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I. INTRODUCTION AND STATEMENT OF RESULTS 

he following result known as the Enestrom –Kakeya Theorem [3] is well-known in the theory of the distribution of zeros of 

polynomials: 

Theorem A: Let 
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Then P(z) has all its zeros in the closed unit disk 
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In the literature there exist several generalizations and extensions of this result .Recently, Y. Choo [1] proved the following results: 
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Theorem C: Let 
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If 
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then P(z) has all its zeros in the disk  2Kz 

, where 2K
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Theorem D: Let 
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If 1  knkn aa
 (i.e. 10   ), then P(z) has all its zeros in the disk  2Kz 

, where 2K
 is the greatest positive root of the 
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In this paper we generalize the above results with less restrictive conditions on the coefficients. In fact, we prove the following results: 
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Remark 1: Taking ,1,0   Theorem 1 reduces to Theorem B. 

Taking 
0

, Theorem 1 gives the following result: 

Corollory 1: Let 
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Theorem 2: Let 
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Remark 2: Taking ,1,0   Theorem 2  reduces to Theorem C. 

Taking 
0

, Theorem 2 gives the following result:  
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Remark 3: Taking ,1,0   Theorem  4  reduces to Theorem D. 

Taking 
0

, Theorem 3 gives the following result:  

Corollory3 : Let 
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II. LEMMAS 

 

For the proofs of the above results , we need the following result: 

Lemma 1: Let P(z)=
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The proof of lemma 1 follows from a lemma due to Govil and Rahman [2].  

 

III. PROOFS OF THE THEOREMS 

Proof of Theorem 1: We first prove that 1K
>1 and 2K

>1. 
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This inequality holds if                 
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and thus all the zeros of F(z )and hence P(z) with modulus greater than 1  lie in the disk 2Kz 
, where 2K

 is the greatest positive 

root of the equation  
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It is easy to see that 
12 K

 and all the zeros of P(z) with modulus less than or equal to 1 are already contained in 2Kz 
. 

That proves Theorem 3. 
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