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Abstract- In this paper is to introduce the idea of integration of tensor field .The definitions of indefinite and definite for tensor fields are similar to
the analogous definitions for integrals functions differential calculus , and the definite integral tensor fields is also a tensor field of the sum type.

Index Terms- ™ The dual space of a vector space is defined as follows : the dual space V" @ k € N given a vector space V,,..... ,V, one

can define a vector space V, &..... ®V, called their tensor product . BiThe definite integral tensor of f; on a closed interval [a, b] is defined
b
by the Newton -Leibniz formula | f dt=f, |: = f (b) — f(a) ™ the indefinite integral of a vector field [X ,Y] is of the form

I[X Y ],dt =Y, +Y, , where Y is adifferentiable vector field.

I. INTRODUCTION

The metric tensor is called positive-definite it assigns a positive vault every non-zero vector , a manifold equipped with a positive

define metric tensor is a known a Riemannian manifold , having define vectors and one-form we can define tensor , a tensor of
rank (m, n) also called (m, n) tensor , is defined to be scalar function of m one-forms and v vectors that is linear in all of its
argument, if follow at once that scalars tensors of rank (0,0) , for example metric tensor scalar product equation

P (\7) = <5,\7> requires a vector and one-form is possible to obtain a scalar from vectors or two one-forms vectors tensor the
definition of tensors , any tensor of (0,2) will give a scalar form two vectors and any tensor of rank (0,2) combines two one-forms

to given (0,2) tensor field g, called tensor the gx’1 inverse metric tensor , the metric tensor is a symmetric bilinear scalar function

of two vectors that g, and g, is returns a scalar called the dot product .

(1.1) g(V,.W)=V.W =WV =g(W,V).
Next we introduce one-form is defined as linear scalar function of vector 5(\7) is also scalar product 5(\7) = <|5,\7>
one-form p satisfies the following relation.

(1.2) P(aVv +bW) = <P,a\7 +va> - a<5,\7>+b<|5,vx7> —aP(V)+bPW)

and given any two scalars a and b and one-forms P , (5 we define the one-form a P + b(§ by.

(1.3) (aP +bQ) (V) =(aP +bQ,V) =a(P,V)+b(Q,V) = aP(V) +bQ(V)

and scalar function one-form we may write <|3,\7> =P(M)=V(P), for examplem=2,n=0and
T (aP +bQ,cR+dS) =acT(P,R)+adT(P,S)+bcT(Q,R)+bdT (Q,S) tensor of a given rank form a liner algebra mining
that a liner combinations of tensor rank (M, N) is also a tensor rank (m,n) , and tensor product of two vectors A and B given a
rank (2,00, T=A®B, T(P,Q)=A(P).B(Q)and ®to denote the tensor product and non commutative

A®B=B® Aand B = cAfor some scalar , we use the symbol & to denote the tensor product of any two tensor e.g
P®T =P ® A® B is tensor of rank (2,1). The tensor fields in inroad allows one to the tensor algebra A, (T M ) the tensor

spaces obtained by tensor protects of space R, T M and T M using tensor defined on each point p € M field for example
M be n-dimensional manifolds a differentiable tensor t | A, (T M) are same have differentiable components with respect , given
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by tensor products of bases[ o j =T M .k =1 n and (dxk)p < T »M induced by all systems on M . Laplace-

ox"
“Bltrami operator” plays a fundamental role in Riemannian geometric in real applications smooth metric surface is usually as
triangulated mesh the manifold including mesh parameterization segmentation let V is the space whose elements are linear functions

fromV " is denote its dual space , we denote the of & (V *) then & :V —> R for the any v €V we denote the value of & on v by
o(V)orby (v,o).

Tensor Riemannian Geometry . A C~ covariant tensor field of order r on C* manifold M is function M is assignsto each p e M
an element ¢ of f"(T M) and which has additional property that given any (X, X,,....., X,) ,C~ vector fields on an open
subset U of M , then ¢ (X, ,...., X )is C~functiononU , defined by ( X, X,,....., X),P = (X, ,...., X, ) we
denote by f " (M) the set of all C ™ covariant tensor fields of order ron M . For each ¢ e f"(U) including the restriction to

U of any covariant tensor field on M , has a unique expression form.
(1.4) q):;,...,Zam...,air(w"®,....,w”)

where at each pointU, a,,,..,,, are go(Eil,..., Eir)are the component of ¢ in the basis (W”®, ..... ,®w”)and is C~ function on

U . The tangent space T M is defined as the vector space spanned by the tangents at [ to all curves passing through point pin
the manifold M , and the cotangentTp*M of a manifold at p € M is defined as the dual vector space to the tangent space T ,M ,
we take the basis vectors g — (%) for T,M and we write the basis vectors Tp*M as the differential line elements
e' = dx' thus the inner product is given by <6/6x, dx‘> =5,

A alternating covariant tensor field of order r on M will be called an exterior differential form of degree I , or some time simply r-
form , the set A" (M) of all such forms is a subspace of f"(M), for example A(M) denote the vector space over R of all
exterior differential forms , then for ¢ € A" (M) and y € A° (M) the formula ((p A W)p = @, Ay, defines an associative product

satisfying (¢ Ay )=(=1)" ( A @) with this product A(M ) is algebraover R if f € C*(M) we also have

(1.5) flpy)=pA(fy) =y A (fp)
is a field of co frames on M or an open set U of M , an oriented vector space is a vector space plus an equivalence class of
allowable bases choose a basis to determine the orientations those equivalents to will be called oriented or positively oriented bases or

frames this concept is related to the choice of a basis Qof A"(V), say that M is oriented if is possible to define a C* n-form
€ on €2 which is not zero at any point in which case M is said to be oriented by the choice .

Il. TENSOR ON A VECTORS SPACE

2.1 Tensors
In this section some fundamental constructions for a real vector space V are introduced . The dual space V "the tensor spaces

T (V) and the alternating tensor spaces A“ (V) . The presentation is based purely on linear algebra , and it is independent of all the
following , where we shall apply the theory of the present section to the study of manifolds. The linear spaceVV will then be the
tangent space T ;M at a given point. Let VV be a vector space over R .For our purposes only finite dimensional space are needed ,

so we shall assume dim. VV < oo whenever it is convenient .

2.2 The dual space
We recall that the dual space of a vector space is defined as follows : the dual space V "is the space of linear maps £ :V — Ra

liner map £ eV s often called a linear form equipped with the V ~becomes a vector space on its own. The basic theorem about
V" for V finite dimensional , is the following

Definition 2.2.1
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The dual space Vs the space of linear maps £ :V — R alinear map £ <V "is often called a linear form . Equipped with the

natural algebraic operations of addition and scalar multiplication of maps V ~becomes a vector space on its own. The basic theorem
about V “for V finite dimensional is the following .

Theorem 2.2.2
Assume dimV =ne Nand let e,.....,.e, e Rbe a basis (i) For each i=1,.....,nan element ¢, eV is defined by
S (ae +..... +ae,)=a , a,...,a, € R.(ii)theelements £,,....,<, form a basis for V " ( called the dual basis )

Proof :
Is easy for (ii) notice first that tow linear forms on vector space are equal, if they agree on each element of a basis . Notice also that it

follows from the definition £, that £, (e;) =&, let £ eV ™, then

¢ = E é’(ei )gl
Because the two sides agree on each e, .This shows that the vectors £,...... , & space V ". They are also linearly independent, for

>bg =0then b, =>b, g, (e;) =0forall j.

Corollary 2.2.3
If dim V = nthen dim V"if a linear form ¢ eV " satisfies that £ (V) =O0for all v eV , then by definition ¢ = O then
similar for elements v eV needs.

Corollary 2.2.4
Let veV if v= Othen £(v) = Oforsome £ eV ™.

Proof :
For simplicity we assume dim v < oo ( although the result is true in general ) . Assume v == O. Then there exists a basis

e,,....,e, for VV . This can be seen from the following theorem , which shows the elements of V " can be used to detect whether a
given belongs to a given subspace .

2.3 The dual of a linear map
Let V,W be vector space over R, and let T :V — W be liner . By definition, the dual map T" :W ™~ — V " takes a linear form

n €W "to its pull-back by T , thatis T "(77) =7 oT . It is easily seen that T " liner. For example assume V and W are finite
dimensional and letT :V — W be linear . If T is represented by a matrix (@,;) with respect to the dual base.

Lemma 2.3.1
Assume V and W are finite dimensional, and let T :V — W be linear . If T is represented by a matrix (e, ) with respect to

some given bases then T ™ is represented by the transposed matrix (e;;) with respect to the dual spaces .

Proof :
Let e,,....,e,and f,,...., f_denote the given base for V and W the fact that T is represented by (@, ;) is expressed in the

equality Te, =Xa f.. Let &,.....,&,and 7,,....,77, denote the dual bases for V" and W "then &, , =7, (Te;)we now

obtain with £ =T 7« that .
T = Zle*nk (e))¢; = Zjlﬂk(Tej)gj = Zj:ak,j‘/;j
2.4 Tensors vector spaces
We now proceed to define tensors . Let k € N given a vector space V,,.....,V, one can define a vector space V, ®.....®V, called
their tensor product . The element of this vector space are called tensors with the situation where the vector space V,,.....,V, are all

equal to the same space. In fact the tensor space T *V we define below correspondsto V"1 ®..... ®V " in the general notation.
And we define V* =V x....xV be the Cartesian product of k copies of V .A map ¢ from V *to a vector space U is called
multiline if in each variable separately ( i.e with the other variables held fixed ) .
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Definition 2.4.1
Let V¥ =V x..... =<V be the Cartesian product of k copies of V . Amap ¢ from V ¥ to a vector space U is called multiline if
it is linear in each variable separately ( i.e with the other variables held fixed )

Definition 2.4.2

A(covariant) k-tensor on 'V is a multilinear map T :V* — R. The set of k-tensors on V is denoted T*(V) . In particular,
a 1-tensor is a linear form, T*(V) =V ". Itis convenient to add the convention that T°(V) = R. The set T* (V) is called tensor
space, it is a vector space because sums and scalar products of multilinear maps are again multilinear.

2.5Alternating tensors
Let V be a real vector space . In the preceding section the tensor spaces TV were defined , together with the tensor product
(S, T)>S®T, T(V)XT'(V) > T "' (V)there is an important construction of vector spaces which resemble tensor

powers of V , but for which there is a more refined structure, These are the so-called exterior powers V , which play an important
role in differential geometry because the theory of differential forms is built on them. They are also of importance in algebraic

topology and many other fields. A multiline map @ :V* =V x....xV — U where k >1is said to be alternating if for all

Y/ ,V, are inter-changed that is ¢@(Vv,,...... Viren Vi) = =@V, Ve, Vi, V) since every permutation of numbers
1,...... ,k can be decomposed into transpositions, it follows that ¢@(v_,,....,v_, ) =sgne(v,,.....,v,) for all permutations
o €8S, of the numbers 1,.....,k .For example let V = R®the vector product (v,,v,) —>V,xV, eV is alternating for

V xV —V .And let V = Rthe nxn determinant is multinear and alternating in its columns, hence it can be viewed as an
alternatingmap (R")" —»> R.

Lemma 2.5.1

Let @ :V* — U be multilinear . The following conditions are equivalent : (a) ¢ is alternating . (b) @(V,,...,V, ) = O whenever
two of vectors v,,....,Vv, are linearly dependent

Proof :

(@ = (b) if so implies ¢@(v,,....,v,) =0 ,@ = (b) consider for example the interchange of v,and v,. By linearity
O=¢(V,+V,,V, +V,, ... ) =V, V,,.... ) 0V, Vyyen ) + @V, Vg yen) + (VL Y, enn) = (VL Y,y enn) + (VL V)

If follows that @(v,,....,V,) = —@(V,,V,,....) (@) = (c) if the vector (v,,...,V,) are linearly dependent then one of then can be

written as a linear combination of the others. It then follows that P(Vyree Vi) is a linear combination of terms in each of which
some V, appears twice (a) => (b) obvious . In particular , if kK >dim.V then every set of k vectors is linearly dependent, and hence

@ = 0 is the only alternating map V* — U .

Definition 2.5.2
An alternating k-form is an alternating k-tensor V¥ — R the space of these is denoted A* (V) , itis a linear subspace of T* (V)

Theorem 2.5.3
Assume dim V = nwith e,,....,e a basis . let &,,....,&, €V "denote the dual basis . The elements ¢, ®....® ¢, where

I =(i,,....,i,) is an arbitrary sequence of k numbers in {1 n },form abasisfor T“(V) .

Proof :

Let T, =4, ®...... ® g, - Notice that if J =( j,,....., j, ) is another sequence of k integers , and we denote by e, the element
€,,....€, €V then T (e;)=5,,thatis T (e;)=1if J =1and 0 otherwise . If follows that the T  are linearly

independent, for if a liner combination T = > &, T, is zero, then a; =T (e;) = 0. It follows from the multilinearity that a k-tensor
I

is uniquely determined by its values on all elements in V * of the form e, . For any given k-tensor T we have that the k-tensor
>T (e, )T, agrees with T on all e, hence >T (e, )T, and we conclude that the T, span T “ (V) .
I I
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2.6 The wedge product
In analogy with the tensor product (S,T) —>S®T form T*(V)xT'(V) ->T**(V), there is a construction of a product

A“(V) x A'(V) — A“*since tensor products of alternating tensors are not alternating , it does not suffice justtotake S ® T .

Definition 2.6.1
Let Se A*(V)and T € A'(V). The wedge product S AT € A**(V) is defined by S AT = ALt(S ®T) .Notice that in

the case k = 0 ,where A*(V) = R, the wedge product is just scalar multiplication .

Example 2.6.2
Let 7,,77, € A"(V) =V "then by definition 7, A7, =1/2(n, ® 5, —n, D n,) since the operator . Alt is linear the wedge

product depends linearly on the factors S and T . It is more cumbersome to verify the associative rule for A . In order to do this we
need the following .

Lemma 2.6.3

Let Re A“(V), SeA'(V)and T € A" (V) then

2L (RAS)AT=RACAT)=A(R®SX®T)And RA(SAT)=AIt (RRAI(S®T)=A(R®S®T)
The wedge product is associative, we can write any product T, A..... AT, of tensor T, € A“'(V) without specifying brackets. In

fact it follows by induction from that T, A..... AT, =Al(T, ®...... ®T,) regardless of how brackets are inserted in the wedge

viewed as 1-forms, the basis elements £, are written in this fashionas ¢, =&, A..... A& where | =(i,....,i, ) is an increasing

sequence form 1,...., n this will be our notation for £, from now on . The wedge product is not commutative . Instead, it satisfies the
following relation for interchange of factors.
In this defined a tensor ¢ onV is by definition a multiline V " denoting the dual space toV , r its covariant order and S its contra

variant order , assume r = Qor s > 0 thus ¢ assigns to each r-tupe of elements of V and S tupelo of elements of V " a real number
and if for each K ,1 < K < r + S we hold every variable except the ¢ fixed the k — th satisfies the linearity condition

(2.2) SV,,.c.,av, +a'Vv,.)=(v,,...v, )+ &d'$(V,.....,V,

Foralla,a’ € Randv,,v, €V or V respectively for a fixed I , S we let " (V) be the collection of all tensors onV of covariant
order S and contra variant order r , we know that as a function from (V ... xV xV" x ...><V)to order R they may by added
and multiplied by scalars elements R with this addition and scalar multiplication f"(V)is a wvector space so that
ifg, ¢, e f (V)and o, x, € R then o, ¢, + &, ¢, defined in the way alluded to above that is by.

(2.3) (i + o) (ViV,,)= v (v, V,,)+ a, ¢, (V,,V,,..0)

Is multiline and therefore in f_" (V) this f." (V) has a natural vector space structure. In properties come naturally interims of the
metric defined those spaces are known interims differential geometry as Riemannian manifolds a convector tensor on a vector V is
simply a real valued ¢(v,,Vv,,....,Vv,) of several vector variables (v,,....,v,) of V the multiline number of variables is called the
order of the tensor , a tensor field ¢ of order r on linear in each on a manifold M is an assignment to each point p € M of tensor

@, on the vector space T, M which satisfies a suitable regularity condition C° C”or C"as Pon M .

Definition2.6.4
With the natural definitions of addition and multiplication by elements of R the set f." (V') of all tensors of order I , S on V formsa

vector space of dimension n"** .

Definition2.6.5
We shall say that g € f."(V), V a vector space is symmetric if for each1<i, j <r ,we ¢(v1,v2,...,v,

jreee

V,,...,v, )similarly if
interchanging the i —th and j —th variables1 <, j < r changes the sign, —¢(v1,v2 yeees Ve Vigeens Vy )then we say ¢ is skew or
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anti symmetric or alternating covariant tensors are often called exterior forms, a tensor field is symmetric respective alternating if it
has this property at each point.

Definition 2.6.7 [ Summarizing and Al-treating Transformations ]
We define two liner transformations on the vector space f'(V), a symmertrizing mapping f : f"(V) — f'(V), alternating

mapping.
(2.4) A:f (V) — . bythe formula(f ¢)(V1,....,Vr):ri20'¢(val, ..... v.,)

And (Ag)(v,,....,v, ) = %ZO'¢(V(,1, ..... v, )the summation being over all & < G, , the group of permutations of I letter it is
r!'=

immediate that these maps linear transformation on f' (V) in fact @ — ¢ defined by ¢ (v,) = @¢(v_,) is such that a linear
transformations and any linear combination of linear transformations of a vector space is again a linear transformation.

Theorem 2.6.8
The product f"(V)x f°*(V) — f"™(V)just defined is bilinear associative if w*,....,w"is abasislV "™ = f*(V) then
WY®,..... 0w and 1<i,....,i. <nisabasisof f"(V) finally F*:W —V islinear, then

Proof:
each  statement is proved by straightforward computation to say that bilinear means thate, 3 are

numbers @, ¢, € f"(V)andy e T (V) then (ag, + S8,) @y = a(d, @ w )+ B¢, ® w) Similarly for the second variable

this is checked by evaluating side onr + s vectors ofV in fact basis vectors suffice because of linearity associatively is
similarly (p ® w )® @ = p(py ® ¢), the defined in natural way this allows us to drop the parentheses to

both (W' ®,....,@w'") from a basis it is sufficient to note that if e,,....,e, is the basis of V dual to (W' ®....® w") then the

o 0 i (iyyernsi ) # (dyrerons i)
(2.5) QU (@ o€y )= 1 g T
1 if (i )= CJpseeeens Iy

(2.6) (WO®,..., QW) (€,41€,0) =W (€, ) WP (€,,)),., W =510, 50

which show that both tensors have the same values on any order set of I basis vectors and are thus equal finally
given F*:W —V if w,,....,w,__ then

' r+s

27) Fle®y)W,...w,.)=p®w(F (W,),...... F"(W,..))
—p(F (W), F (W) w7 (F (W), F(W,,))=(F 0)® (Fy )(W, ..., w, . )
Which proves F™ (o ® ) = (F ") ® (F "y) and completes tensor field.

Remark 2.6.9
The rule for differentiating the wedge product of a p-form & , and g-form g, is
(2.8) d(a, A B,)=da, A B, +(-1)"a, ~dp,

Definition 2.6.10
Let f:M — N beaC~mapof C~ manifolds, then each C~ covariant tensor field o on N determines a C * covariant tensor

field F'p on M by the formula (F @), (X ... X .) =@, (F' X, ,occ.. . F X, Ythemap F": f"(N) —> f"(M)so
defined is linear and takes symmetry alternating tensor to symmetric alternating tensors.

Lemma 2.6.11
Let 2 == O be an alternating covariant tensor V' of order n=dim.V and lete,,...., e, be a basis of V' then for any set of

vectors V, ..., V, withv, = X /e, we have, Q(v,,....,V,) = det|aij| :
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Example 2.6.12
I. Possible p-forms < ; in two dimensional space are .
&, = f (X, y)
(2.9 o, =u(X, y)dx+v(x, y)dy
a, =¢(X,y)dxAdy
The exterior derivative of line element givens the two dimensional curl times the area
du(x, y)dx+v(x, y)dy |=(6,v—a,u)dxdy .
I1. the three space p-forms &, are.
a, = f(x)

a, =V, dx' +v, dx? + v, dx®

1

(2.10)

a, =w, dx®> Adx® +w, dx® Adx' +w, dx' A dx?

2
a, = p(X)dx* A dx? A dx®

We see that o, A a, =(V,w, + v,w, +v,w, )dx* A dx* A dx*and
1
da, =(<9ijkajvk)E(s‘ijmdx1 A dx™

de, :( O,W, + O,W, + 83W3)dx1 A dxt A dx®

Where &, is the totally anti-symmetric tensor in 3-dimensions.The isomorphism vectors tensor field we saw in the equation
V = gV, )=g(,V)and V = g*107,-) = g’l(-,\7) the link between the vector and dual vector spaces is provided by g and

gtif A=B components A“ = B* then A=B components B, =g, B"so where A, =g, A"and B, =g, B"so why

do we bother one-forms when vector are sufficient the answer is that tensors may by function of both one-form and vectors , there is
also an isomorphism a mongo tensors of different rank , we have just argued that the tensor space of rank ( 1.0) vectors and (0.1) are

isomorphic, in fact all 2™*" tensor space of rank (m + n) with fixed (m + n) are isomorphic, the metric tensor like together these

uv uv

spaces as exempla field by equation TW*

(2.11) T,=9"(e"T,,€) 9"T, ., =0"g,T.

up vk

The isomorphism of different tensor space allows us to introduce a notation that unifies them , we could effect such a unification by

=g(€,, T "“.x€,) we could now use the inverse metric

discarding basis vectors and one-forms only with components, in general isomorphism tensor vector A defined by

(2.12) A=A&8"“=AQg"E =A"E,

And A = RE" is invariant under a change of basis because €“ transforms like a basis one-form .

2.7 Tensor fields

The introduced definitions allows one to introduce the tensor algebra A (T M) of tensor spaces obtained by tensor products of

space R and (T M) and (T "»M). Using tensor defined on each point p € M one may define tensor fields.

Definition 2.7.1
Let M be a n-dimensional manifold . A differentiable tensor field t is an assignment p — t_ where tensors t, € A, (I'p M) are of

the same kind and have differentiable components with respect to all the canonical bases of A, (T,M) given by product of bases

%} g .

{—K | }k =1..,n T M and dx;k =1,...,n=T_ M induced by all of local coordinate system M .
ox* 'p ¥ )

In particular a differentiable vector field and a differentiable 1-form ( equivalently called coveter field ) are assignments of tangent

vectors and 1-forms respectively as stated above.

For tensor fields the same terminology referred to tensor is used .For instance, a tensor field t which is represented in local

®dx’ | s said to of order (1,1).

p

N
coordinates by t;( p)y
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(1) It is clear that to assign on a differentiable manifold M a differentiable tensor field T ( of any kind and order ) it necessary and
sufficient to assign a set of differentiable functions . (xl,...., X" )—> T ,-k( X, X" )

In every local coordinate patch ( of the whole differentiable structure M or, more simply , of an atlas of M ) such that they satisfy
the usual rule of transformation of comports of tensors of tensors if (xl,...., x")and (yl,...., y" )are the coordinates of the same
point p € M in two different local charts .

®..0—2| @dx" | ®..@dx |
. ox'" |, P P
(2) it is obvious that the differentiability requirement of the comports of a tensor field can be choked using the bases induced by a
single atlas of local charts. It is not necessary to consider all the charts of the differentiable structure of the manifold.
(3) If X is a differentiable wvector field on a differentiable manifold, M defines a derivation at each point

peM:if fe D(M ) X, (f)=X i(p)% where (xl,...., x")are coordinates defined about p . More generally every
X

p

differentiable vector field X defines a linear mapping from D(M)to D (M)given by f — X (f)for every
f e D(M) where X(f)e D(M)isdefinedas X (f)(P)=X _(f) forevery pe M .

(4) for (contra variant ) vector field X on a differentiable manifold M , a requirement equivalent to the differentiability is the

following the function X (f):P — X (f), ( where we use X as a derivation ) is differentiable for all of f € D(M).

Indeed if X is a differentiable contra variant vector field and if f « D(M), one has that X (f):P — X (f)is a
differentiable function too as having a coordinate representation .
X(f)ept:pU)e(X....,x")—> X' (xl,....,x”)%
X
In every local coordinate chart (U,#)and all the involved function being differentiable . Conversely p — X () defines a
function in D(M), X(f)for every f € D(M) the components of p — X _(f)in every local chart (U, ) must be
differentiable . This is because in a neighborhood of q e U , X '(q) = X (f @ )
Where the function f® e D(M ) vanishes outside U and is defined as r — x'(r), h(r) in U where x'is the i-th component
of ¢ (the coordinate x') and h a hat function centered on q with support in U . Similarly the differentiability of a covariant vector

(><1 ..... xn)

field w is equivalent to the differentiability of each function p — <X o W, > for all differentiable vector fields X .
(5) If f € D(M) the differential of f in p, df isthe 1-form defined by df = % dx’ |p in local coordinates about p .
X p

The definition does not depend on the chosen coordinates .As a consequence , the point p € M, p — df  defines a covariant

differentiable vector field denoted by df and called the differential of f .
(6) The set of contra variant differentiable vector fields on any differentiable manifold M defines a vector space with field given by
R is replaced by D(M), the obtained algebraic structure is not a vector space because D(M ) is a commutative ring with

multiplicative and addictive unit elements but fails to be a field . However the incoming algebraic structure given by a vector space
with the field replaced by a commutative ring with multiplicative and addictive unit elements is well know and it is called module.

I11. INTEGRATION OF TENSOR FIELDS

In the previous in this section we defined the Lie derivative of tensor field along a few a, = exptX of a vector field X

Analogously , one can spank about an integration of tensor fields. In particular we need to recover a tensor field its known Lie
derivative with respect to the vector field X .

Definition 3.1
The indefinite integral of a function f," with respect to the parameter t is defined as the set of all ant derivatives of f,'along flow

a, of X symbolized by .
(3.1) Jf dt="f + f,
Where f,isan invariantof X i.e X f, =0.

Definition 3.2
The definite integral of f,” on a closed interval [a, b]is defined by the Newton —Leibniz formula.
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(3.3) [/ dt=f, | = f(b)— f(a)

f is a tensor field, then along with the Lie differentiation one can speak about an integration of tensor fields along the flow of X .
Let S and Q be smooth tensor fields of the same type on M .
Definition 3.3
A tensor fields, Q issaid to be an ant derivative of S along the flow X if Q"' =1,Q =S .Let Q,and Q, be tensor fields of the
same ant derivative of S .then the second one is an ant derivative of S if and only if Q, —Q, = Q, where Q, is an invariant tensor
field along the flow of X ,i.e 1,Q, =0.
Definition 3.4
The indefinite integral of the tensor field S with respect to t is defined as the set of all ant derivatives of S along the flow a, of

X ,symbolized by .
(3.4) JS,dt=0Q, —Q,
Where Q is a ant derivative of S and I, Q, = O the next proposition relates the integration and the Lie differential of tensor fields.
Proposition 3.5

Let Q be an ant derivative of S along the flow a, of X and suppose S is continuous on a closed interval [a, b] .Then the definite
integral of S is defined by .
(3.5) [S.dt=Q, —Q,
Proof:

Let the closed interval [a, b]be partitioned by points a =t, <t, <....<t_, <t <t , <...<t _, <t = b then the definite

integral of S is defined by taking the limit of the sum.

b . n
£ Sdt=Ilim__ .. . ESéAti

Where S, is the value of Sat an arbitrary point & e (t, ,,t) and At =t —t _ is the length of the subinterval

i =1,2,...,nAccording to the mean value theorem there is one point & in each open interval (t, —t, ) such that

S&EAL =Q,, —Q, ,wehave Q, —Q, = i(Q“ —Q,,.,) which can be rewritten as .

(3.6) Q, —Q, =2S&At,
Then taking the limit of sum in the right-hand side (3.6) as n — oo we obtain . Let Y be differentiable vector field on M .
3.7) {[X,Y ]dt=Y, -V,

Example 3.6 ( Geometrical examples)

. . ) o o . . . .
Let us consider the linear vector field X =— ya— + E on the x,y plane the flow a, of X is a uniform circular motion around the
X

origin &, : (X, y) —> (xcost—ysint, ycost+ xsint)the indefinite integral of a function along the flow &, is defined by
(3.1), where f, = f, (1) isa function of invariant | =x* + y?of X form (3.3) it follows that the indefinite integral of a vector
field [X,Y ]is of the form I[X ,Y]tdt =Y, +Y,, where Y is a differentiable vector field on the Xy plane, and Y, is of the form
o 0 . . o 0 .
Y, =&(X, y)—+71(X,y)—. According to condition |X,Y,[=(X&+7n )—+(X7p—& )— = Othe functions & and
o = Y N g X YoJ=(Xe v ) S r (Xn—) 5

77 must satisfy the system of linear ODEs .
77” + 77/ — O

Where prime denotes the derivative with respect to X . Supposes two function f = xand g = y be given on the X, y plan .The
dragging of those functions and the function f + g = X+ yalong the flow of X are described by f, =X, ,9, =Y, and

{5"+§'=o

(f +49), =(x+y),respectively . Let us calculate the corresponding definite integrals on the closed interval [a, b] = [0%} .

By (3.2) we have.
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fft’dt:?x[dtzxtﬁ =—X—Yy

(0] 0

3 2 =

ggtdt = J[;y(dt:yt|02 :X_y

F(f +)dt=F(x, —y,) dt=(x, +y,)¢ =2y
(0] [0]

Consider the vector field Y =§the Lie derivatives of Y with respect to X is described the vector — function
y

Y’ =[X .Y]=ai LY = [X.Y']=—%=—Y thus we have Y”+Y’ =0 and the dragging of Y along the flow of X is
X

described by the vector-functionY, =Ta,Y =sint ai + cost % then using we obtain the definite integral of field Y' = ai on
X X

T
the closed interval [0, ?}

T

JZ' i dt:Yt |% :i_i1 i :Costi_sinti
o\ OX J, ° ox oy \ox)/, OX oy

The figure (1) illustrate the meaning of the definite integral of a vector field on the .

1 Ya dy
YA A A 1 A A

), :
N

Figure (1) : the flow of X is the uniform circular motion around the origin in the counterclockwise direction . The Lie derivative of

I

Y v Y
v =
1]
e

Yy yy

o < thafiald ¥/ — O
Y =E(south wind ) with respect to X is the field Y = o (westwind).

B

Figure (2) : The field Y is rotated in moving frame according to the law Y, =Y cost+Y 'sint ( the wind changes own direction

rotating clockwise ) . The calculating of definite integral T[X Y ]dt yields the field ai , ai (north-west wind )
0 X 04
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90°

o

Figure (3): the summands for the integral sum are defined by the mean value theorem taking the limit of the integral sum. We obtain
the closing line to the hodograph of Y;, the hodograph is the velocity as function of time . The hodograph of the vector-function
Y, has the same trajectory as X but with opposite direction . The integral sum LY 4 At is a broken line to the hodograph and the

integral Eva a_y is a straight line closing this broken , see Figure (3) .
Example 3.7

Let three vector fields X = zi—yi Y =—zi+ xi Z = yi—xi

Be given in space in the space xyz. The flows of Y, X and Z are rotation about three axis Xyz respectively . Let us consider the
dragging of Y along the flow of X the dragging of Z along the flow of Y and the dragging of X along the flow of Z :
Y'=[X,Y]=Z ,Y"+Y =0 =Y, =Y cost+Zsint
=[v,z]=X ,Z2"+Z=0=Z, = Zcost+ X sint
X'=[Z,Y]=Y,X"+X =0= X, = X cost+Y sint
Let us calculate the integrals of Y, X and Z on a closed interval [a, b],

fz,dt=1[x,Y]dt=Y, —Y, = 2sin a;b[Ysin azb —Zcosa;bj

lfxldt:tf[Y,Z]dtzzb —Z_ =2sin a;b(Zsin a;b - X cosazbj

fYdt=f[z,x]dt=X, X, =2sin2_

t

T
Taking @ =0 and b = > we obtain three vector fields .

7 o o o

Zdt=(y—2z)——X——x—

(3.8) JZdt=(y )ax o
7 o o o
Xdt=—y-2 _(x+2) L —y-<L
(3.9) IX, y )8y Y=

7 o o 0

Ydt=y-< —(x+2) Ly <L

(3.10) o~ (x+2) >V

The flow of the field (3.8) is.

(X, Y,2) = {x, _xcosJ_+(y+z)S'nJ_

=
(xy,2) > {y, = —x%_(y+ Z)%

_ sin+/2t 1—cos+/2t
0y, f =2 x = (Y2
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From the equalities Y. —2, = Y —Zand 2X; + (Y +2)* = 2X* + (Y + 2)” we obtain two invariants .
(3.11) I, =2x*+(y+2)* , l,=y~-z
It means that the level surfaces of the trajectories of the field (3.9) are elliptic cylinders with axis of rotation Y +z=0 , Xx=0,

The trajectories are ellipse on the intersections of cylinders 1, =C = O with plane |, =€ = O perpendicular to the axis of rotation
the flow of the field (3.9) is .

(X, Y,2) > {x, =x— y—Sirl/%E —(x+ Z)—l—c?/sE«/E

(X, Y,2) = {y, =ycos+/2t +(x + z)L v2t
V2
1—cos+/2t

(x,y,z)ﬁ{zl:z—y%—(x+z) >

And the invariants are 1,=2X* +(y +2)* , 1,=Y — Z the level surface the trajectories of the field (3.9) are elliptic with axis of

y+z=0, X

rotation =0the trajectories are ellipses on the intersection of the cylinders 1, =C =0 with planes

I, = ¢ = O perpendicular to the of rotation from Io%Yldt =—fo§ X dt it follows that the flow and invariants of the fields (3.9) and
(3.10) are the sume, but the trajectories of these fields are opposite directed.
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IV. CONCLUSION

(a) The introduced definitions allows one to introduce the tensor algebra AR (T pM ) of tensor spaces obtained by tensor products of space
R and (I'pM ) and (T* pM) . Using tensor defined on each point p € M one may define tensor fields.

(b) the tensor product (S, T) —>S®T form Tk W) <! V) —>Tk+l(\/) , there is a construction of a product

AK V) x Al V) —> AR+ since tensor products of alternating tensors are not alternating.
(c) The definite integral of f{ on a closed interval [a, b] is defined by the Newton —Leibniz formula.

b b
d) Jf dt=f | =Ff(®O)-f(a)
a

(e) f isatensor field, then along with the Lie differentiation one can speak about an integration of tensor fields along the flow of X . S and
Q be smooth tensor fields of the same type on M .
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