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Abstract- In this paper, a dynamic (i.e. self-adaptive according to the number of nodes) Simulated Annealing Algorithm is presented 

to solve the well-known Traveling Salesman Problem (TSP). In the presented algorithm, the temperature parameter is adjusted on the 

basis of the number of nodes. To achieve dynamicity, a new parameter named “Cooling Enhancer” is introduced to control the 

cooling rate, thereby, regulating the temperature. Additionally, an enhanced version of acceptance probability has been used. The 

efficacy of Dynamic Simulated Annealing with Cooling Enhancer & Modified Acceptance Probability (DSA-CE&MAP) is compared 

against the basic simulated annealing algorithm (SA) [2] for some benchmark TSPLIB instances [1]. Experimental results illustrate 

that the new dynamic simulated annealing algorithm performs better than the basic simulated annealing algorithm for solving TSP. It 

has been observed that the quality of solutions (i.e. minimum total cost or distance) is significantly increased as compared to earlier 

method. 

 

Index Terms- Traveling Salesman Problem, NP-complete, Simulated Annealing Algorithm, Acceptance Probability, Temperature, 

Cooling rate, Cooling Enhancer. 

 
 

I. INTRODUCTION 

The Traveling Salesman Problem (TSP) is one of the archetypes and archaic problems in Computer Science and Operations Research. 

It can be stated as: 

A network with ‘n’ cities (or nodes) with ‘node 1’ as ‘source’ and a travel expense (or distance, or travel time etc.,) matrix C= [cij] of 

order n associated with ordered node pairs (i, j) is given. The problem is to find a least cost Hamiltonian cycle. 

 

On the basis of the structure of the cost (or expense) matrix, the TSPs are classified into two groups – symmetric and asymmetric. The 

TSP is symmetric if cij = cji, ∀ i, j and asymmetric otherwise. For an n-city asymmetric TSP, there are (n-1)! possible solutions, one or 

more of which gives the minimum cost. For an n-city symmetric TSP, there are  
(𝑛−1)!

2
 possible solutions along with their reverse 

cyclic permutations having the same total cost. In either case, the total number of solutions becomes extremely humongous for a 

moderate number of nodes, making the exhaustive search non-viable. 

 

TSP has captivated the attention of many researchers and remains an active research area. It is a proven NP-Complete problem [3]. A 

large number of real-world problems can be modelled by TSP. Some of them are:- Drilling of printed circuit boards and threading of 

scan cells in a testable VLSI circuit [4], X-ray crystallography [5], Overhauling gas turbine engines [6],  Computer wiring [6], Vehicle 

routing [6], Mask plotting in PCB production [6], Warehouse automation system [6].  

 

All practical applications require solving larger problems, hence emphasis has shifted from the aim of finding exactly optimal 

solutions for TSP to the aim of getting, heuristically, ‘better solutions’ in a reasonable time and ‘establishing the degree of goodness’. 

Several intelligent algorithms are available to solve the TSP, some of them are:- artificial neural network [7],  genetic algorithms [8], 

simulated annealing algorithm [9], ant colony optimization algorithm[10], particle swarm optimization [11], consultant-guided search 

algorithm [12] and many more. Simulated Annealing Algorithm (SA) is one of the metaheuristic search algorithms that have been 
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used widely to solve the TSP instances. The basic version of SA algorithm is not good in terms of quality of solutions (i.e. minimum 

total cost or distance). Therefore, an improved simulated annealing algorithm has been presented in this paper. It uses a new 

parameter, “Cooling Enhancer” to control the cooling rate in order to regulate the temperature (i.e. system energy) and also employs a 

modified acceptance probability. The presented algorithm has been found to produce better quality of solutions. 

The paper is structured as follows: Section 2 provides a background about the simulated annealing algorithm. In Section 3, the related 

work in the sphere is propounded. Then, the proposed approach to solving the TSP is proffered in Section 4. The experimentation and 

results are given in Section 5. Finally, the paper is concluded in section 6. 

 

II. BACKGROUND STUDY 

The SA algorithm is one of the efficient methods for the continuous and discrete optimization problems. It is derived from the 

simulation of the cooling schedule of metals. The cooling process is controlled by a defined function which is convenient to 

implement. The word “Annealing” is referred to as tempering certain alloys of metal, glass, or crystal by heating above its melting 

point, holding its temperature, and then cooling it very slowly until it solidifies into a perfect crystalline structure. This 

physical/chemical process produces high-quality materials. The simulation of this process is known as simulated annealing (SA) [16]. 

There is an analogy of SA with an optimization procedure. The defect-free crystal state corresponds to the global minimum energy 

configuration (for TSP, tour with the minimum cost). The physical material states correspond to problem solutions (for TSP, all 

possible tours), the energy of a state to cost of a solution (for TSP, the tour cost), and the temperature to a control parameter. 

The SA algorithm is not used for initial solutions and has been discerned to have a bad performance and slow convergence when 

applied to the complex TSP.  

 

III. RELATED WORK 

In this section, the earlier work related to the field is discussed. The Basic Simulated Annealing Algorithm [2] has been improved by 

several researchers for solving the TSP. Liu et al introduced SA integrated with the Tabu search in order to achieve better solutions. 

The temperature was reduced adaptively with a temperature control function [13]. Based on most of the edges in the best circuit 

linked by neighbour cities, the probabilistic neighborhood model was introduced by Li [13] and merge into the optimization process 

of the BSA algorithm. The SA algorithm was also integrated with the ant colony optimization [14] to utilize their advantages together.  

In order to speed up the convergence of the BSA and obtain the better approximate solutions (i.e. Hamiltonian cycles), the four 

vertices and three lines inequality was merged into the optimization process of the BSA using the four-point conditions for 

symmetrical TSP which has been summarized by Vladimir [15]. When the Hamiltonian circuits are generated with the BSA, the 

inequality are applied to the local Hamiltonian paths in the Hamiltonian cycles.  

The algorithm for Basic Simulated Annealing [2] for solving TSP is as follows:- 

 

Step 1: Initialize cooling_rate with a small value such as 0.001. 

    Generate an initial random tour x. 

 

Step 2: Initialize T with a large value such as 100000. 

 

Step 3: Repeat: 

i. Generate next tour (x + Δx) by applying some operations on the current tour x. 

ii. Evaluate ΔE(x) = E(x + Δx) − E(x), (i.e. neighborTourCost - currentTourCost): 

if ΔE(x) < 0, keep the new state (i.e. new path distance less than current distance); 

otherwise, accept the new state with acceptance probability P = e−ΔE/T . 

iii. If EbestSoFar(x) > E(x + Δx), then set EbestSoFar(x) = E(x + Δx). 

 

iv. Set T = T − ΔT , V  ΔT= T x cooling_rate. 

    until T is small enough.  

 

One of the issues with the basic SA is that it is not adaptive to the problem size i.e. the temperature change is independent of the 

number of nodes (or cities). On running the basic SA for different TSPLIB instances, it is observed that if the temperature is 

decreased fast or slowly for small number of nodes, then, in either case, the results are almost similar; however, if the number of 

nodes is large (say more than 100), then it gives better results on decreasing the temperature slowly. Moreover, the basic SA will run 
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for almost the same time for problems of all size and hence produce the good results for a small size of nodes and bad results for 

problems with a moderate or large number of nodes. Moreover, it would be the duty of the operator to decide concerning how much 

time the algorithm should be run to get best result in a feasible amount of time, which could be cumbersome.  

 

IV. PROPOSED APPROACH 

The proposed approach, Dynamic Simulated Annealing with Cooling Enhancer & Modified Acceptance Probability (DSA-

CE&MAP) is developed by enhancing the parameters of the basic simulated annealing algorithm, temperature, cooling rate and 

acceptance probability to produce better solutions. 

For the algorithm to adapt and adjust itself to the number of nodes, a parameter named as “Cooling Enhancer” is introduced which 

controls the “cooling_rate”, thereby controlling the decrease in temperature according to the number of nodes (or cities) after each 

iteration. 

Additionally, for accepting the less good solutions (i.e. solutions with somewhat high total cost or distance), the acceptance 

probability is modified to engender Modified Acceptance Probability (MAP) which significantly contributes to the better results and 

prevents the solutions in getting caught in local minima. Modified acceptance probability helps in reducing the acceptance 

probabilities of the tours that have cost much larger than the current best tour cost. 

The algorithm for Dynamic Simulated Annealing with Cooling Enhancer and Modified Acceptance Probability (DSA-CE&MAP) for 

solving TSP is as follows:- 

 

Step 1: Initialize cooling_rate with a small value such as 0.001. 

    Generate an initial random tour x. 

 

Step 2: Initialize T with a large value such as 100000. 

 

Step 3: if totalCities < 30, then set coolingEnhancer = 0.5. 

     else if  totalCities < 150 then set coolingEnhancer = 0.05. 

   else if totalCities < 750 then set coolingEnhancer = 0.005. 

   Otherwise, set coolingEnhancer = 0.0005. 

 

Step 3: Repeat: 

i. Generate next tour (x + Δx) by applying some operations on the current tour x. 

ii. Evaluate ΔE(x) = E(x + Δx) − E(x), (i.e. neighborTourCost - currentTourCost): 

if ΔE(x) < 0, keep the new state (i.e. new path distance less than current distance); 

otherwise, evalutate ΔE` = EbestSoFar(x) - E(x + Δx), (i.e. bestTourCost - neighborTourCost) and then accept 

the new state with 

acceptance probability, P =
𝑒−𝛥𝐸/𝑇

𝑒−𝛥𝐸`/𝑇
 

iii. If EbestSoFar(x) > E(x + Δx), then set EbestSoFar(x) = E(x + Δx). 

iv. Set T = T − ΔT , V  ΔT= T x coolingEnhancer x cooling_rate. 

    until T is small enough.  

 

The effects of Modified Acceptance Probability (MAP) parameter for DSA-CE&MAP algorithm can be illustrated on br17(an 

Asymmetric TSPLIB instance) as follows : 

For each iteration, the values for three parameters are evaluated:- (i) currentTourCost (the total tour cost of the current path), (ii) 

bestTourCost (the total tour cost of the smallest path found till now), and (iii) neighborTourCost (the total tour cost of the next 

considered path). The acceptance probability is calculated only if, ΔE(x)= (neighborTourCost − currentTourCost) > 0. For a random 

iteration, let the current path be (1,4,8,17,14,10,6,11,2,12,9,3,5,16,13,7,15) with tour cost 241 and the best tour path be 

(1,9,15,8,17,12,7,4,5,16,10,14,11,6,13,3,2) with tour cost 85 and  temperature be 1000. Now, let the neighbor path under 

consideration be (1,9,8,2,17,7,14,6,11,16,12,10,5,3,4,13,15) with total cost 406 and another neighbor path be 

(1,4,8,17,13,16,5,3,9,12,2,11,6,10,14,7,15) with tour cost 260. Then, the acceptance probability of these paths with basic SA and 

DSA-CE&MAP is obtained as given in the following table: 
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TABLE I: Acceptance probability as calculated by the Basic SA and DSA-CE&MAP for a given instance 

 

br17 (a TSPLIB instance) Basic SA DSA-CE&MAP 

Case (i) neighborTourCost = 406 0.8478 0.6150 

Case (ii) neighborTourCost = 260 0.9811 0.8236 

 

It is evident from the Table I that when the neighborTourCost is substantially greater than the bestTourCost (as in case (i)), then its 

probability of acceptance decreases considerably as compared to the case when the neighborTourCost is moderately greater than the 

bestTourCost (as in case (ii)). Hence, by modifying the acceptance probability in this way, the tours with the higher cost will have 

lower probability of acceptance, even though these tours may be close in cost to the current tour. As a result, the search is confined to 

explore the tours which are close in cost both to the current tour and best tour found so far. 

 

V. EXPERIMENTATION & RESULTS 

The basic simulated annealing and the proposed DSA-CE&MAP algorithms have been coded in JavaScript and executed on an Intel 

core i7 personal computer with clock-speed 3.0 GHz, 8 GB RAM, 4 MB L3 cache via the bash (Ubuntu) command-line interface of 

Microsoft Windows 10 for some TSPLIB instances. Initial population was generated randomly.  

Following values were taken for the parameters- (i) initial temperature equals 105, (ii) cooling rate equals 0.001. The programs were 

executed 10 times for each instance. The solution quality is measured by the percentage of excess above the optimal solution value 

reported in TSPLIB website, as given by the formula. 

Excess (%) = 
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒  − 𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒
 x 100 

The tables II and III shows the Excess percentage of best solution values and average solution values over the optimal solution values 

in 10 runs and the average time of convergence (in second(s)) for each TSPLIB instance . In the tables, the best value, average value 

and average time is calculated by applying the basic SA and DSA-CE&MAP to the same TSPLIB instance. Furthermore, the excess 

percentage is calculated as per the above formula in order to compare the solution obtained with the optimal solution. Table II gives 

the results for fifteen asymmetric TSPLIB instances of size from 17 to 171 and table III gives the results for sixteen symmetric 

TSPLIB instances of size from 17 to 1379.  

 

TABLE II: Summary of the results by the Basic SA and DSA-CE&MAP for Asymmetric TSPLIB instances 

 

 Basic SA DSA-CE&MAP 

TSPLIB 

instance n 

Optimum 

Value 

Best Val(Excess 

%) 

Avg Val(Excess 

%) 

Avg 

Time(s) 

Best 

Val(Excess %) 

Avg Val(Excess 

%) Avg Time(s) 

br17 17 39 39 (0.00) 39.1(0.25) 0.0214 39(0.00) 39(0.00) 0.0361 

ftv33 34 1286 1657(28.85) 1900.7(47.79) 0.0254 1449(12.67) 1626.8(26.50) 0.3357 

ftv35 36 1473 1815(23.21) 2126.2(44.34) 0.0259 1709(16.02) 1904.2(29.27) 0.3819 

ftv38 39 1530 2130(39.21) 2398.7(56.77) 0.0269 1757(14.83) 1896.4(23.94) 0.384 

p43 43 5620 5639(0.33) 5652(0.56) 0.0247 5620(0.00) 5623.4(0.06) 0.3805 

ftv44 45 1613 2547(57.90) 2743.3(70.07) 0.0238 1811(12.27) 2295.5(42.31) 0.3404 

ftv47 48 1776 2834(59.57) 3182.5(79.19) 0.0286 2380(34.00) 2582(45.38) 0.3443 

ry48p 48 14422 16042(11.23) 16697.9(15.78) 0.0383 14853(2.98) 15391.2(6.72) 0.3712 

ft53 53 6905 11302(63.67) 13218.7(91.43) 0.0337 9570(38.59) 10781.9(56.14) 0.3601 

ftv55 56 1608 2855(77.54) 3242(101.61) 0.0353 2363(46.95) 2638.1(64.06) 0.3609 
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ftv64 65 1839 3948(114.68) 4286.9(133.11) 0.0406 2761(50.13) 3223.5(75.28) 0.3968 

ft70 70 38673 52781(36.48) 54218(40.19) 0.0347 47656(23.22) 49393.4(27.72) 0.474 

ftv70 71 1950 4102(110.35) 4569.5(134.33) 0.038 3207(64.46) 3646(86.97) 0.422 

kro124p 100 26230 56543(115.56) 61449.2(134.27) 0.0346 43424(65.55) 47762.2(82.08) 0.4572 

ftv170 171 2755 13937(405.88) 14622.3(430.75) 0.0487 7578(175.06) 8037(191.72) 6.3129 

 

 

 

TABLE III: Summary of the results by the Basic SA and DSA-CE&MAP for Symmetric TSPLIB instances 

 

   Basic SA DSA-CE&MAP 

TSPLIB 

instance n 

Optimum 

Value 

Best Val(Excess 

%) Avg Val(Excess %) 

Avg 

Time 

Best Val(Excess 

%) 

Avg Val(Excess 

%) Avg Time(s) 

gr17 17 2085 2085(0.00) 2088(0.14) 0.0403 2085(0.00) 2088(0.14) 0.0374 

gr24 24 1272 1272(0.00) 1322.5(3.97) 0.0285 1272(0.00) 1273.4(0.11) 0.0406 

hk48 48 11461 11661(1.74) 12145.4(5.97) 0.0375 11461(0.00) 11682(1.92) 0.3545 

eil51 51 426 472(10.79) 512.4(20.28) 0.0339 431(1.17) 441(3.52) 0.3994 

berlin52 52 7542 8140(7.92) 8369(10.96) 0.0326 7542(0.00) 7739.2(2.61) 0.4014 

eil76 76 538 737(36.98) 790.8(46.98) 0.039 545(1.30) 562.3(4.51) 0.453 

pr76 76 108159 116230(7.46) 120795.4(11.68) 0.0383 108817(0.60) 110474.8(2.14) 0.467 

kroA100 100 21282 27253(28.05) 29094.9(36.71) 0.0384 21378(0.45) 22086.3(3.77) 0.5173 

kroC100 100 20749 27776(33.8) 29286.7(41.14) 0.0423 20852(0.496) 21585.4(4.03) 0.5212 

eil101 101 629 1023(62.63) 1059.4(68.42) 0.335 659(4.76) 670.1(6.53) 0.5046 

lin105 105 14379 18983(32.01) 21302.7(48.15) 0.037 14545(1.15) 14874.4(3.44) 0.5319 

gil262 262 2378 8067(239.23) 8626.9(262.77) 0.0629 2484(4.45) 2519.2(5.93) 9.928 

a280 280 2579 9963(286.31) 10326.6(300.41) 0.0676 2708(5.00) 2760.5(7.03) 10.369 

lin318 318 42029 147149(250.11) 153334.2(264.82) 0.0727 43997(4.68) 44589.4(6.09) 11.204 

pa561 561 2763 16791(507.70) 17680.3(539.89) 0.1198 3197(15.70) 3256(17.84) 19.568 

nrw1379 1379 56638 656923(1059.86) 670889.3(1084.52) 0.400 61309(8.24) 61873.5(9.24) 580.5851 

 

It is observed that the quality of solutions of the algorithms is insensitive to the number of runs. From the tables it is discovered that a 

greater number of solutions (or tours) with optimum cost can be obtained using DSA-CE&MAP as compared to the basic SA. For 

example- the asymmetric TSPLIB instances br17 and p43 with optimum values 39 and 5620 respectively, could be solved exactly by 

DSA-CE&MAP at least once in ten runs, while only br17 with optimum value 39 could be solved exactly by basic SA. Similarly, the 

symmetric TSPLIB instances gr17, gr24, hk48 and berlin42 with their optimum values 2085, 1272, 11461 and 7542 respectively, 

could be solved exactly by DSA-CE&MAP at least once in ten runs, while only gr17and gr24 with optimum values 2085 and 1272 

respectively, could be solved exactly by basic SA. In addition, the best values and average values for DSA-CE&MAP are better than 

the basic SA and their corresponding excess percentages are less. Though, basic SA surpasses DSA-CE&MAP in terms of time of 

convergence, it is noted that, on the basis of the quality of solutions, DSA-CE&MAP outshines basic SA for all the instances, 

especially for those with the larger number of nodes. 
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The following figures 1 and 2 depict the graph between the temperature (x-axis) and tour cost (y-axis) for an asymmetric and 

symmetric TSPLIB instances respectively. It is clearly observed from the figure 1 that DSA-CE&MAP has tour cost (14954) much 

lower than that of basic SA (16228) and very near to the optimum value (14422). Similarly, it can be identified from the figure 2 that 

the proposed algorithm has tour cost (21604) much lower than that of basic SA (30674) and very near to the optimum value (21282). 

 
FIGURE 1: Performance of Basic SA and DSA-CE&MAP on Asymmetric TSP instance ry48p(48 nodes) 

 

 

 
FIGURE 2: Performance of Basic SA and DSA-CE&MAP on Symmetric TSP instance kroA100(100 nodes) 
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VI. CONCLUSION 

In this paper, a refurbished simulated annealing has been proposed by introducing new parameters named “Cooling Enhancer” and 

“Modified Acceptance Probability” (MAP). It is observed that DSA-CE&MAP provides us with better quality of solutions as 

compared with the basic SA for all the instances. Moreover, more symmetric and asymmetric TSPLIB instances can be solved exactly 

using the proposed algorithm. For example- two asymmetric (br17 & p43) and four symmetric (gr17, gr24, hk48 & berlin52) TSPLIB 

instances could be solved exactly using the proposed approach. On the other hand, only one asymmetric (br17) and two symmetric 

(gr17 & gr24) TSPLIB instances could be solved exactly using the basic approach. Basic SA outdoes DSA-CE&MAP in respects of 

time of convergence, since time of convergence is observed to be low for the basic SA. 

In future, by making certain changes to the parameters, namely, temperature and cooling rate of the simulated annealing, it is possible 

to achieve better results and reduce convergence time. 
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