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Abstract- The significance of the present research can be 

attributed to the systematic study of QR algorithm to solve 

eigenvalues. The main objective is to study how to develop a 

new method or strategy to find eigenvalues which improve the 

convergence of QR algorithm. It is observed that in general the 

QR algorithm succeeds when the matrix is graded downward 

with hessenberg form. Our future goal is to analyze theoretical 

proof for the same and find the well balanced input matrix for 

QR algorithm. This paper will helpful to all new students who 

want to work on Matrix decomposition problem. 

 

Index Terms- QR algorithm, Graded and Hessenberg matrix and 

shifting algorithm 

 

I. INTRODUCTION 

atrix multiplication algorithm is a very important 

algorithm for eigenvalues problem. Matrix multiplication 

is a very important part of the eigenvalue related problems. In 

QR algorithm if we will add more multiplication step then it will 

be helpful to add more parallelization in QR algorithm [1, 2]. 

          We discuss the details of QR algorithm and important 

topics which need to understand this algorithm. We will present 

some results which are needed to understand to improve the 

performance of QR algorithm. In this section we discuss the 

results of our implementation of QR algorithm. 

          When dealing with graded matrix arrange the grading 

downward by rows, columns or diagonals and balance the 

matrix. The Wilkinson shift proposed by Wilkinson for 

symmetric tridiagonal matrices, where it insures global 

convergence of the QR algorithm [8]. If matrix is graded and 

change the shifting strategy, it will improve the convergence and 

reduce the number of iteration. In this section we took some 

results for graded downward matrix by diagonal with hessenberg 

form. 

          See the given reading in section 2 which we have taken on 

8 GB RAM Workstation which have dual core processor with 

3.16 GHz speed. We applied symmetric matrices as an input 

without hessenberg reduction. We are using random symmetric 

square matrices for input, there are inputs for matrices are 

between 1 to 9. We implement QR algorithm in java. We 

performed many tests for QR algorithm on given platforms. All 

this tests are performed for the purpose of finding execution 

time, suitable approach and the performance of QR algorithm on 

given machine.  

 

 

1.1 The QR algorithm 

          All general-purpose eigenvalue algorithms are necessarily 

iterative. This statement is a consequence of Abel's famous proof 

that there is no algebraic formula for the roots of a general 

polynomial of degree greater than four. Specifically, to any 

polynomial 
1
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          Whose characteristic polynomial is p. Thus if we had a 

non-iterative general-purpose eigenvalue algorithm, we could 

apply it to the companion matrix of an arbitrary polynomial to 

find its zeros in a finite number of steps—in effect producing a 

formula for the roots. Thus the history of eigenvalue 

computations is the story of iterative methods for approximating 

eigenvalues and eigenvectors. An important theme in this story 

concerns methods based on powers of a matrix. The climax of 

that theme is the QR algorithm—the great success story of 

modern matrix computations [3]. This algorithm, with proper 

attention to detail, can compute a Schur form of a general matrix 

in 0(n3) operations. It can be adapted to reduce a real matrix in 

real arithmetic to a real variant of the Schur form. Other forms of 

the algorithm compute the eigenvalues of and eigenvectors of a 

Hermitian matrix, the singular value decomposition of a general 

matrix, and the generalized Schur form of a matrix pencil. And 

the underlying theory of the method continues to suggest new 

algorithms. The algorithm is closely related to two algorithms 

that are important in their own right—the power method and the 

inverse power method.. 

          The QR algorithm is a complicated device that generates a 

lot of code. Nonetheless, its various manifestations all have a 

family resemblance. The QR algorithm is a procedure for 

determining all eigenvalues of a real matrix A. The algorithm 

sequentially constructs matrices Ak 
( 1,2,..., )K n

 by forming 

QR decompositions. 

          The name QR derived from the letter Q to denote 

orthogonal matrices and R denote upper triangular matrices. It 

M 
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computes the eigenvalues of real symmetric matrices, 

eigenvalues of real nonsymmetrical matrices and singular values 

of general matrices. Many people have contributed to 

development of various QR algorithms. But, first complete 

implementation and convergence analysis are due to J. H. 

Wilkinson. QR algorithm is an iterative process that is not 

always guaranteed to converge [3]. It is difficult to improve 

convergence without sacrificing accuracy and applicability.  

 

1.1.1 QR decomposition 

          In linear algebra, a QR decomposition (also called a QR 

factorization) of a matrix is a decomposition of the matrix into an 

orthogonal and a right triangular matrix. QR decomposition is 

often used to solve the linear least squares problem, and is the 

basis for a particular eigenvalue algorithm, the QR algorithm. 

There are several methods for actually computing the QR 

decomposition, such as by means of the Gram-Schmidt process, 

Householder transformations, or Givens rotations. Each has a 

number of advantages and disadvantages. We used the Gram-

Schmidt method in QR decomposing. 

 

1.1.2 Gram-Schmidt process 

          The Gram-Schmidt orthogonalization process ([4] as 

presented in Chapter 11) may yield grossly inaccurate results due 

to round off error under finite-digit arithmetic (see Problems 

20.10 and 20.11). A modification of that algorithm exists which 

is more stable and which generates the same vectors in the 

absence of rounding (see Problem 20.12). This modification also 

transforms a set of linearly independent vectors 

{ 1 2, ,..., nX X X
} into a set of orthonormal vectors 

{ 1 2, ,..., nQ Q Q
} such that each vector kQ ( 1,2,..., )K n

 is a 

linear combination of 1X
through. 1kX  The modified algorithm 

is iterative, with the kth iteration given by the following steps:  

 

STEP 1: Set 2|| ||kk kr X
 and

(1/ )k kk kQ r X
.  

 

STEP 2: For j = к + 1, к + 2, n, set 
,kj j kr X Q

 

 

STEP 3: For j = к + 1, к + 2, n, replace jX
by j kj kX r Q

. 

 

1.1.3 Householder transformation 

          A Householder reflection (or Householder transformation) 

is a transformation that takes a vector and reflects it about some 

plane [8]. We can use this operation to calculate the QR 

factorization of an m-by-n matrix A with m ≥ n. Q can be used to 

reflect a vector in such a way that all coordinates but one 

disappear. 

 

1.1.4 Givens rotation 

          QR decompositions can also be computed with a series of 

Givens rotation [8]. Each rotation zeros an element in the sub 

diagonal of the matrix, forming the R matrix. The concatenation 

of all the Givens rotations forms the orthogonal Q matrix. In 

practice, Givens rotations are not actually performed by building 

a whole matrix and doing a matrix multiplication. A Givens 

rotation procedure is used instead which does the equivalent of 

the sparse Givens matrix multiplication, without the extra work 

of handling the sparse elements. The Givens rotation procedure is 

useful in situations where only a relatively few off diagonal 

elements need to be zeroed, and is more easily parallelized than 

Householder transformations. 

 

1.1.5 The Hessenberg form 

          It is now to focus on the cost of the QR algorithm. Notice 

that the algorithm requires a decomposition A = QR which takes 

O (n3) operations. Because this needs to be repeated for each 

eigenvalue we obtain an overall cost of O (n4) which is 

prohibitively expensive. The cure to this problem is the 

transformation of the matrix to upper-Hessenberg form H. When 

this is done the total cost of the algorithm is O (n3) [6, 7]. 

          QR algorithm is not always simple. It always preceded by 

reduction in hessenberg form. In which all the elements below 

sub diagonal elements are zero. Due to this factorization can be 

done much more quickly. 

          I found from one paper where real nonsymmetrical QR 

algorithm fail to converge for 4 by 4 matrixes. The double roots 

slow down convergence. 

                                             A=     

0 2 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 
 
 
 
 
   

 

          So, in some cases the shifted algorithm will fail. If we use 

double shift then we will get immediate satisfaction.  

 

                                          A =    

2 3 3 3

0.002 3 3 6

0 0.001 2 1

0 0 0.01 7

 
 
 
 
 
        

 

          Some times we will get very small values in subdiagnol 

elements that are not particularly small and also not negligible. 

That time iterative step will increase and convergences also slow 

down. Convergence is chaotic and, in some cases, the iteration 

limit is reached. We should plan to add a test that will avoid this 

behavior.  

 

1.1.6 Deflation for QR 

          In the QR algorithm, convergence is detected by checking 

the sub diagonal entries of the Hesenberg matrix for given 

iteration. If the (i+1,i) sub diagonal entry satisfies  

1, , 1, 1| | max{| |,| |i i i i i ih u h h  
},                                                              

----------- (A) 

 

          Where u denotes the round off (double precision u= 1.1 x 

10E-16) then 1,i ih   is set to zero and H becomes block upper 
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triangular. The eigenvalue problem deflates into two smaller 

problems associated with the two diagonal blocks of H, which 

can be treated separately by the QR algorithm. Typically, the 

convergence takes place at the bottom right corner and the size of 

the lower diagonal block is roughly the number of shifts used in 

the iteration. 

          Recently, the award winning aggressive early deflation 

(AED) strategy is used in addition to (A). We will see it why we 

should study AED in detail and why more efficient method is 

required for QR algorithm [6, 7]. 

 

1.1.7 Graded matrices 

          A matrix is graded if it shows a systematic decrease or 

increase in its elements as one proceeds from one end of the 

matrix to the other [10]. It is observed that in general the QR 

algorithm succeeds when the matrix is graded downward but it 

fails when the matrix is graded up-wards. Therefore balancing 

can help and solve the problem.  For example, the matrix 

 

1.5940 00 3.9990 09 7.1190 17

1.4410 08 6.9000 17 1.2900 24

5.7110 17 8.1560 25 6.6860 33

e e e

A e e e

e e e

     
 

    
 
      

 

          Exhibits symmetric grading from large to small along the 

diagonal. We therefore say that A is graded downward by 

diagonals. If we set 
8 16(1,10 ,10 )D diag  

 
 

Then 

1

1.5940 00 3.9990 17 7.1190 33

1.4410 00 6.9000 17 1.2900 32

5.7110 01 8.1560 17 6.6860 33

e e e

D AD e e e

e e e



     
 

    
 
    

 

Is graded downward by rows, while 

1

1.5940 00 3.9990 01 7.1190 01

1.4410 16 6.9000 17 1.2900 16

5.7110 33 8.1560 33 6.6860 33

e e e

D AD e e e

e e e



     
 

    
 
    

 

 

Is graded downward by columns 

          It turns out that the QR algorithm usually works well with 

matrices that are graded downward by diagonals. For example, 

the computed eigenvalues of A are 

 

5.1034150572761617 33

1.0515156210790460 16

1.5940000000000001 00

e

e

e





 
 

 

          Which are almost fully accurate? On the other hand, the 

algorithm does not do as well with other forms of grading. For 

example, reverse the rows and columns of A to get the matrix 

6.6860 33 8.1560 25 5.7110 17

1.2900 24 6.9000 17 1.4410 08

7.1190 17 3.9990 09 1.5940 00

e e e

B e e e

e e e

   
 

   
 
        

 

          Which is graded upward by diagonals? If we compute the 

eigenvalues of B, we get the following results. 

 

6.6859999999999994e 33  
1.0515156534681920e 16  

1.5940000000000005e 00   
 

The relative errors in these eigenvalues are 

3.1e 01,  3.1e 08,  2.8e 16,  
 

 

          From which it is seen that the smallest eigenvalue has no 

accuracy at all, the second smallest is accurate to only eight 

decimal digits, and the largest is correct to working precision. 

Row and column grading can also cause the algorithm to fail. 

The computed eigenvalues of 
1D AD

 have relative errors of 

1.0e 16,  2.3e 00,  1.4e 16,  
 

          While the computed eigenvalues of 
1DAD
 have relative 

errors of 

1.3e 00,  3.4e 01,  0.0e 00.  
 

 

          The two smaller eigenvalues of both matrices have no 

accuracy. There is no formal analysis of why the algorithm 

succeeds or fails on a graded matrix. However, inspection of 

special cases will often show that the algorithm causes a loss of 

important information by combining large and small elements. 

For example, consider the first column of B and the 

corresponding first column of the Hessenberg form of B: 

 

6.6859999999999994e 33 6.6859999999999994e 33

 1.2900000000000000e 24 7.1190000000000004e 17

7.1189999999999992e 17 0.0000000000000000e 00

 

 

  

 

          This display shows that the first column of the Hessenberg 

form is the same as the one obtained by first setting the element 

1.290e-24 to zero. This is a small error compared to the norm of 

B, but the smallest eigenvalue of B is quite sensitive to it. In 

particular the relative errors in the eigenvalues of the altered 

matrix B are 

1.6e 00,  2.3e 16,  O.Oe 00  
 

          Balancing can help in this case. For example, balancing 
1DAD
 and 

1D AD
restores the lost accuracy. On the other 

hand, balancing B has no effect, since it cannot change the 

direction of the grading. This suggests the following rule of 

thumb. We do not claim that this strategy is foolproof, and 

therefore anyone employing it should take a hard look at the 

results to see if they make sense. 
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1.2 QR Algorithm without Shifts 

 

A0 = A 

For k=1, 2… 

 QkRk = Ak  

 Ak+1 = RkQk  

End  

          Ak+1 tend to an upper triangular matrix with the same 

eigenvalues as A. These eigenvalues lie along the main diagonal 

of Ak+1. QR algorithm is using QR factorization. It is similar to 

gram-Schmidt process [4, 12]. 

 

1.3 QR Algorithm with Shifts 

 

The step of QR iteration 

A – S I = QR           

s = A (n, n) element of matrix A or also called shift (It accelerate 

convergence) 

A = 
R Q

+ S I  

 

          The QR factorization makes matrix triangular. Each 

iteration is effectively transferring mass from lower to upper 

triangular [4, 9]. Finally, the matrix convert in upper triangular 

form and the diagonal elements represent the eigenvalues of that 

matrix. 

 

1.4 The small bulge multishift QR algorithm 

1( )......( )l l m l lA s I A s I Q R  
 

H

l m l l lA Q AQ 
 

Matrices: 

A  Hessenberg 

Q  Unitary 

R  Upper triangular 

Shifts 1... ms s
 

 

          Perform m steps of the QR method at once. Computational 

procedure for single iteration is different here. It will take m/2 

bulges and transform the matrix by chasing m/2 bulges [9, 11]. 

 

II. RESULTS AND ANALYSIS 

          We have implemented QR algorithm in java language. We 

have developed the package for matrix and vector related 

operations. We have taken the result for QR algorithm using 

input matrix as a Hessenberg form, graded downward and graded 

upward form.  We convert the input matrix graded downward by 

diagonal and graded upward by diagonal. Our goal was to find 

the difference between these techniques. We can arrange the 

matrix graded downward by rows, columns and diagonal. It is 

already conclude that QR algorithm usually work well with 

matrices that are graded downward by diagonal. But, there is no 

formal analysis of why the algorithm succeeds or fails on graded 

matrix. So, this reading will help us to do this analysis or help in 

my research work. 

 

 

Table 2.1 Table showing execution time for symmetric matrices on QR algorithm with graded matrix 

CPU: Intel® Core™ 2 Duo CPU E8500@3.16 GHz, 8GB RAM 

 

Matrix Size Double shift  

(Time  

in millisecond) 

 

Double shift 

(graded downward) 

(Time  

in millisecond) 

 

Double shift 

(graded upward) 

(Time  

in millisecond) 

 

4 3  3  3  

4 49 46 6 

5 17 59 72 

6 82 75 41 

8 241 73 57 

10 159 152 231 

12 3523 195 146 

15 439 460 510 

18 2699 3439 5528 

20 4293 2534 1796 

22 1603 2482 4424 

25 NC 79778 3264 

28 3813 8401 11811 

30 20846 20738 53808 

35 498401 42750 696350 

40 26640 51758 177434 

42 523374 255320 255607 

 

          The Table 2.1 is displaying the execution time for the QR 

algorithm with graded matrix and simple matrix. In these results 

we have not converge the matrix in hessenberg form. This result 

is looking very strange. We can’t say that matrices which are 

mailto:E8500@3.16
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graded downward by diagonal are working well. In reading we 

can see that execution time is good for graded matrix. But, 

sometimes the matrices which are graded upward by diagonal are 

working better than graded downward as well as simple matrix. 

So, there is a need to analyze the graded matrix for improvement 

in eigenvalues method. 

 

 

Table 2.2 Table showing execution time for symmetric matrices on QR algorithm with graded matrix + Hessenberg form 

CPU: Intel® Core™ 2 Duo CPU E8500@3.16 GHz, 8GB RAM 

 

Matrix Size Double shift 

 

Double shift 

(graded downward) 

Double shift 

(graded upward) 

4 7  7 6 

4 71 33 4 

5 31 9 82 

6 76 54 71 

8 83 81 90 

10 111 137 190 

12 3837 477 3755 

15 537 567 583 

18 2352 3449 3440 

20 3489 3574 3535 

22 1177 1118 1088 

25 79565 4928 5034 

28 3993 4050 7713 

30 17346 386925 374848 

35 10278 7774 7688 

40 14332 10258 9629 

42 588975 563333 537273 

 

          To check the conformability for reading, we check same 

matrices on different platform and we got same strange results. 

The most important thing we can conclude from the Table 2.1 is 

that the time difference is not very large when input simple 

matrices are working well. But, when the graded matrices 

working well that time, we can say time difference is very large. 

So, we can say that, graded matrices are really improving the 

performance of QR algorithm.  

 

 

Table 2.3 Table showing execution time for symmetric matrices on QR algorithm with graded matrix 

CPU: Intel® Core™ 2 Duo CPU E8500@2.93 GHz, 4GB RAM 

 

Matrix Size Double shift 

 

Double shift 

(graded downward) 

Double shift 

(graded upward) 

4 43 50 11 

4 3 4 4 

5 19 73 79 

6 69 55 48 

8 251 123 80 

10 199 166 264 

12 3826 218 214 

15 484 455 565 

18 2960 3781 6119 

20 4716 2766 1982 

22 1748 2742 4870 

25 NC 89110 3607 

28 4248 9404 13257 

30 23940 23522 60345 

35 573290 49261 794631 

40 31115 59345 203730 

42 606363 293465 288396 

 

 

 

 

 

 

mailto:E8500@3.16
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The Table 2.2 is showing the execution time for QR algorithm. 

But, here we used hessenberg form after converting matrix in 

graded form.  This result is looking very strange because, it is 

performing well but not for all size of matrices. But from the 

result, we can say hessenberg form will help when it will apply 

to graded matrix.  

 

 

Table 2.4 Table showing execution time for symmetric matrices on QR algorithm with graded matrix + Hessenberg form 

CPU: Intel® Core™ 2 Duo CPU E8500@2.93 GHz, 4GB RAM 

 

Matrix Size Double shift 

 

Double shift 

(graded downward) 

Double shift 

(graded upward) 

4 8 11 7 

4 32 39 5 

5 23 11 92 

6 71 88 68 

8 88 107 181 

10 124 156 184 

12 4113 476 4101 

15 534 605 543 

18 2552 3616 3751 

20 3938 3897 3964 

22 1205 1256 1310 

25 89012 5583 5649 

28 4691 4692 8935 

30 19587 440193 427867 

35 11894 8999 8606 

40 16645 11839 11156 

42 678574 643774 615074 

 

          So, this combination of graded and Hessenberg form is 

helpful, when we want to improve the performance of QR 

algorithm. We will see the comparison of graded matrix with and 

without hessenberg matrix. 

          Table 2.3 shows the result of QR algorithm without 

Hessenberg matrix on 4GB RAMS with Processor speed of 2.93 

GHz. These results will show the same graph as previous results 

for 8GB RAM. And Table 2.4 shows the results for QR 

algorithm with Hessenberg matrix. We can go for conclusion, 

after analyzing the graph for the given table. We compare the 

graded matrix output with and without Hessenberg form. These 

results are really useful to conclude something and do the 

research in that direction. 

          For better understand of results, we draw the comparison 

graph for execution time. We can see from Figure 2.1, that the 

graded downward matrix by diagonal is taking less execution 

time than the other two approaches. It is remarkable that graded 

upward matrix by diagonal also have mix response with respect 

to standard input. From this graph we can say that we should 

develop a method which can be helpful to improve the 

performance of QR algorithm. People are not using graded 

matrix for input due to this kind of mix approach. That’s why we 

took reading of graded downward with hessenberg matrix. And 

we got some good results for this mixed approach. 

 
Figure 2.1 Benchmarking results of QR algorithm (without 

Hessenberg) on 3.16 GHZ CPU with 8GB RAM 

 

          Figure 2.2 is showing graph for graded upward and graded 

downward with the hessenberg approach. From this graph we can 

say graded upward by diagonal matrix also performing well. 

Most of the times all three approaches have equal performance 

but graded upward by diagonal has some good results compare to 

other.  Figure 2.3 shows the same comparison but platform with 

4 GB and CPU speed with 2.93 GHZ. Results of this machine 

mailto:E8500@2.93
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also have same response like 8GB RAM and 3.16 GHz CPU 

speed. So, it is confirm we may get good results on all kind of 

platform.   

 
Figure 2.2 Benchmarking results of QR algorithm (with 

Hessenberg) on 3.16 GHZ CPU with 8GB RAM 

 

 
Figure 2.3 Benchmarking results of QR algorithm (with 

Hessenberg) on 2.93 GHZ CPU with 4GB RAM 

 

          Why we are speaking about different platform? There is a 

very good question. We also took some results for matrix 

multiplication on different platform. But, we got the very strange 

results. CPU with less speed has given good results than the CPU 

with more speed [1, 2].  

          We see it in previous results that graded downward have 

good performance comparatively simple input matrix. To get 

more clear results, we compare the graded downward by 

diagonal with Hessenberg and without hessenberg. See Figure 

2.4, we can say that only in two readings graded downward 

without hessenberg have less execution time. So, it is confirm 

that if we add this kind of approach in graded downward by 

diagonal matrix, we can improve the performance of QR 

algorithm. We will work more towards this mixed approach. 

Figure 2.5 presenting the same graph for the results. 

 
Figure 2.4 Benchmarking results of QR algorithm (with and 

without Hessenberg) on 3.16 GHZ CPU with 8GB RAM 

 

          From Figure 2.4 and 2.5, we can say there is a requirement 

to analyze the graded matrix with other different methods. For 

symmetric matrices, the Hessenberg reduction process leaves a 

symmetric at each step, so zeros are created in symmetric 

positions. This means we need to work on only half the matrix, 

reducing the operation count to 
3 24 / 3 ( )n O n

 or 
3 28 / 3 ( )n O n

 to form 1 1....nQ Q  as well. So, it is really 

helpful to check these approaches and develop a new method 

which will improve the performance of QR algorithm.  

          We can also say the reading is not so helpful to predict the 

new method development for QR algorithm. But, the results of 

graded downward matrix with the hessenberg form are very 

satisfactory. So, we will continue our research in the same 

direction. 
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Figure 2.5 Benchmarking results of QR algorithm (with and 

without Hessenberg) on 2.93 GHZ CPU with 4GB RAM 

 

          We also compare the results of the QR algorithm with and 

without hessenberg matrix. The hessenberg matrix is near to the 

diagonal matrix, so it will reduce the operation count for the QR 

algorithm From Figure 2.6 we can say QR algorithm with 

hessenberg matrix will work better than without hessenberg. Our 

main goal is to improve the convergence and reduce the number 

of iteration for QR algorithm. If we are able to do this, we can 

work towards the development of new method. We also try to 

make a change in shifting strategy. It was not giving the 

satisfactory results for the QR algorithm. The conclusion from 

this reading is that there is a need to analyze the graded matrix 

why it wills success and fails. In one reading you can see that 

simple matrix is not able to converge but graded matrix is 

converging in satisfactory time. So, from this reading we are 

going to work towards the development of new method for 

graded matrix. We will try to analyze the graded matrix. Hence, 

it is final that there is still requirement to improve the 

convergence and performance of eigenvalues related algorithm. 

 
Figure 2.6 Benchmarking results of QR algorithm (with and 

without Hessenberg) on 3.16 GHZ CPU with 8GB RAM 

          After the discussion of different input matrices for QR 

algorithm, we will discuss and analyze the output of input 

matrices. From the previous results we know that graded 

downward by diagonal is working well than simple matrix. We 

also conclude that graded with hessenberg has overall good 

performance than graded downward by diagonal only. So, we try 

to analyze the convergence rate of graded downward by diagonal 

and graded downward by diagonal with hessenberg form. We got 

some good results, which are help to understand the development 

of K. Braman, R. Byers and R. Mathias, 2002. This development 

is very helpful to converged eigenvalue early.  

          From the table 2.5 we can say eigenvalue for the 5 x 5 

symmetric matrix is converged very early at 60
th

 iteration. But 

we are not able to find converged eigenvalues. If we will see 

carefully the results of Table 2.5 all the eigenvalues are 

converged before the 80
th

 iteration. From these results it is final 

that we need to work on a method which will be helpful to find 

the converged eigenvalues earlier than the standard QR algorithm 

do. AED is the method which is used to find eigenvlue earlier 

than the standard convergence criteria. 

 

 

Table 2.5 Converged eigenvalue with respect to iteration for QR algorithm using input matrix with graded downward by 

diagonal (matrix size 5 x 5) 

 

Number of 

iteration 

First 

eigenvalue 

Second 

eigenvalue 

Third 

eigenvalue 

Fourth 

eigenvalue 

Fifth 

eigenvalue 

5 30.342254314

02704 

-

0.2442687194

0302908  

 

0.7105141732

318789 

 

3.6777781251

28669 

1.1478337642

388863 

20 30.342254314

02701 

-0.24 0.4617984168

0387534 

3.9270572969

150654 

1.1467879337

033158 

40 30.342254314

027 

-

0.2448321328

4536331 

0.4616173098

687457 

3.9272384038

501933 

1.1467879337

032434 

60 30.342254314 -  3.9272384137 1.1467879337
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027 0.2448321328

4536331 

0.4616172999

4545997 

734786 032434 

80 30.342254314

027 

-

0.2448321328

4536331 

0.4616172999

449115 

3.9272384137

740257 

1.1467879337

032434  

100 30.342254314

026995 

-

0.2448321328

4536331 

0.4616172999

4491285 

3.9272384137

740253 

1.8347423174

298956  

120 30.342254314

026967 

-

0.2448321328

4536243 

0.4616172999

4491374 

3.9272384137

740235 

1.1467879337

03243 

130 30.342254314

02696 

-

0.2448321328

453611 

0.4616172999

449143  

3.9272384137

74022 

1.1467879337

032412 

140 30.342254314

02696 

-

0.2448321328

453611 

0.4616172999

449143 

3.9272384137

74022 

1.1467879337

032412 

150 30.342254314

02696 

-

0.2448321328

453611 

0.4616172999

449143 

3.9272384137

74022 

1.1467879337

032412 

 

          See the results of Table 2.6 the eigenvalues are converged 

early then the Table 2.5. We can see from the table 2.6 the Most 

of the eigenvalues are converged before 40
th

 iteration. So, after 

comparing these two approaches we can say the previous results 

are really helpful to work on graded downward with hessenberg. 

So, our goal is to find the direction where we can work on to 

development of new method. This thesis will help to us get good 

direction for my PhD work. 

 

 

Table 2.6 Converged eigenvalue with respect to iteration for QR algorithm using input matrix with graded downward by 

diagonal with hessenberg 

 

Number of 

iteration 

First 

eigenvalue 

Second 

eigenvalue 

Third 

eigenvalue 

Fourth 

eigenvalue 

Fifth 

eigenvalue 

5 30.342254314

027045 

3.9270277154

6233 

3.3670942373

445594 

-

0.2447815004

820959 

0.4616172999

449124 

20 30.342254314

027045 

 

3.9272384110

01787 

3.3669341741

68375 

-

0.2448321328

453651 

0.4616172999

449124 

40 30.342254314

027045 

3.9272384137

7403 

3.3669341713

961343 

-

0.2448321328

453651 

0.4616172999

449124 

60 30.342254314

027045 

3.9272384137

7403 

3.3669341713

961343 

-

0.2448321328

453651 

0.4616172999

449124 

80 30.342254314

027045 

3.9272384137

7403 

3.3669341713

961343 

-

0.2448321328

453651 

0.4616172999

449124 

100 30.342254314

02703 

3.9272384137

740293 

3.3669341713

961343 

-

0.2448321328

4536487 

0.4617680697

8837115 

120 30.342254314

02703 

3.9272384137

740275 

3.3669341713

961334 

-

0.2448321328

4536465 

0.4616172999

449121 

140 30.342254314

02703 

3.9272384137

740275 

3.3669341713

961334 

-

0.2448321328

453642 

0.4616172999

4491196 

150 30.342254314

02703 

3.9272384137

740275 

3.3669341713

961334 

-

0.2448321328

453642 

 

0.4616172999

449121 
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184 30.342254314

02703 

3.9272384137

740275 

3.3669341713

96131 

-

0.2448321328

453642 

0.4616172999

4491196 

 

III. CONCLUSION 

          People are not using graded matrix for input due to the 

problem of convergence. That’s why we took reading of graded 

downward and graded downward with hessenberg matrix. And 

we got some good results for this mixed approach. So, after 

comparing the two approaches by convergence, we can say the 

results are really helpful to work on graded downward with 

hessenberg. This thesis will help to us get good understanding of 

why combination of two method will help to improve the 

performance of the algorithm. 

          From the previous results we know that graded downward 

by diagonal is working well than simple matrix. We also 

conclude that graded with hessenberg has overall good 

performance than graded downward by diagonal only. So, we try 

to analyze the convergence rate of graded downward by diagonal 

and graded downward by diagonal with hessenberg form. We got 

some good results, which are help to understand the development 

of K. Braman, R. Byers and R. Mathias, 2002. This development 

is very helpful to find converged eigenvalue early than the 

conventional deflation strategy.   

 

IV. FUTURE WORK 

          This research work has an objective in mind to improve the 

performance of QR algorithm. It is already conclude that the QR 

algorithm usually work well with matrices that are graded 

downward by diagonals. There is no formal analysis of why the 

algorithm succeeds or fails on a graded matrix. Our next 

objective is to give the theoretical proof why graded downward  

 

 

or graded upward approach will help in finding eigenvalues for 

matrices. 
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