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Abstract- The end-to-end nature of Internet congestion control is 

an important factor in its scalability and robustness. However, 

end-to-end congestion control algorithms alone are incapable of 

preventing the congestion collapse and unfair bandwidth 

allocations created by applications that are unresponsive to 

network congestion. To address this flaw, we propose and 

investigate a novel congestion avoidance mechanism called 

Network Border Patrol (NBP).  

         NBP relies on the exchange of feedback between routers at 

the borders of a network in order to detect and restrict 

unresponsive traffic flows before they enter the network. An 

enhanced core-stateless fair queueing mechanism is proposed in 

order to provide fair bandwidth allocations among competing 

flows. NBP is compliant with the Internet philosophy of pushing 

complexity toward the edges of the network whenever possible. 

Simulation results show that NBP effectively eliminates 

congestion collapse that, when combined with fair queueing,  

         NBP achieves approximately max-min fair bandwidth 

allocations for competing network flows. 

 

I. INTRODUCTION 

he essential philosophy behind the Internet is expressed by 

the scalability argument: no protocol, algorithm or service 

should be introduced into the Internet if it does not scale well. A 

key corollary to the scalability argument is the end-to-end 

argument: to maintain scalability, algorithmic complexity should 

be pushed to the edges of the network whenever possible. 

Perhaps the best example of the Internet philosophy is TCP 

congestion control, which is achieved primarily through 

algorithms implemented at end systems. Unfortunately, TCP 

congestion control also illustrates some of the shortcomings of 

the end-to-end argument. 

           A number of rate control algorithms have been proposed 

that are able to prevent congestion collapse and provide global 

max-min fairness to competing flows. These algorithms (e.g., 

ERICA, ERICA+) are designed for the ATM Available Bit Rate 

(ABR) service and require all network switches to compute fair 

allocations of bandwidth among competing connections. 

However, these algorithms are not easily adaptable to the current 

Internet, because they violate the Internet design philosophy of 

keeping router implementations simple and pushing complexity 

to the edges of the network. 

           Floyd and Fall have approached the problem of 

congestion collapse by proposing low-complexity router 

mechanisms that promote the use of adaptive or “TCP-friendly” 

end-to-end congestion control. Their suggested approach requires 

selected gateway routers to monitor high-bandwidth flows in 

order to determine whether they are responsive to congestion. 

Flows that are determined to be unresponsive are penalized by a 

higher packet discarding rate at the gateway router. A limitation 

of this approach is that the procedures currently available to 

identify unresponsive flows are not always successful. Hence we 

try to introduce and investigate a new Internet traffic control 

mechanism called the Protocol Encombrement Éviter which 

prevents congestion collapse by patrolling the network’s borders, 

ensuring that packets do not enter the network at a rate greater 

than they are able to leave it. Associative Functional requirement 

Receives the packets on basis of frequency of the destination 

port. 

 

II. ARCHITECTURAL COMPONENTS 

           The only components of the network that require 

modification by NBP are edge routers; the input ports of egress 

routers must be modified to perform per-flow monitoring of bit 

rates, and the output ports of ingress routers must be modified to 

perform per-flow rate control. In addition, both the ingress and 

the egress routers must be modified to exchange and handle NBP 

feedback packets. 

           The input ports of egress routers are enhanced in NBP. 

Figure3.1 illustrates the architecture of an egress router’s input 

port. Data packets sent by ingress routers arrive at the input port 

of the egress router and are first classified by flow. Flow 

classification is performed by ingress routers on every arriving 

packet based upon a flow classification policy.  

           An example flow classification policy is to examine the 

packet’s source and destination network addresses, and to 

aggregate all packets arriving on an ingress router and destined to 

the same egress router into the same NBP flow (i.e., a macro-

flow).  

 

Figure 3.2: Input port of Egress router 

 
 

           After classifying packets into flows, each flow’s bit rate is 

then rate monitored using a rate estimation algorithm such as the 

Time Sliding Window (TSW) algorithm. These rates are 

collected by a feedback controller, which returns them in 

T 
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backward feedback packets to an ingress router whenever a 

forward feedback packet arrives from that ingress router. 

The output ports of ingress routers are also enhanced in NBP. 

Each output port contains a flow classifier; per-flow traffic 

shapers (e.g., leaky buckets), a feedback controller, and a rate 

controller (Figure 3.2).  

           The flow classifier classifies packets into flows, and the 

traffic shapers limit the rates at which packets from individual 

flows enter the network. The feedback controller receives 

backward feedback packets returning from egress routers and 

passes their contents to the rate controller. It also generates 

forward feedback packets that are transmitted to the network’s 

egress routers. To prevent congestion collapse, the rate controller 

adjusts traffic shaper parameters according to a TCP-like rate-

control algorithm, and the rate-control algorithm used in NBP is 

described later in this section. Figure 3.3: Output port of Ingress 

Router 

 

 
 

Algorithms used: 

           A set of algorithms have been implemented in order to 

design the core stateless protocol PEE. These algorithms have 

been listed below: 

Rate Control Algorithm 

Leaky Bucket Algorithm 

Feedback Control  

Time Sliding Window Algorithm 

 

           The algorithms have been dealt in detail in the following 

sections. 

3.4.1 Rate Control Algorithm: 

           Figure 3.4: Rate Control Algorithm The PEE rate-control 

algorithm regulates the rate at which each flow is allowed to 

enter the network. Its primary goal is to converge on a set of per-

flow transmission rates (hereinafter called ingress rates) that 

prevents congestion collapse due to undelivered packets. It also 

attempts to lead the network to a state of maximum link 

utilization and low router buffer occupancies, and it does this in a 

manner that is similar to TCP. 

           In the PEE rate-control algorithm, shown in Figure 3.4, a 

flow may be in one of two phases, slow start or congestion 

avoidance, similar to the phases of TCP congestion control. The 

desirable stability characteristics of slow-start and congestion 

control algorithms have been proven in TCP congestion control, 

and PEE expects to benefit from their well-known stability 

features. In PEE, new flows entering the network start with the 

slow-start phase and proceed to the congestion-avoidance phase 

only after the flow has experienced incipient congestion. 

           The rate-control algorithm is invoked whenever a 

backward feedback packet arrives at an ingress router. Recall that 

backward feedback packets contain a timestamp and a list of 

flows arriving at the egress router from the ingress router as well 

as the monitored egress rates for each flow. Upon the arrival of a 

backward feedback packet, the algorithm calculates the current 

round-trip time (currentRTT in Fig. 6) between the edge routers 

and updates the base round-trip time (e.base RTT), if necessary. 

           The base round-trip time (e.base RTT) reflects the best-

observed round-trip time between the two edge routers. The 

algorithm then calculates deltaRTT, which is the difference 

between the current round-trip time (currentRTT) and the base 

round-trip time (e.baseRTT). A deltaRTT value greater than zero 

indicates that packets are requiring a longer time to traverse the 

network than they once did, and this can only be due to the 

buffering of packets within the network. 

           PEE’s rate-control algorithm decides that a flow is 

experiencing incipient congestion whenever it estimates that the 

network has buffered the equivalent of more than one of the 

flow’s packets at each router hop. To do this, the algorithm first 

computes the product of the flow’s ingress rate (f.ingressRate) 

and deltaRTT (i.e., f.ingressRate deltaRTT). This value provides 

an estimate of the amount of the flow’s data that is buffered 

somewhere in the network. If this amount (i.e., f.ingressRate 

deltaRTT) is greater than the number of router hops between the 

ingress and the egress routers (e.hopcount) multiplied by the size 

of the largest possible packet (MSS) (i.e., MSS e.hopcount), then 

the flow is considered to be experiencing incipient congestion. 

           The rationale for determining incipient congestion in this 

manner is to maintain both high link utilization and low queuing 

delay. Ensuring there is always at least one packet buffered for 

transmission on a network link is the simplest way to achieve full 

utilization of the link, and deciding that congestion exists when 

more than one packet is buffered at the link keeps queuing delays 

low. 

           Therefore, PEE’s rate-control algorithm allows the 

“equivalent” of e.hopcount packets to be buffered in flow’s path 

before it reacts to congestion by monitoring deltaRTT.1 a similar 

approach is used in the DEC bit congestion-avoidance 

mechanism. Furthermore, the approach used by PEE’s rate 

control algorithm to detect congestion, by estimating whether the 

network has buffered the equivalent of more than one of the 

flow’s packets at each router hop, has the advantage that, when 

congestion occurs, flows with higher ingress rates detect 

congestion first. 

           This is because the condition f.ingressRate deltaRTT MSS 

e.hopcount fails first for flows with a large ingress rate, detecting 

that the path is congested due to ingress flow. 

When the rate-control algorithm determines that a flow is not 

experiencing congestion, it increases the flow’s ingress rate. If 

the flow is in the slow-start phase, its ingress rate is doubled for 

each round-trip time that has elapsed since the last backward 

feedback packet arrived (f.ingress). 

           The estimated number of round-trip times since the last 

feedback packet arrived is denoted as RTTs Elapsed. Doubling 

the ingress rate during slow start allows a new flow to rapidly 

capture available bandwidth when the network is underutilized. 
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If, on the other hand, the flow is in the congestion-avoidance 

phase, then its ingress rate is conservatively incremented by one 

rate Quantum value for each round trip that has elapsed since the 

last backward feedback packet arrived (f.ingressrate rate 

Quantum RTTsElapsed). This is done to avoid the creation of 

congestion. The rate quantum is computed as the maximum 

segment size divided by the current round-trip time between the 

edge routers. This results in rate growth behavior that is similar 

to TCP in its congestion-avoidance phase. 

           Furthermore, the rate quantum is not allowed to exceed 

the flow’s current egress rate divided by a constant quantum 

factor (QF). This guarantees that rate increments are not 

excessively large when the round-trip time is small. When the 

rate-control algorithm determines that a flow is experiencing 

incipient congestion, it reduces the flow’s ingress rate. 

           If a flow is in the slow-start phase, it enters the 

congestion-avoidance phase. If a flow is already in the 

congestion-avoidance phase, its ingress rate is reduced to the 

flow’s egress rate decremented by a constant value. In other 

words, an observation of incipient congestion forces the ingress 

router to send the flow’s packets into the network at a rate 

slightly lower than the rate at which they are leaving the network. 

           PEE’s rate-control algorithm is designed to have 

minimum impact on TCP flows. The rate at which PEE regulates 

each flow (f.ingressRate) is primarily a function of the round-trip 

time between the flow’s ingress and egress routers (currentRTT). 

In PEE, the initial ingress rate for a new flow is set to be 

MSS/e.baseRTT, following TCP’s initial rate of one segment per 

round-trip time. 

           PEE’s currentRTT is always smaller than TCP’s end-to-

end round-trip time (as the distance between ingress and egress 

routers, i.e., the currentRTT in PEE, is shorter than the end-to-

end distance, i.e., TCP’s round-trip time). As a result, 

f.ingressRate is normally larger than TCP’s transmission rate 

when the network is not congested, since the TCP transmission 

window increases at a rate slower than PEE’s f.ingressRate 

increases. Therefore, PEE normally does not regulate TCP flows. 

However, when congestion occurs, PEE reacts first by reducing 

f.ingressRate and, therefore, reducing the rate at which TCP 

packets are allowed to enter the network. TCP eventually detects 

the congestion (either by losing packets or due to longer round-

trip times) and then promptly reduces its transmission rate. From 

this time point on, f.ingressRate becomes greater than TCP’s 

transmission rate, and therefore, PEE’s congestion control does 

not regulate TCP sources until congestion happens again. 

 

Leaky Bucket Algorithm: 

           The leaky bucket algorithm is used to regulate the traffic 

flow from the input port to the output port. We assume leaky 

bucket as a bucket with a small hole at the bottom. Hence any 

packet that enters the bucket at any rate must go out of the bucket 

at a controlled rate from the hole at the bottom. Also we assume 

that the limit of the bucket is infinity. Hence there is no case of 

bucket getting filled and the packets getting lost due to the limit 

of the bucket. 

           The leaky bucket algorithm is described as a flowchart in 

Figure 

 
  

Feedback Control Algorithm: 

           The feedback control algorithm in NBP determines how 

and when feedback packets are exchanged between edge routers. 

Feedback packets take the form of ICMP packets and are 

necessary in NBP for three reasons. First, forward feedback 

packets allow egress routers to discover which ingress routers are 

acting as sources for each of the flows they are monitoring. 

Second, backward feedback packets allow egress routers to 

communicate per-flow bit rates to ingress routers. Third, forward 

and backward feedback packets allow ingress routers to detect 

incipient network congestion by monitoring edge-to-edge round-

trip times. 

 

Time Sliding Window algorithm: 

           It is used for rate monitoring. TSW estimates the sending 

rate upon each packet arrival, and decays, or forgets the past 

history over time. TSW maintains three state variables in the 

hash structure: Win_length, which is measured in units of time, 

Avg_rate, the rate estimate upon each packet arrival, and 

T_front, which is the time of last packet arrival. TSW is used to 

estimate the rate upon each packet arrival, so state variables 

Avg_rate and T_front are updated each time a packet arrives. 

Win_length is pre-configured. 

 

III. CONCLUSION 

           In this paper, we have presented a novel congestion 

avoidance mechanism for the Internet called Network Border 

           Patrol and an enhanced core-stateless fair queuing 

mechanism. Unlike existing  Internet congestion control 

approaches, which rely solely on end-to-end control, NBP is able 

to prevent congestion collapse from undelivered packets. It does 

this by ensuring at the border of the network that each flow’s 

packets do not enter the network faster than they are able to leave 

it. NBP requires no modifications to core routers nor to end 

systems. Only edge routers are enhanced so that they can 

perform the requisite per-flow monitoring, per-flow rate control 

and feedback exchange operations. 

           Extensive simulation results provided in this paper show 

that NBP successfully prevents congestion collapse from 

undelivered packets. They also show that, while NBP is unable to 

eliminate unfairness on its own, it is able to achieve approximate 

global max-min fairness for competing network flows when 

combined with ECSFQ, they approximate global max-min 

fairness in a completely core-stateless fashion. 
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