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Abstract- Back propagation algorithm (BPA)  have the 

complexity, local minima problem so we are using Particle 

Swarm optimization (PSO) algorithms to reduce and optimize 

BPA. In this paper, two variants of Particle Swarm Optimization 

(PSO) PSO_Hill and PSO_A* is used as optimization algorithm. 

PSO_Hill and PSO_A* algorithms are analyzed and evaluated on 

the basis of their advantages, applied to feed forward neural 

network(FNN) for back propagation algorithm(BPA) which is a 

gredient desent technique. where BPA is used for non_linear 

problems. These non_linear problems are improved by a 

PSO_Hill and PSO_A* algorithms. 

 

Index Terms- BPA, PSO_hill, PSO_A*, ANN 

 

I. INTRODUCTION 

ptimization is an active area of research as many algorithms  

that are introduced earlier are complex and not optimize so 

better optimization algorithms are needed. The objective of 

optimization algorithm is to find a solution to satisfying a set of 

constraints such that objective function is maximized or 

minimized. 

        Particle swarm optimization (PSO) is an alternative 

population-based evolutionary computation technique. It has 

been shown to be capable of optimizing hard mathematical  

problems in continuous or binary space. The particle swarm 

optimization (PSO) algorithm is based on the evolutionary 

computation technique [11-13]. PSO optimizes an objective 

function by conducting population-based search. The population 

consists of potential solutions, called particles, similar to birds in 

a flock. The particles are randomly initialized and then freely fly 

across the multi-dimensional search space. While flying, every 

particle updates its velocity and position based on its own best 

experience and that of the entire population. The updating policy 

will cause the particle swarm to move toward a region with a 

higher object value. Eventually, all the particles will gather 

around the point with the highest object value. 

        PSO processes the search scheme using populations of 

particles where each particle is equivalent to a candidate solution 

of a problem [9]. The particle moves according to an adjusted 

velocity, which is based on that particle’s experience and the 

experience of its companions. For the D-dimensional function 

f(.), the i
th

 particle for the j
th

  iteration can be represented as 

 

Xj = X1,X2…………………Xn 

 

Wj=W1,W2…………Wn 

        Assume that the best local position of the j
th

 particle at then 

nth iteration is represented as 

 

L_bestj=L_best1, L_best2…………….L_bestn 

 

        The best position amongst all the particles, G_best, from the 

first iteration to the j
th

 iteration, where best is defined  

by some function of the swarm, is 

 

G_bestj=G_best1,G_best2……….G_bestn 

 

        The original particle swarm optimization algorithm can be 

expressed as follows: 

Pj= Xj*Wj 

 

Vj
t 
= f(pj) means Vj

t
=1/(1+exp(-Pj)) 

 

Vj
t+1

= Vj
t 
+r1* c1(L_bestj-Xj)+r2*c2(G_bestj-Xj) 

 

Xj
t+1 

= Xj
t 
+ Vi

t+1 

 

r1and r2 are random variables  acts as learning signals such that 0 

≤ r1, r2 ≤ 1. 

 

        where Wj is the inertia weight at the j
th

 iteration. The 

weighting factors, C1 and C2 are used as constants. In this paper, 

the optimization and analysis of back propagation algorithm  is 

done by  particle swarm optimization, and two variant of particle 

swarm optimization PSO_Hill and PSO_A*and their algorithm, 

architecture are proposed. 

        This paper is organized as follows. In Section II, we 

explained original swarm techniques that are PSO and ACO. In 

Section III, we explained original Back-propagation network 

with algorithms. In section IV, we explained Related work in 

PSO. In Section V, we explained proposed work (PSO_Hill and 

PSO_A* variants with diagram and algorithm). In section VI, we 

explained Conclusion of paper.  

 

II. SWARM TECHNIQUES 

        Swarm intelligence (SI) is the collective behavior of 

decentralized, self-organized systems, natural or artificial. The 

concept is employed in work on artificial intelligence. SI systems 

are typically made up of a population of simple agents interacting 

locally with one another and with their environment. The 

inspiration often comes from nature, especially biological 

systems. The agents follow very simple rules, and although there 

O 
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is no centralized control structure dictating how individual agents 

should behave, local, and to a certain degree random, interactions 

between such agents lead to the emergence of "intelligent" global 

behavior, unknown to the individual agents. Natural examples of 

SI include ant colonies, bird flocking, animal herding, bacterial 

growth, and fish schooling. Two well known approaches of 

swarm intelligence are: 

        Ant Colony Optimization (ACO): Ant colony optimization 

(ACO) is a class of optimization algorithms modeled on the 

actions of an ant colony [2], [13]. ACO methods are useful in 

problems that need to find paths to goals. Artificial 'ants'—

simulation agents—locate optimal solutions by moving through a 

parameter space representing all possible solutions. Natural ants 

lay down pheromones directing each other to resources while 

exploring their environment. The simulated 'ants' similarly record 

their positions and the quality of their solutions, so that in later 

simulation iterations more ants locate better solutions. 

        Particle Swarm Optimization (PSO): Particle Swarm 

Optimization (PSO) is a swarm-based intelligence algorithm [6] 

influenced by the social behavior of animals such as a flock of 

birds finding a food source or a school of fish protecting 

themselves from a predator. A particle in PSO is analogous to a 

bird or fish flying through a search (problem) space. The 

movement of each particle is co-coordinated by a velocity which 

has both magnitude and direction. Each particle position at any 

instance of time is influenced by its best position and the position 

of the best particle in a problem space. The performance of a 

particle is measured by a fitness value, which is problem specific. 

Each particle will have a fitness value, which will be evaluated 

by a fitness function to be optimized in each generation. Each 

particle knows its best position L_best and the best position so 

far among the entire group of particles G_best. The L_best of a 

particle is the best result (fitness value) so far reached 

        The particle swarm optimization (PSO) algorithm is based 

on the evolutionary computation technique. PSO optimizes an 

objective function by conducting population-based search. The 

population consists of potential solutions, called particles, similar 

to birds in a flock. The particles are randomly initialized and then 

freely fly across the multi-dimensional search space. While 

flying, every particle updates its velocity and position based on 

its own best experience and that of the entire population. The 

updating policy will cause the particle swarm to move toward a 

region with a higher object value. Eventually, all the particles 

will gather around the point with the highest object value. PSO 

attempts to simulate social behavior, which differs from the 

natural selection schemes of genetic algorithms. 

        PSO processes the search scheme using populations of 

particles, which corresponds to the use of individuals in genetic 

algorithms. Each particle is equivalent to a candidate solution of 

a problem. The particle moves according to an adjusted velocity, 

which is based on that particle’s experience and the experience of 

its companions.  

 

A) Conventional Particle Swarm Optimization 

        The particle swarm optimization algorithm was introduced 

by Kennedy and Eberhart in 1995 [6], [13]. The algorithm 

consists of a swarm of particles flying through the search space. 

Each individual i in the swarm contains parameters for position 

xi and velocity vi, where xi∈ R
n
, v i∈ R

n
 while n is the dimension 

of the search space. The position of each particle represents a 

potential solution to the optimization problem. The dynamics of 

the swarm are governed by a set of rules that modify the velocity 

of each particle according to the experience of the particle and by 

adding a velocity vector to the current position, the position of 

each particle is modified. As the particles move around the space, 

different fitness values are given to the particles at different 

locations according to how the current positions of particles 

satisfy the objective. At each iteration, each particle keeps track 

of its local best position, L_best and depending on the social 

network structure of the swarm, the global best position, G_best. 

B) Application of PSO 

 

1. Neural Network Training 

2. Telecommunications  

3. Data Mining 

4. Design and Combinatorial optimization 

5. Power systems 

6. Signal processing 

 

III. BACK-PROPAGATION ALGORITHM 

        The back- propagation algorithm is used in layered feed-

forward ANNs [14]. This means that the artificial neurons are 

organized in layers, and send their signals ―forward‖, and then 

the errors are propagated backwards. The network receives 

inputs by neurons in the input layer, and the output of the 

network is given by the neurons on an output layer. There may 

be one or more intermediate hidden layers. The back- 

propagation algorithm uses supervised learning, which means 

that we provide the algorithm with examples of the inputs and 

outputs we want the network to compute, and then the error 

(difference between actual and expected results) is calculated. 

The idea of the back propagation algorithm is to reduce this 

error, until the ANN learns the training data. The training begins 

with random weights, and the goal is to adjust them so that the 

error will be minimal. 

 

        The basic back propagation algorithm consists of three 

steps. 

1) The input pattern is presented to the input layer of the 

network. These inputs are propagated through the 

network until they reach the output units. This forward 

pass produces the actual or predicted output pattern.   

2) The actual network outputs are subtracted from the 

desired outputs and an error signal is produced. 

3) This error signal is then the basis for the back 

propagation step, whereby the errors are passed back 

through the neural network by computing the 

contribution of each hidden processing unit and deriving 

the corresponding adjustment needed to produce the 

correct output. The connection weights are then adjusted 

and the neural network has just learned from an 

experience. 

4) Learning parameters are used to control the training 

process of a back propagation network. 

5) The learn rate is used to specify whether the neural 

network is going to make major adjustments after each 
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learning trial or if it is only going to make minor 

adjustments. 

6) Momentum is used to control possible oscillations in the 

weights, which could be caused by alternately signed 

error signals. 

 

IV. RELATED WORK 

        Pillai , K. G. [1] explains a novel overlapping swarm 

intelligence algorithm is     introduced to train the weights of an 

artificial neural network. Training a neural network is a difficult 

task that requires an effective search methodology to compute 

the weights along the edges of a network. The back propagation 

algorithm, a gradient based method, is frequently used to train 

multilayer feed-forward networks. On the other hand, training 

algorithms based on evolutionary computation have been used to 

train multilayer feed-forward networks in an attempt to overcome 

the limitations of gradient based algorithms with mixed results. 

This paper introduces an overlapping swarm intelligence 

technique to train multilayer feedforward networks. The results 

show that OSI method performs either on par with or better than 

the other methods tested. 

        M. Conforth and Y. Meng [2] propose a swarm 

intelligence based reinforcement learning (SWIRL) method to 

train artificial neural networks (ANN). Basically, two swarm 

intelligence based algorithms are combined together to train the 

ANN models. Ant Colony Optimization (ACO) is applied to 

select ANN topology, while Particle Swarm Optimization (PSO) 

is applied to adjust ANN connection weights. To evaluate the 

performance of the SWIRL model, it is applied to double pole 

problem and robot localization through reinforcement learning. 

Extensive simulation results successfully demonstrate that 

SWIRL offers performance that is competitive with modern 

neuro-evolutionary techniques, as well as its viability for real-

world problems. 

        Marco Dorigo and Mauro Birattari [3] defines  Swarm 

intelligence as the discipline that deals with natural and artificial 

systems composed of many individuals that coordinate using 

decentralized control and self-organization. In particular, the 

discipline focuses on the collective behaviors that result from the 

local interactions of the individuals with each other and with 

their environment. Examples of systems studied by swarm 

intelligence are colonies of ants and termites, schools of fish, 

flocks of birds, herds of land animals. Some human artifacts also 

fall into the domain of swarm intelligence, notably some multi-

robot systems, and also certain computer programs that are 

written to tackle optimization and data analysis problems.  

        Y. Karpat and Tugrul Ozel [4] propose a concept of 

particle swarm optimization, which is a recently developed 

evolutionary algorithm, is used to optimize machining 

parameters in hard turning processes where multiple conflicting 

objectives are present .The relationships between machining 

parameters and the performance measures of interest are obtained 

by using experimental data and swarm intelligent neural network 

systems (SINNS). The results showed that particle swarm 

optimization is an effective method for solving multi-objective 

optimization problems, and an integrated system of neural  

networks and swarm intelligence can be used in solving complex 

machining optimization problems. 

        James kennedy and Russell Eberhart [5] propose a 

concept  for the optimization of nonlinear functions using 

particle swarm methodology is introduced. The evolution of 

several paradigms is outlined, and an implementation of one of 

the paradigms is discussed. Benchmark testing of the paradigm is 

described, and applications, including  nonlinear function 

optimization and neural network training, are proposed. The 

relationships between particle swarm optimization and both 

artificial life and genetic algorithms are described. 

 

V. PROPOSED WORK 

         5.1) Analysis of Different Algorithm: This is done on the 

basis of analysis of their advantage  to introduce proposed 

variants for optimization. In this  we analysis the limitation of 

BPA and to optimize BPA we use PSO approach. 

 

5.1.1) Disadvantages in BPA: 

 

a) Local Minima 

b) Low Speed 

c) Higher cost of computation 

d) Error Problem 

e) Gloal Maxima but less as compared to Local  

f) Less accuracy 

 

5.1.2) PSO  Advantages: 

 

a) PSO can be applied to scientific research and 

Engineering. 

b) High computational speed 

c) Learning achieved from particle own experienced 

d) Learning achieved from experience of  cooperation 

between particles 

 

5.2) Proposed Variants for optimization: 

 

1) PSO_hill 

2) PSO_A* 

 

5.2.1) PSO_hill Advantge: 

 

a) High computational speed 

b) Strong ability in global search 

c) Higher Accuracy 

d) Learning achieved from particle own experienced 

e) Learning achieved from experience of  cooperation 

between particles. 

 

5.2.2) PSO_Hill variables Notations:  

X: Initial particle position. 

W: Weight for each particle. 

 n: Total no. of iterations. 

Pcurr= current position of particles 

Pbest = particle best position 
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5.2.3) PSO_Hill Diagram: 

 

 
 

5.2.4) PSO_Hill Algorithm: 

1) Start with  initializing particle position X, their 

velocity V, Weight W, p_loc0, 

p_glob0,n0 

2) If goal=vj then terminate it; Otherwise 

3) Pj=Xj*Wj 

4) Vj=1/(1+exp(-pj)) 

5) If (j<n) 

6) { 

7) If(Evaluate a new position which is better than 

current position but not goal) 

8) { 

9) Curr_position=better_position; 

10) Else 

11) Keep current position & continue the search to 

find goal 

12) } 

13) Else 

14) Return to step 2 to continue till it reaches to 

goal 

 

5.3.1) PSO_A* Advantages: 

 

I. Most heuristic solution 

II. Optimized in terms of fitness function 

5.3.2) PSO_A* Diagram: 

 

 
 

5.2.3) PSO_A* Variables Notations: 

Open_list: A list which have nodes that are generated but not 

expanded. 

Closed_list: A list which have nodes that are expanded and its 

childrens are available to search program. 

  

5.2.4) PSO_A* Algorithm: 

1. Start with initial position of particles and place them on 

open node, p_loc0,p_glob0. 

2. If (open_list=empty) stop and return as failure 

3. Select p_loc  particles  n from open list that has smallest 

fitness function 

4. { 

5. if node n= goal node 

6. return success 

7. stop 

8. } 

9. Otherwise 

10. Expand the successor particles of node n and as node n 

is explored so keep it on closed list 

11. For each successor h 

12. { 

13. If h is not in open_list or closed_list 

14. { 

15. Attach a back pointer to n particle to backtrack it 

16. { 

Initialize position Xj, velocity 

and weight w. 

Select best among particle,  

compute p_global 

     Goal=Vj 

P_global=p_goal 

Vj = 1/(1+exp(-pj)) 

Optimized 

      Stop 

YE

S 
 

YES 
 

NO 
 

YES 
 

NO 
 

N

O 
 Compute fitness function 

 Pj=Xj*Wj 

Initialize position Xi, velocity 

and weight w. 

Pj=goal 

      j<n 

            Pj= Wj* Xj 

Current is better 

than Searched 
State 

         Stop 

      Optimized 

             Set pcurr=pbest 

YES 
 

YES 
 

NO 
 

NO 
 

YES 
 

NO 
 

NO 
 

YES 
 

         Vj= 1/(1+exp(-vj)) 
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17. Compute fitness of particle f*(h) 

18. Else 

19. Compute lowest or p_glob (g*(h)) 

20. } 

21. Place on open list  

22. Return to Step to till the goal  

 

VI. CONCLUSION 

        In this paper, two variants of the particle swarm 

optimization scheme is presented. Two PSO Variants PSO_Hill 

and PSO_A* are proposed with their algorithm, architecture, 

advantages and disadvantages, which can be used to the optimize 

the BPA. In next paper,  a third strategy is proposed 

PSO_Hill_A* on the basis of strength of two variants PSO_Hill 

and PSO_A* algorithm. The particle local best and global best 

positions help the variants  to move towards the solution. 
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