
International Journal of Scientific and Research Publications, Volume 3, Issue 3, March 2013 1
ISSN 2250-3153

www.ijsrp.org

Network Delineate Safeguard for Surplus Control

ANirmala
*
, C.Kumuthini

**
, V.Sridevi

**

* Assistant Professor, Department of Computer Applications, Dr.N.G.P Arts and Science College, Coimbatore-48.

** Assistant Professor Dept. of Computer Applications, Dr.N.G.P Arts and Science College, Coimbatore-48.
*** Assistant Professor Dept. of Computer Applications, Dr.N.G.P Arts and Science College, Coimbatore-48.

Abstract- The end-to-end nature of Internet congestion control is

an important factor in its scalability and robustness. However,

end-to-end congestion control algorithms alone are incapable of

preventing the congestion collapse and unfair bandwidth

allocations created by applications that are unresponsive to

network congestion. To address this flaw, we propose and

investigate a novel congestion avoidance mechanism called

Network Border Patrol (NBP).

 NBP relies on the exchange of feedback between routers at

the borders of a network in order to detect and restrict

unresponsive traffic flows before they enter the network. An

enhanced core-stateless fair queueing mechanism is proposed in

order to provide fair bandwidth allocations among competing

flows. NBP is compliant with the Internet philosophy of pushing

complexity toward the edges of the network whenever possible.

Simulation results show that NBP effectively eliminates

congestion collapse that, when combined with fair queueing,

 NBP achieves approximately max-min fair bandwidth

allocations for competing network flows.

I. INTRODUCTION

he essential philosophy behind the Internet is expressed by

the scalability argument: no protocol, algorithm or service

should be introduced into the Internet if it does not scale well. A

key corollary to the scalability argument is the end-to-end

argument: to maintain scalability, algorithmic complexity should

be pushed to the edges of the network whenever possible.

Perhaps the best example of the Internet philosophy is TCP

congestion control, which is achieved primarily through

algorithms implemented at end systems. Unfortunately, TCP

congestion control also illustrates some of the shortcomings of

the end-to-end argument.

 A number of rate control algorithms have been proposed

that are able to prevent congestion collapse and provide global

max-min fairness to competing flows. These algorithms (e.g.,

ERICA, ERICA+) are designed for the ATM Available Bit Rate

(ABR) service and require all network switches to compute fair

allocations of bandwidth among competing connections.

However, these algorithms are not easily adaptable to the current

Internet, because they violate the Internet design philosophy of

keeping router implementations simple and pushing complexity

to the edges of the network.

 Floyd and Fall have approached the problem of

congestion collapse by proposing low-complexity router

mechanisms that promote the use of adaptive or “TCP-friendly”

end-to-end congestion control. Their suggested approach requires

selected gateway routers to monitor high-bandwidth flows in

order to determine whether they are responsive to congestion.

Flows that are determined to be unresponsive are penalized by a

higher packet discarding rate at the gateway router. A limitation

of this approach is that the procedures currently available to

identify unresponsive flows are not always successful. Hence we

try to introduce and investigate a new Internet traffic control

mechanism called the Protocol Encombrement Éviter which

prevents congestion collapse by patrolling the network’s borders,

ensuring that packets do not enter the network at a rate greater

than they are able to leave it. Associative Functional requirement

Receives the packets on basis of frequency of the destination

port.

II. ARCHITECTURAL COMPONENTS

 The only components of the network that require

modification by NBP are edge routers; the input ports of egress

routers must be modified to perform per-flow monitoring of bit

rates, and the output ports of ingress routers must be modified to

perform per-flow rate control. In addition, both the ingress and

the egress routers must be modified to exchange and handle NBP

feedback packets.

 The input ports of egress routers are enhanced in NBP.

Figure3.1 illustrates the architecture of an egress router’s input

port. Data packets sent by ingress routers arrive at the input port

of the egress router and are first classified by flow. Flow

classification is performed by ingress routers on every arriving

packet based upon a flow classification policy.

 An example flow classification policy is to examine the

packet’s source and destination network addresses, and to

aggregate all packets arriving on an ingress router and destined to

the same egress router into the same NBP flow (i.e., a macro-

flow).

Figure 3.2: Input port of Egress router

 After classifying packets into flows, each flow’s bit rate is

then rate monitored using a rate estimation algorithm such as the

Time Sliding Window (TSW) algorithm. These rates are

collected by a feedback controller, which returns them in

T

International Journal of Scientific and Research Publications, Volume 3, Issue 3, March 2013 2

ISSN 2250-3153

www.ijsrp.org

backward feedback packets to an ingress router whenever a

forward feedback packet arrives from that ingress router.

The output ports of ingress routers are also enhanced in NBP.

Each output port contains a flow classifier; per-flow traffic

shapers (e.g., leaky buckets), a feedback controller, and a rate

controller (Figure 3.2).

 The flow classifier classifies packets into flows, and the

traffic shapers limit the rates at which packets from individual

flows enter the network. The feedback controller receives

backward feedback packets returning from egress routers and

passes their contents to the rate controller. It also generates

forward feedback packets that are transmitted to the network’s

egress routers. To prevent congestion collapse, the rate controller

adjusts traffic shaper parameters according to a TCP-like rate-

control algorithm, and the rate-control algorithm used in NBP is

described later in this section. Figure 3.3: Output port of Ingress

Router

Algorithms used:

 A set of algorithms have been implemented in order to

design the core stateless protocol PEE. These algorithms have

been listed below:

Rate Control Algorithm

Leaky Bucket Algorithm

Feedback Control

Time Sliding Window Algorithm

 The algorithms have been dealt in detail in the following

sections.

3.4.1 Rate Control Algorithm:

 Figure 3.4: Rate Control Algorithm The PEE rate-control

algorithm regulates the rate at which each flow is allowed to

enter the network. Its primary goal is to converge on a set of per-

flow transmission rates (hereinafter called ingress rates) that

prevents congestion collapse due to undelivered packets. It also

attempts to lead the network to a state of maximum link

utilization and low router buffer occupancies, and it does this in a

manner that is similar to TCP.

 In the PEE rate-control algorithm, shown in Figure 3.4, a

flow may be in one of two phases, slow start or congestion

avoidance, similar to the phases of TCP congestion control. The

desirable stability characteristics of slow-start and congestion

control algorithms have been proven in TCP congestion control,

and PEE expects to benefit from their well-known stability

features. In PEE, new flows entering the network start with the

slow-start phase and proceed to the congestion-avoidance phase

only after the flow has experienced incipient congestion.

 The rate-control algorithm is invoked whenever a

backward feedback packet arrives at an ingress router. Recall that

backward feedback packets contain a timestamp and a list of

flows arriving at the egress router from the ingress router as well

as the monitored egress rates for each flow. Upon the arrival of a

backward feedback packet, the algorithm calculates the current

round-trip time (currentRTT in Fig. 6) between the edge routers

and updates the base round-trip time (e.base RTT), if necessary.

 The base round-trip time (e.base RTT) reflects the best-

observed round-trip time between the two edge routers. The

algorithm then calculates deltaRTT, which is the difference

between the current round-trip time (currentRTT) and the base

round-trip time (e.baseRTT). A deltaRTT value greater than zero

indicates that packets are requiring a longer time to traverse the

network than they once did, and this can only be due to the

buffering of packets within the network.

 PEE’s rate-control algorithm decides that a flow is

experiencing incipient congestion whenever it estimates that the

network has buffered the equivalent of more than one of the

flow’s packets at each router hop. To do this, the algorithm first

computes the product of the flow’s ingress rate (f.ingressRate)

and deltaRTT (i.e., f.ingressRate deltaRTT). This value provides

an estimate of the amount of the flow’s data that is buffered

somewhere in the network. If this amount (i.e., f.ingressRate

deltaRTT) is greater than the number of router hops between the

ingress and the egress routers (e.hopcount) multiplied by the size

of the largest possible packet (MSS) (i.e., MSS e.hopcount), then

the flow is considered to be experiencing incipient congestion.

 The rationale for determining incipient congestion in this

manner is to maintain both high link utilization and low queuing

delay. Ensuring there is always at least one packet buffered for

transmission on a network link is the simplest way to achieve full

utilization of the link, and deciding that congestion exists when

more than one packet is buffered at the link keeps queuing delays

low.

 Therefore, PEE’s rate-control algorithm allows the

“equivalent” of e.hopcount packets to be buffered in flow’s path

before it reacts to congestion by monitoring deltaRTT.1 a similar

approach is used in the DEC bit congestion-avoidance

mechanism. Furthermore, the approach used by PEE’s rate

control algorithm to detect congestion, by estimating whether the

network has buffered the equivalent of more than one of the

flow’s packets at each router hop, has the advantage that, when

congestion occurs, flows with higher ingress rates detect

congestion first.

 This is because the condition f.ingressRate deltaRTT MSS

e.hopcount fails first for flows with a large ingress rate, detecting

that the path is congested due to ingress flow.

When the rate-control algorithm determines that a flow is not

experiencing congestion, it increases the flow’s ingress rate. If

the flow is in the slow-start phase, its ingress rate is doubled for

each round-trip time that has elapsed since the last backward

feedback packet arrived (f.ingress).

 The estimated number of round-trip times since the last

feedback packet arrived is denoted as RTTs Elapsed. Doubling

the ingress rate during slow start allows a new flow to rapidly

capture available bandwidth when the network is underutilized.

International Journal of Scientific and Research Publications, Volume 3, Issue 3, March 2013 3

ISSN 2250-3153

www.ijsrp.org

If, on the other hand, the flow is in the congestion-avoidance

phase, then its ingress rate is conservatively incremented by one

rate Quantum value for each round trip that has elapsed since the

last backward feedback packet arrived (f.ingressrate rate

Quantum RTTsElapsed). This is done to avoid the creation of

congestion. The rate quantum is computed as the maximum

segment size divided by the current round-trip time between the

edge routers. This results in rate growth behavior that is similar

to TCP in its congestion-avoidance phase.

 Furthermore, the rate quantum is not allowed to exceed

the flow’s current egress rate divided by a constant quantum

factor (QF). This guarantees that rate increments are not

excessively large when the round-trip time is small. When the

rate-control algorithm determines that a flow is experiencing

incipient congestion, it reduces the flow’s ingress rate.

 If a flow is in the slow-start phase, it enters the

congestion-avoidance phase. If a flow is already in the

congestion-avoidance phase, its ingress rate is reduced to the

flow’s egress rate decremented by a constant value. In other

words, an observation of incipient congestion forces the ingress

router to send the flow’s packets into the network at a rate

slightly lower than the rate at which they are leaving the network.

 PEE’s rate-control algorithm is designed to have

minimum impact on TCP flows. The rate at which PEE regulates

each flow (f.ingressRate) is primarily a function of the round-trip

time between the flow’s ingress and egress routers (currentRTT).

In PEE, the initial ingress rate for a new flow is set to be

MSS/e.baseRTT, following TCP’s initial rate of one segment per

round-trip time.

 PEE’s currentRTT is always smaller than TCP’s end-to-

end round-trip time (as the distance between ingress and egress

routers, i.e., the currentRTT in PEE, is shorter than the end-to-

end distance, i.e., TCP’s round-trip time). As a result,

f.ingressRate is normally larger than TCP’s transmission rate

when the network is not congested, since the TCP transmission

window increases at a rate slower than PEE’s f.ingressRate

increases. Therefore, PEE normally does not regulate TCP flows.

However, when congestion occurs, PEE reacts first by reducing

f.ingressRate and, therefore, reducing the rate at which TCP

packets are allowed to enter the network. TCP eventually detects

the congestion (either by losing packets or due to longer round-

trip times) and then promptly reduces its transmission rate. From

this time point on, f.ingressRate becomes greater than TCP’s

transmission rate, and therefore, PEE’s congestion control does

not regulate TCP sources until congestion happens again.

Leaky Bucket Algorithm:

 The leaky bucket algorithm is used to regulate the traffic

flow from the input port to the output port. We assume leaky

bucket as a bucket with a small hole at the bottom. Hence any

packet that enters the bucket at any rate must go out of the bucket

at a controlled rate from the hole at the bottom. Also we assume

that the limit of the bucket is infinity. Hence there is no case of

bucket getting filled and the packets getting lost due to the limit

of the bucket.

 The leaky bucket algorithm is described as a flowchart in

Figure

Feedback Control Algorithm:

 The feedback control algorithm in NBP determines how

and when feedback packets are exchanged between edge routers.

Feedback packets take the form of ICMP packets and are

necessary in NBP for three reasons. First, forward feedback

packets allow egress routers to discover which ingress routers are

acting as sources for each of the flows they are monitoring.

Second, backward feedback packets allow egress routers to

communicate per-flow bit rates to ingress routers. Third, forward

and backward feedback packets allow ingress routers to detect

incipient network congestion by monitoring edge-to-edge round-

trip times.

Time Sliding Window algorithm:

 It is used for rate monitoring. TSW estimates the sending

rate upon each packet arrival, and decays, or forgets the past

history over time. TSW maintains three state variables in the

hash structure: Win_length, which is measured in units of time,

Avg_rate, the rate estimate upon each packet arrival, and

T_front, which is the time of last packet arrival. TSW is used to

estimate the rate upon each packet arrival, so state variables

Avg_rate and T_front are updated each time a packet arrives.

Win_length is pre-configured.

III. CONCLUSION

 In this paper, we have presented a novel congestion

avoidance mechanism for the Internet called Network Border

 Patrol and an enhanced core-stateless fair queuing

mechanism. Unlike existing Internet congestion control

approaches, which rely solely on end-to-end control, NBP is able

to prevent congestion collapse from undelivered packets. It does

this by ensuring at the border of the network that each flow’s

packets do not enter the network faster than they are able to leave

it. NBP requires no modifications to core routers nor to end

systems. Only edge routers are enhanced so that they can

perform the requisite per-flow monitoring, per-flow rate control

and feedback exchange operations.

 Extensive simulation results provided in this paper show

that NBP successfully prevents congestion collapse from

undelivered packets. They also show that, while NBP is unable to

eliminate unfairness on its own, it is able to achieve approximate

global max-min fairness for competing network flows when

combined with ECSFQ, they approximate global max-min

fairness in a completely core-stateless fashion.

International Journal of Scientific and Research Publications, Volume 3, Issue 3, March 2013 4

ISSN 2250-3153

www.ijsrp.org

REFERENCES

[1] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion
Control in the Internet,” IEEE/ACM Transactions on Networking, August
1999, To appear.

[2] J. Nagle, “Congestion control in IP/TCP internetworks,” Request for
Comments 896, Internet Engineering Task Force, Jan. 1984.

[3] Van Jacobson, “Congestion avoidance and control,” ACM Computer
Communications Review, vol. 18, no. 4, pp. 314–329, Aug. 1988,
Proceedings of the Sigcomm ’88 Symposium in Stanford, CA, August,
1988.

[4] “Real Broadcast Network White Paper,” White paper, RealNetworks Inc.,
January 1999, http://www.real.com/solutions/rbn/whitepaper.html.

[5] “RealVideo Technical White Paper,” White paper, RealNetworks Inc.,
January 1999,
http://www.real.com/devzone/library/whitepapers/overview.html.

[6] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation,” in Proc. of
ACM SIGCOMM, September 1998, pp. 303–314.

[7] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair
Queueing Algorithm,” in Proc. of ACM SIGCOMM, September 1989, pp.
1–12.

[8] A. Parekh and R. Gallager, “A Generalized Processor Sharing Approach to
Flow Control – the Single Node Case,” IEEE/ACM Transactions on
Networking, vol. 1, no. 3, pp. 344–357, June 1993.

[9] I. Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocations in High Speed

[10] Networks,” in Proc. of ACM SIGCOMM, September 1998, pp. 118–130.

AUTHORS

First Author – ANirmala, Assistant Professor, Department of

Computer Applications, Dr.N.G.P Arts and Science College,

Coimbatore-48.

Second Author – C.Kumuthini, Assistant Professor Dept. of

Computer Applications, Dr.N.G.P Arts and Science College,

Coimbatore-48.

Third Author – V.Sridevi, Assistant Professor Dept. of

Computer Applications, Dr.N.G.P Arts and Science College,

Coimbatore-48.

