 𝟎 𝜷 = 𝟏/𝟐 𝜷 = 𝟏 𝜷 = 𝟑/𝟐 𝜷 = 𝟐 
03/2016 143.9594 143.9594 143.9594 143.9594 143.9594 143.9594 
04/2016 143.9001   144.4051 144.5337   144.5532   144.4990   144.4974 
05/2016 145.6502 144.8608 145.0134 145.0565 145.0581 145.0748 
06/2016 145.2836 145.3562   145.5455   145.5918   145.6683   145.7518 
07/2016 145.4070   145.8443   146.0579   146.1818   146.2689   146.3140 
08/2016 145.6010 146.3502   146.5258   146.7334   146.8723   146.8614 
09/2016 145.7849   146.8095   147.0654   147.2083   147.4450   147.3881 
10/2016 146.8723   147.3390   147.6002   147.7664   148.0006   148.0006   
11/2016 147.7710   147.9532   148.1652   148.2576   148.6318 148.6318 
12/2016 148.8820   148.5570   148.7373   148.8140   149.1268   149.2442 

 
Graphically, The Actual and forecasted exchange rates for each model can be compared as follows: 
 

 
Figure 12: Actual Rates and Forecasted Rates for the CEV Model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟒𝟏𝟕𝑿(𝒕)𝒅𝒕 + 𝟔𝟏.𝟕𝟕𝟖𝟔𝒅𝑾(𝒕) 
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Figure 13: Actual Rates and Forecasted Rates for the CEV Model 
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Figure 14: Actual Rates and Forecasted Rates for the CEV Model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟒𝟓𝟔𝑿(𝒕)𝒅𝒕 + 𝟓.𝟗𝟒𝟖𝟏�𝑿(𝒕)�
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Figure 15:  Actual Rates and Forecasted Rates for the CEV Model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟒𝟖𝟏𝑿(𝒕)𝒅𝒕 + 𝟏.𝟖𝟓𝟔𝟖�𝑿(𝒕)�
𝟑
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Figure 16: Actual Rates and Forecasted Rates for the CEV Model 𝒅𝑿(𝒕) = 𝟎.𝟎𝟓𝟎𝟖𝑿(𝒕)𝒅𝒕 + 𝟎.𝟓𝟖𝟐𝟐𝑿(𝒕)𝒅𝑾(𝒕) 
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Among these five CEV models, the best model can be selected by checking forecasting accuracy measures RMSE and MAPE. Table 
III represented RMSE and MAPE values for each model. 

 
Table III: RMSE and MAPE Values for Five CEV Models 

𝜷 RMSE MAPE 
0 0.5516 0.3113 

1/2 0.6709 0.3862 
1 0.7631 0.4321 

3/2 0.8970 0.5173 
2 0.8853 0.5210 

 

According to the Table 3, the minimum RMSE and MAPE values can be observed when 𝛽 = 0. Therefore it can be concluded that the 
best CEV model to forecast LKR/USD exchange rate among the five models is the model which has elasticity factor 0.  
Hence, the best CEV model is, 

𝑑𝑋(𝑡) = 0.0417𝑋(𝑡)𝑑𝑡 + 61.7786𝑑𝑊(𝑡) 

It can be observed that the model is similar to the Ornstein- Uhlenbeck model. 
 

IV. CONCLUSION 
According to the results and findings, it can be concluded that the best model to predict LKR/USD monthly exchange rates from 
April, 2016 to December, 2016 is Ornstein-Uhlenbeck model. The best model may be changed to another model if one consider 
another data set. Because of that, by updating the exchange rates one can predict any future exchange rate using these models and the 
best model may be different to Ornstein-Uhlenbeck model.  
 
In this research only five elasticity factors were considered. As a future research work, one can develop this study by considering more 
than five elasticity factors. Since 𝛽 is continuous, if one can simulate results for more elasticity factors exchange rates can be predicted 
more accurately. 
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