
International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 1
ISSN 2250-3153

www.ijsrp.org

Optimizing Back-Propagation using PSO_Hill and

PSO_A*

Priyanka Sharma
*
, Asha Mishra

**

* M.Tech Scholar of computer science & Engineering , BSAITM, Faridabad

** Department of computer science & Engineering , BSAITM, Faridabad

Abstract- Back propagation algorithm (BPA) have the

complexity, local minima problem so we are using Particle

Swarm optimization (PSO) algorithms to reduce and optimize

BPA. In this paper, two variants of Particle Swarm Optimization

(PSO) PSO_Hill and PSO_A* is used as optimization algorithm.

PSO_Hill and PSO_A* algorithms are analyzed and evaluated on

the basis of their advantages, applied to feed forward neural

network(FNN) for back propagation algorithm(BPA) which is a

gredient desent technique. where BPA is used for non_linear

problems. These non_linear problems are improved by a

PSO_Hill and PSO_A* algorithms.

Index Terms- BPA, PSO_hill, PSO_A*, ANN

I. INTRODUCTION

ptimization is an active area of research as many algorithms

that are introduced earlier are complex and not optimize so

better optimization algorithms are needed. The objective of

optimization algorithm is to find a solution to satisfying a set of

constraints such that objective function is maximized or

minimized.

 Particle swarm optimization (PSO) is an alternative

population-based evolutionary computation technique. It has

been shown to be capable of optimizing hard mathematical

problems in continuous or binary space. The particle swarm

optimization (PSO) algorithm is based on the evolutionary

computation technique [11-13]. PSO optimizes an objective

function by conducting population-based search. The population

consists of potential solutions, called particles, similar to birds in

a flock. The particles are randomly initialized and then freely fly

across the multi-dimensional search space. While flying, every

particle updates its velocity and position based on its own best

experience and that of the entire population. The updating policy

will cause the particle swarm to move toward a region with a

higher object value. Eventually, all the particles will gather

around the point with the highest object value.

 PSO processes the search scheme using populations of

particles where each particle is equivalent to a candidate solution

of a problem [9]. The particle moves according to an adjusted

velocity, which is based on that particle’s experience and the

experience of its companions. For the D-dimensional function

f(.), the i
th

 particle for the j
th

 iteration can be represented as

Xj = X1,X2…………………Xn

Wj=W1,W2…………Wn

 Assume that the best local position of the j
th

 particle at then

nth iteration is represented as

L_bestj=L_best1, L_best2…………….L_bestn

 The best position amongst all the particles, G_best, from the

first iteration to the j
th

 iteration, where best is defined

by some function of the swarm, is

G_bestj=G_best1,G_best2……….G_bestn

 The original particle swarm optimization algorithm can be

expressed as follows:

Pj= Xj*Wj

Vj
t
= f(pj) means Vj

t
=1/(1+exp(-Pj))

Vj
t+1

= Vj
t
+r1* c1(L_bestj-Xj)+r2*c2(G_bestj-Xj)

Xj
t+1

= Xj
t
+ Vi

t+1

r1and r2 are random variables acts as learning signals such that 0

≤ r1, r2 ≤ 1.

 where Wj is the inertia weight at the j
th

 iteration. The

weighting factors, C1 and C2 are used as constants. In this paper,

the optimization and analysis of back propagation algorithm is

done by particle swarm optimization, and two variant of particle

swarm optimization PSO_Hill and PSO_A*and their algorithm,

architecture are proposed.

 This paper is organized as follows. In Section II, we

explained original swarm techniques that are PSO and ACO. In

Section III, we explained original Back-propagation network

with algorithms. In section IV, we explained Related work in

PSO. In Section V, we explained proposed work (PSO_Hill and

PSO_A* variants with diagram and algorithm). In section VI, we

explained Conclusion of paper.

II. SWARM TECHNIQUES

 Swarm intelligence (SI) is the collective behavior of

decentralized, self-organized systems, natural or artificial. The

concept is employed in work on artificial intelligence. SI systems

are typically made up of a population of simple agents interacting

locally with one another and with their environment. The

inspiration often comes from nature, especially biological

systems. The agents follow very simple rules, and although there

O

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 2

ISSN 2250-3153

www.ijsrp.org

is no centralized control structure dictating how individual agents

should behave, local, and to a certain degree random, interactions

between such agents lead to the emergence of "intelligent" global

behavior, unknown to the individual agents. Natural examples of

SI include ant colonies, bird flocking, animal herding, bacterial

growth, and fish schooling. Two well known approaches of

swarm intelligence are:

 Ant Colony Optimization (ACO): Ant colony optimization

(ACO) is a class of optimization algorithms modeled on the

actions of an ant colony [2], [13]. ACO methods are useful in

problems that need to find paths to goals. Artificial 'ants'—

simulation agents—locate optimal solutions by moving through a

parameter space representing all possible solutions. Natural ants

lay down pheromones directing each other to resources while

exploring their environment. The simulated 'ants' similarly record

their positions and the quality of their solutions, so that in later

simulation iterations more ants locate better solutions.

 Particle Swarm Optimization (PSO): Particle Swarm

Optimization (PSO) is a swarm-based intelligence algorithm [6]

influenced by the social behavior of animals such as a flock of

birds finding a food source or a school of fish protecting

themselves from a predator. A particle in PSO is analogous to a

bird or fish flying through a search (problem) space. The

movement of each particle is co-coordinated by a velocity which

has both magnitude and direction. Each particle position at any

instance of time is influenced by its best position and the position

of the best particle in a problem space. The performance of a

particle is measured by a fitness value, which is problem specific.

Each particle will have a fitness value, which will be evaluated

by a fitness function to be optimized in each generation. Each

particle knows its best position L_best and the best position so

far among the entire group of particles G_best. The L_best of a

particle is the best result (fitness value) so far reached

 The particle swarm optimization (PSO) algorithm is based

on the evolutionary computation technique. PSO optimizes an

objective function by conducting population-based search. The

population consists of potential solutions, called particles, similar

to birds in a flock. The particles are randomly initialized and then

freely fly across the multi-dimensional search space. While

flying, every particle updates its velocity and position based on

its own best experience and that of the entire population. The

updating policy will cause the particle swarm to move toward a

region with a higher object value. Eventually, all the particles

will gather around the point with the highest object value. PSO

attempts to simulate social behavior, which differs from the

natural selection schemes of genetic algorithms.

 PSO processes the search scheme using populations of

particles, which corresponds to the use of individuals in genetic

algorithms. Each particle is equivalent to a candidate solution of

a problem. The particle moves according to an adjusted velocity,

which is based on that particle’s experience and the experience of

its companions.

A) Conventional Particle Swarm Optimization

 The particle swarm optimization algorithm was introduced

by Kennedy and Eberhart in 1995 [6], [13]. The algorithm

consists of a swarm of particles flying through the search space.

Each individual i in the swarm contains parameters for position

xi and velocity vi, where xi∈ R
n
, v i∈ R

n
 while n is the dimension

of the search space. The position of each particle represents a

potential solution to the optimization problem. The dynamics of

the swarm are governed by a set of rules that modify the velocity

of each particle according to the experience of the particle and by

adding a velocity vector to the current position, the position of

each particle is modified. As the particles move around the space,

different fitness values are given to the particles at different

locations according to how the current positions of particles

satisfy the objective. At each iteration, each particle keeps track

of its local best position, L_best and depending on the social

network structure of the swarm, the global best position, G_best.

B) Application of PSO

1. Neural Network Training

2. Telecommunications

3. Data Mining

4. Design and Combinatorial optimization

5. Power systems

6. Signal processing

III. BACK-PROPAGATION ALGORITHM

 The back- propagation algorithm is used in layered feed-

forward ANNs [14]. This means that the artificial neurons are

organized in layers, and send their signals ―forward‖, and then

the errors are propagated backwards. The network receives

inputs by neurons in the input layer, and the output of the

network is given by the neurons on an output layer. There may

be one or more intermediate hidden layers. The back-

propagation algorithm uses supervised learning, which means

that we provide the algorithm with examples of the inputs and

outputs we want the network to compute, and then the error

(difference between actual and expected results) is calculated.

The idea of the back propagation algorithm is to reduce this

error, until the ANN learns the training data. The training begins

with random weights, and the goal is to adjust them so that the

error will be minimal.

 The basic back propagation algorithm consists of three

steps.

1) The input pattern is presented to the input layer of the

network. These inputs are propagated through the

network until they reach the output units. This forward

pass produces the actual or predicted output pattern.

2) The actual network outputs are subtracted from the

desired outputs and an error signal is produced.

3) This error signal is then the basis for the back

propagation step, whereby the errors are passed back

through the neural network by computing the

contribution of each hidden processing unit and deriving

the corresponding adjustment needed to produce the

correct output. The connection weights are then adjusted

and the neural network has just learned from an

experience.

4) Learning parameters are used to control the training

process of a back propagation network.

5) The learn rate is used to specify whether the neural

network is going to make major adjustments after each

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 3

ISSN 2250-3153

www.ijsrp.org

learning trial or if it is only going to make minor

adjustments.

6) Momentum is used to control possible oscillations in the

weights, which could be caused by alternately signed

error signals.

IV. RELATED WORK

 Pillai , K. G. [1] explains a novel overlapping swarm

intelligence algorithm is introduced to train the weights of an

artificial neural network. Training a neural network is a difficult

task that requires an effective search methodology to compute

the weights along the edges of a network. The back propagation

algorithm, a gradient based method, is frequently used to train

multilayer feed-forward networks. On the other hand, training

algorithms based on evolutionary computation have been used to

train multilayer feed-forward networks in an attempt to overcome

the limitations of gradient based algorithms with mixed results.

This paper introduces an overlapping swarm intelligence

technique to train multilayer feedforward networks. The results

show that OSI method performs either on par with or better than

the other methods tested.

 M. Conforth and Y. Meng [2] propose a swarm

intelligence based reinforcement learning (SWIRL) method to

train artificial neural networks (ANN). Basically, two swarm

intelligence based algorithms are combined together to train the

ANN models. Ant Colony Optimization (ACO) is applied to

select ANN topology, while Particle Swarm Optimization (PSO)

is applied to adjust ANN connection weights. To evaluate the

performance of the SWIRL model, it is applied to double pole

problem and robot localization through reinforcement learning.

Extensive simulation results successfully demonstrate that

SWIRL offers performance that is competitive with modern

neuro-evolutionary techniques, as well as its viability for real-

world problems.

 Marco Dorigo and Mauro Birattari [3] defines Swarm

intelligence as the discipline that deals with natural and artificial

systems composed of many individuals that coordinate using

decentralized control and self-organization. In particular, the

discipline focuses on the collective behaviors that result from the

local interactions of the individuals with each other and with

their environment. Examples of systems studied by swarm

intelligence are colonies of ants and termites, schools of fish,

flocks of birds, herds of land animals. Some human artifacts also

fall into the domain of swarm intelligence, notably some multi-

robot systems, and also certain computer programs that are

written to tackle optimization and data analysis problems.

 Y. Karpat and Tugrul Ozel [4] propose a concept of

particle swarm optimization, which is a recently developed

evolutionary algorithm, is used to optimize machining

parameters in hard turning processes where multiple conflicting

objectives are present .The relationships between machining

parameters and the performance measures of interest are obtained

by using experimental data and swarm intelligent neural network

systems (SINNS). The results showed that particle swarm

optimization is an effective method for solving multi-objective

optimization problems, and an integrated system of neural

networks and swarm intelligence can be used in solving complex

machining optimization problems.

 James kennedy and Russell Eberhart [5] propose a

concept for the optimization of nonlinear functions using

particle swarm methodology is introduced. The evolution of

several paradigms is outlined, and an implementation of one of

the paradigms is discussed. Benchmark testing of the paradigm is

described, and applications, including nonlinear function

optimization and neural network training, are proposed. The

relationships between particle swarm optimization and both

artificial life and genetic algorithms are described.

V. PROPOSED WORK

 5.1) Analysis of Different Algorithm: This is done on the

basis of analysis of their advantage to introduce proposed

variants for optimization. In this we analysis the limitation of

BPA and to optimize BPA we use PSO approach.

5.1.1) Disadvantages in BPA:

a) Local Minima

b) Low Speed

c) Higher cost of computation

d) Error Problem

e) Gloal Maxima but less as compared to Local

f) Less accuracy

5.1.2) PSO Advantages:

a) PSO can be applied to scientific research and

Engineering.

b) High computational speed

c) Learning achieved from particle own experienced

d) Learning achieved from experience of cooperation

between particles

5.2) Proposed Variants for optimization:

1) PSO_hill

2) PSO_A*

5.2.1) PSO_hill Advantge:

a) High computational speed

b) Strong ability in global search

c) Higher Accuracy

d) Learning achieved from particle own experienced

e) Learning achieved from experience of cooperation

between particles.

5.2.2) PSO_Hill variables Notations:

X: Initial particle position.

W: Weight for each particle.

 n: Total no. of iterations.

Pcurr= current position of particles

Pbest = particle best position

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 4

ISSN 2250-3153

www.ijsrp.org

5.2.3) PSO_Hill Diagram:

5.2.4) PSO_Hill Algorithm:

1) Start with initializing particle position X, their

velocity V, Weight W, p_loc0,

p_glob0,n0

2) If goal=vj then terminate it; Otherwise

3) Pj=Xj*Wj

4) Vj=1/(1+exp(-pj))

5) If (j<n)

6) {

7) If(Evaluate a new position which is better than

current position but not goal)

8) {

9) Curr_position=better_position;

10) Else

11) Keep current position & continue the search to

find goal

12) }

13) Else

14) Return to step 2 to continue till it reaches to

goal

5.3.1) PSO_A* Advantages:

I. Most heuristic solution

II. Optimized in terms of fitness function

5.3.2) PSO_A* Diagram:

5.2.3) PSO_A* Variables Notations:

Open_list: A list which have nodes that are generated but not

expanded.

Closed_list: A list which have nodes that are expanded and its

childrens are available to search program.

5.2.4) PSO_A* Algorithm:

1. Start with initial position of particles and place them on

open node, p_loc0,p_glob0.

2. If (open_list=empty) stop and return as failure

3. Select p_loc particles n from open list that has smallest

fitness function

4. {

5. if node n= goal node

6. return success

7. stop

8. }

9. Otherwise

10. Expand the successor particles of node n and as node n

is explored so keep it on closed list

11. For each successor h

12. {

13. If h is not in open_list or closed_list

14. {

15. Attach a back pointer to n particle to backtrack it

16. {

Initialize position Xj, velocity

and weight w.

Select best among particle,

compute p_global

 Goal=Vj

P_global=p_goal

Vj = 1/(1+exp(-pj))

Optimized

 Stop

YE

S

YES

NO

YES

NO

N

O
 Compute fitness function

 Pj=Xj*Wj

Initialize position Xi, velocity

and weight w.

Pj=goal

 j<n

 Pj= Wj* Xj

Current is better

than Searched
State

 Stop

 Optimized

 Set pcurr=pbest

YES

YES

NO

NO

YES

NO

NO

YES

 Vj= 1/(1+exp(-vj))

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 5

ISSN 2250-3153

www.ijsrp.org

17. Compute fitness of particle f*(h)

18. Else

19. Compute lowest or p_glob (g*(h))

20. }

21. Place on open list

22. Return to Step to till the goal

VI. CONCLUSION

 In this paper, two variants of the particle swarm

optimization scheme is presented. Two PSO Variants PSO_Hill

and PSO_A* are proposed with their algorithm, architecture,

advantages and disadvantages, which can be used to the optimize

the BPA. In next paper, a third strategy is proposed

PSO_Hill_A* on the basis of strength of two variants PSO_Hill

and PSO_A* algorithm. The particle local best and global best

positions help the variants to move towards the solution.

REFERENCES

[1] Pillai , K. G,‖Overlapping swarm intelligence with artificial neural
network‖ ,Swarm intelligence(SIS) ,2011 IEEE Symopsium,15 april 2011.

[2] Matthew Conforth and Yan Meng ,‖Reinforcement Learning for Neural
Networks using Swarm Intelligence‖ , 2008 IEEE Swarm Intelligence
Symposium, St. Louis MO USA, September 21-23, 2008

[3] [3] Macro Dorigo and Mauro Birattari (2007), Scholarpedia, 2(9) ―Swarm
intelligence‖, http://www.scholarpedia.org/article/Swarm_intelligence.
Marco Dorigo (2007) Ant colony optimization. Scholarpedia, 2(3):1461.

[4] Yiğit Karpat and Tuğrul Özel, ‖Swarm-Intelligent Neural Network System
(SINNS) Based Multi-Objective Optimization Of Hard Turning‖
,Transactions of NAMRI/SME Volume 34, 2006.

[5] James Kennedy' and Russell Eberhart2, ‖Particle Swarm Optimization‖, ,
Washington, DC
20212,kennedy_jim@bls.gov,http://www.cs.tufts.edu/comp/150GA/homew
orks/hw3/_reading6%201995%20particle%20swarming.pdf, 1995 IEEE.

[6] .Kennedy and R.Eberhart,‖Particle swarm optimization‖,Proceedings of.
IEEE International Conference on Neural Networks, pp. 1942-1948, 1995

[7] Boonserm Kaewkamnerdpong and Peter J. Bentley,‖perceptive Particle
Swarm Optimization:An Investigation‖

[8] Jui-Fang Chang, Shu-Chuan Chu, John F. Roddick and Jeng-Shyang
Pan,‖A Parallel Particle Swarm Optimization Algorithm with
Communication Strategies‖, Journal of Information Science and
Engineering 21, 809-818 (2005)

[9] R. Eberhart and J. Kennedy, ―A new optimizer using particle swarm theory‖
in Proceedings of 6th International Symposium on Micro Machine and
Human Science, 1995, pp. 39-43.

[10] J. Kennedy and R. Eberhart, ―Particle swarm optimization,‖ in Proceedings
of IEEE International Conference on Neural Networks, 1995, pp. 1942-
1948.

[11] P. Tarasewich and P. R. McMullen, ―Swarm intelligence,‖ Communications
of the ACM, Vol. 45, 2002, pp.63-67

[12] Nitu Mathuriya and Dr. Ashish Bansal, ―Applicability of back propagation
neural network for recruitment data mining‖, International Journal of
Engineering Research & Technology (IJERT) , ISSN: 2278-0181, Vol. 1
Issue 3, May - 2012

[13] V.Selvi and Dr.R.Umarani, ―Comparative Analysis of Ant Colony and
Particle Swarm Optimization Techniques”, International Journal of
Computer Applications (0975 – 8887), Volume 5– No.4, August 2010

[14] Carlos Gershenson, ―Artificial Neural Networks for Beginners‖

AUTHORS

First Author – Priyanka Sharma received B.TECH degree in

Computer Science and Engineering with Hons. from Maharshi

Dayanand University in 2011 and is persuing M.Tech. in

Computer Engineering. Presently, She is working as Lecturer in

Computer Engineering department in RITM, Palwal. Her areas of

interests are Artificial Neural Network, Soft Computing, Pattern

Recognition., Email: priya.sharma090@gmail.com

Second Author – Asha Mishra received B.E. degree in

Computer Science & Engineering from NIT, Assam and M.Tech

in Computer Science from A.I.T.M, Palwal. Presently, she is

working as Senior Lecturer in Computer Engineering department

in B.S.A. Institute of Technology & Management, Faridabad.

Her areas of interests are DBMS, Analysis & Design of

Algorithm and Network Security., Email:

asha1.mishra@gmail.com

http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.scholarpedia.org/article/Scholarpedia
mailto:kennedy_jim@bls.gov
http://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf
http://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf
http://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf
mailto:priya.sharma090@gmail.com
mailto:asha1.mishra@gmail.com

