
International Journal of Scientific and Research Publications, Volume 6, Issue 1, January 2016      280 
ISSN 2250-3153   

www.ijsrp.org 

Fundamental Metric Tensors Fields on Riemannian 
Geometry with Applications to Integration of Tensor 

fields 
  Mohamed M.Osman 

Department of mathematics faculty of science  
University of Al-Baha – Kingdom of Saudi Arabia 

    
Abstract- In this paper is  to introduce the idea of integration of tensor field .The definitions of indefinite and definite for tensor fields are similar to 
the analogous definitions for integrals functions differential calculus , and the definite integral tensor fields is also a tensor field of the sum type. 
 
    Index Terms- [1]  The dual space of a vector space is defined as follows : the dual space *V ,[2] Nk ∈ given a vector space kVV ,.....,1 one 

can define a vector space kVV ⊗⊗ .....1 called their tensor product .  [3]The definite integral tensor of tf ′ on a closed interval [ ]ba, is defined 

by the Newton –Leibniz formula )()( afbffdtf b

at

b

a
t −==′∫ .[4] the indefinite integral of a vector field [ ]YX , is of the form 

[ ] 0, YYdtYX tt +=∫ , where Y is a differentiable vector field. 
 

I. INTRODUCTION 

The metric tensor is called positive-definite it assigns a positive vault every non-zero vector , a manifold equipped with a positive 

define metric tensor is a known a Riemannian manifold , having define vectors and one-form we can define tensor , a tensor of 
rank ),( nm  also called ),( nm tensor , is defined to be scalar function of m one-forms and v  vectors that is linear in all of its 
argument, if follow at once that scalars tensors of rank (0,0) , for example metric tensor scalar product equation 

VPVP


,~)(~
= requires a vector and one-form is possible to obtain a scalar from vectors or two one-forms vectors tensor the 

definition of tensors , any tensor of )2,0( will give a scalar form two vectors and any tensor of rank )2,0( combines two one-forms 

to given )2,0( tensor field xg called tensor the 1−
xg  inverse metric tensor , the metric tensor is a symmetric bilinear scalar function 

of two vectors that xg and xg is returns a scalar called the dot product . 

(1.1)                                                                 ),(..),( VWgVWWVWVg


=== . 

 Next we introduce one-form is defined as linear scalar function of vector )(~ VP


is also scalar product VPVP ~,~)(~
=



             
one-form p~ satisfies the following relation. 

(1.2)                                 )(~)(~,~,~,)(~ WPbVPaWPbVPaWbVaPWbVaP


+=+=+=+  

and given any two scalars a and b and one-forms QP ~,~ we define the one-form QbPa ~~
+ by. 

(1.3)                                       )()(~,~,~,~~)()~~( VQbVPaVQbVPaVQbPaVQbPa


+=+=+=+  

and scalar function one-form we may write )~()(~,~ PVVPVP


== , for example 0,2 == nm and 

)~,~()~,~()~,~()~,~()~~,~~( SQbdTRQbcTSPadTRPacTSdRcQbPaT +++=++ tensor of a given rank form a liner algebra mining 
that a liner combinations of tensor rank ),( nm is also a tensor rank ),( nm , and tensor product of two vectors A and B given a 

rank )0,2( , )~().~()~,~(, QBPAQPTBAT


≡⊗= and ⊗ to denote the tensor product and non commutative 

ABBA


⊗≠⊗ and AcB


= for some scalar , we use the symbol⊗ to denote the tensor product of any two tensor e.g 
BAPTP ~~~

⊗⊗=⊗ is tensor of rank )1,2( .   The tensor fields in inroad allows one to the tensor algebra )( MTA pR the tensor 

spaces obtained by tensor protects of space R , MTp and MT p
* using tensor defined on each point Mp∈ field for example 

M be n-dimensional manifolds a differentiable tensor )( MTAt pRp ∈ are same have differentiable components with respect , given 
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by tensor products of bases nkMT
x p

p
k

,....,1, =⊂






∂
∂ and ( ) MTdx pp

k *⊂ induced by all systems on M . Laplace-

“Bltrami operator” plays a fundamental role in Riemannian geometric in real applications smooth metric surface is usually as 
triangulated mesh the manifold including mesh parameterization segmentation let V is the space whose elements are linear functions 
from *V is denote its dual space , we denote the of )( *Vσ then RV →:σ for the any Vv∈ we denote the value of σ on v by 

)(Vσ or by σ,v . 

Tensor Riemannian Geometry . A ∞C covariant tensor field of order r on ∞C manifold M is function M is assigns to each Mp∈  

an element pϕ of )( MTf p
r and which has additional property that given any ∞CXXX r ,),.....,,( 21 vector fields on an open 

subset U of M , then )....,,( 1 rp XXϕ is ∞C function onU , defined by )....,,(,),.....,,( 121 prppr XXPXXX ϕ= we 

denote by )(Mf r the set of all ∞C covariant tensor fields of order r on M .    For each )(Uf r∈ϕ including the restriction to 
U of any covariant tensor field on M , has a unique expression form. 
(1.4)                                                                 ( )riri

ri
i ri

i wwaa ,....,,...,,...,
1

1 ⊗= ∑ ∑ϕ
 

where at each point riiaU ,..,, 1 are ( )rii EE ,...,1ϕ are the component of ϕ in the basis ( )riri ww ⊗⊗,....., and is ∞C function on 
U .   The tangent space MTp is defined as the vector space spanned by the tangents at p to all curves passing through point p in 

the manifold M , and the cotangent MTp
* of a manifold at Mp∈  is defined as the dual vector space to the tangent space MTp , 

we take the basis vectors 






∂
∂

=
ii x

E for MTp and we write the basis vectors MTp
* as the differential line elements 

ii dxe = thus the inner product is given by j
i

idxx δ=∂∂ ,/ . 
A alternating covariant tensor field of order r on M will be called an exterior differential form of degree r , or some time simply r-
form , the set )(MrΛ of all such forms is a subspace of )(Mf r , for example )(MΛ denote the vector space over R of all 
exterior differential forms , then for )(MrΛ∈ϕ and )(MsΛ∈ψ the formula ( ) ppp ψϕψϕ ∧=∧ defines an associative product 

satisfying ( ) ( ) )(1 ϕψψϕ ∧−=∧ sr with this product )(MΛ is algebra over R if )(MCf ∞∈ we also have 
(1.5)                                                                    )()()( ϕψψϕψϕ fff ∧=∧=  
is a field of co frames on M or an open set U  of M , an oriented vector space is a vector space plus an equivalence class of 
allowable bases choose a basis to determine the orientations those equivalents to will be called oriented or positively oriented bases or 
frames this concept is related to the choice of a basis Ω of )(VnΛ , say that M is oriented if is possible to define a ∞C n-form 
Ω on Ω which is not zero at any point in which case M is said to be oriented by the choice . 

II. TENSOR ON A VECTORS SPACE 
  
2.1 Tensors  
In this section some fundamental constructions for a real vector space V are introduced . The dual space *V the tensor spaces 

)(VT k and the alternating tensor spaces )(VAk . The presentation is based purely on linear algebra , and it is independent of all the 
following , where we shall apply the theory of the present section to the study of manifolds. The linear spaceV will then be the 
tangent space MT p  at a given point. Let V be a vector space over R .For our purposes only finite dimensional space are needed , 
so we shall assume dim. ∞≤V whenever it is convenient .  
 
2.2 The dual space  
We recall that the dual space of a vector space is defined as follows : the dual space *V is the space of linear maps RV →:ζ a 

liner map *V∈ζ is often called a linear form equipped with the *V becomes a vector space on its own. The basic theorem about 
*V ,for V finite dimensional , is the following . 

 
 
Definition 2.2.1 
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The dual space 
*V is the space of linear maps RV →:ζ a linear map *V∈ζ is often called a linear form . Equipped with the 

natural algebraic operations of addition and scalar multiplication of maps *V becomes a vector space on its own. The basic theorem 
about *V for V finite dimensional is the following . 
 
Theorem 2.2.2 
Assume dim NnV ∈= and let Ree n ∈,....,1 be a basis (i) For each ni ,....,1= an element *Vi ∈ζ is defined by 

Raaaeaea ninni ∈=++ ,....,,).....( 111ζ . (ii) the elements nζζ ,....,1  form a basis for *V ( called the dual basis )  
Proof : 
Is easy for (ii) notice first that tow linear forms on vector space are equal, if they agree on each element of a basis . Notice also that it 
follows from the definition iζ  that jiji e ,)( δζ = let *V∈ζ , then  

i

n

i
ie ζζζ )(

1
∑
=

=  
Because the two sides agree on each je .This shows that the vectors nζζ ,......,1 space *V . They are also linearly independent, for 

∑ =
i
b 0ζ then ∑ ==

i
jiij ebb 0)(ζ for all j . 

 
Corollary 2.2.3 
If dim nV = then dim *V if a linear form *V∈ζ satisfies that 0)( =Vζ for all Vv∈ , then by definition 0=ζ then 
similar for elements Vv∈ needs. 
 
Corollary 2.2.4 
 Let Vv∈ if 0≠v then 0)( ≠vζ for some *V∈ζ . 
Proof : 
For simplicity we assume dim ∞v ( although the result is true in general ) . Assume 0≠v . Then there exists a basis 

nee ,....,1 for V . This can be seen from the following theorem , which shows the elements of *V can be used to detect whether a 
given belongs to a given subspace . 
 
2.3 The dual of a linear map 
Let WV , be vector space over R , and let WVT →: be liner . By definition, the dual map *** : VWT → takes a linear form 

*W∈η to its pull-back by T , that is TT ηη =)(* . It is easily seen that *T liner. For example assume V and W are finite 
dimensional  and let WVT →: be linear . If T is represented by a matrix )( jia  with respect to the dual base. 

 
Lemma 2.3.1 
Assume V and W are finite dimensional, and let WVT →: be linear . If T is represented by a matrix )( ,ije with respect to 

some given bases then *T is represented by the transposed matrix )( ,ije  with respect to the dual spaces . 
Proof : 
Let nee ,....,1 and mff ,....,1 denote the given base for V and W the fact that T is represented by )( , jia is expressed in the 

equality i
i

jij faTe ∑= , . Let nζζ ,....,1 and mηη ,....,1 denote the dual bases for *V and *W then )(, jiji Tea η= we now 

obtain with kT ηζ *= that . 

j
j

jkj
j

jjj
j

kk aTekeTT ζζηζηη ∑∑∑ === ,
** )()(  

2.4 Tensors vector spaces  
We now proceed to define tensors . Let Nk∈ given a vector space kVV ,.....,1 one can define a vector space kVV ⊗⊗ .....1 called 
their tensor product . The element of this vector space are called tensors with the situation where the vector space kVV ,.....,1 are all 
equal to the same space. In fact the tensor space VT k we define below corresponds to kVV *

1
* .....⊗⊗ in the general notation. 

And we define  VVV k ××= .... be the Cartesian product of k copies of V .A map ϕ from kV to a vector space U is called 
multiline if in each variable separately ( i.e with the other variables held fixed ) . 
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Definition 2.4.1 
Let VVV K ××= ..... be the Cartesian product of k copies of V . A map ϕ from kV to a vector space U is called multiline  if 
it is linear in each variable separately ( i.e with the other variables held fixed ) 
 
Definition 2.4.2 
A(covariant) k-tensor on  V is a multilinear map RVT k →: . The set of k-tensors on V is denoted )(VT k . In particular,          
a 1-tensor is a linear form , *1 )( VVT = . It is convenient to add the convention that RVT =)(0 . The set )(VT k is called tensor 
space, it is a vector space because sums and scalar products of multilinear maps are again multilinear. 
 
2.5Alternating tensors 
Let V be a real vector space . In the preceding section the tensor spaces VT k were defined , together with the tensor product 

)()()(,),( VTVTVTTSTS lklk +→×⊗→ there is an important construction of vector spaces which resemble tensor 
powers of V , but for which there is a more refined structure, These are the so-called exterior powers V , which play an important 
role in differential geometry because the theory of differential forms is built on them. They are also of importance in algebraic 
topology and many other fields. A multiline map UVVV k →××= ....:ϕ where 1≥k is said to be alternating if for all 

kvv ,......,1 are inter-changed that is ),....,,.....,,.....,(),....,,......,( 1 kijiki vvvvvvv ϕϕ −= since every permutation of numbers 
k,......,1 can be decomposed into transpositions, it follows that ),.....,(sgn),....,( 11 kk vvvv ϕϕ σσ = for all permutations 

kS∈σ of the numbers k,.....,1 .For example let 3RV = the vector product Vvvvv ∈×→ 2111 ),( is alternating for 
VVV →× .And let RV = the nn× determinant is multinear and alternating in its columns, hence it can be viewed as an 

alternating map RR nn →)( . 
 
Lemma 2.5.1 
Let UV k →:ϕ be multilinear . The following conditions are equivalent : (a) ϕ is alternating . (b) 0),...,( 1 =kvvϕ whenever 
two of vectors kvv ,....,1 are linearly dependent. 
Proof :  
(a) ⇒ (b) if so implies  0),....,( 1 =kvvϕ ,(a) ⇒ (b) consider for example the interchange of 1v and 2v . By linearity 

,.....),(,....),(,.....),(,.....),(,.....),(),....,()....,,(0 2121212121212121 vvvvvvvvvvvvvvvv ϕϕϕϕϕϕφ +=++=++=  
If follows that ,....),(),....,( 211 vvvv k ϕϕ −= (a) ⇒ (c) if the vector ),...,( 1 kvv are linearly dependent then one of then can be 

written as a linear combination  of the others. It then follows that ),....,( 1 kvvϕ is a linear combination of terms in each of which 
some iv appears twice (a) ⇒ (b) obvious . In particular , if Vk .dim≥ then every set of k vectors is linearly dependent, and hence 

0=ϕ is the only alternating map UV k → . 
 
Definition 2.5.2 
An alternating k-form is an alternating k-tensor RV k → the space of these is denoted )(VAk , it is a linear subspace of )(VT k  
 
Theorem 2.5.3 
Assume dim nV = with nee ,....,1 a basis . let *

1,...., Vn ∈ζζ denote the dual basis . The elements ki ,1 .... ζζ ⊗⊗ where 

),....,( 1 kiiI = is an arbitrary sequence of k numbers in { }n,....,1 ,form a basis for )(VT k . 
Proof : 
Let kiiT ζζ ⊗⊗= ......11 . Notice that if ),.....,( 1 kjjJ = is another sequence of k integers , and we denote by je the element 

k
kjj Vee ∈,....,1 then jIjI eT δ=)( that is 1)( =jI eT if IJ = and 0 otherwise . If follows that the IT are linearly 

independent, for if a liner combination I
I

ITaT ∑= is zero, then 0)( == jj eTa . It follows from the multilinearity that a k-tensor 

is uniquely determined by its values on all elements in kV of the form je . For any given k-tensor T we have that the k-tensor 

I
I

I TeT )(∑ agrees with T on all je hence I
I

I TeT )(∑ and we conclude that the IT span )(VT K . 
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2.6 The wedge product  
In analogy with the tensor product TSTS ⊗→),( form )()()( 1 VTVTVT klk +→× , there is a construction of a product 

1)()( +→× klk AVAVA since tensor products of alternating tensors are not alternating , it does not suffice just to take TS ⊗ . 
 
Definition 2.6.1 
Let )(VAS k∈ and )(VAT l∈ . The wedge product )(1 VATS k+∈∧ is defined by )( TSALtTS ⊗=∧ .Notice that in 
the case 0=k ,where RVAk =)( , the wedge product is just scalar multiplication .  
 
Example 2.6.2 
Let *1

21 )(, VVA =∈ηη then by definition )(2/1 122121 ηηηηηη ⊗−⊗=∧ since the operator . Alt is linear the wedge 
product depends linearly on the factors S and T . It is more cumbersome to verify the associative rule for ∧ . In order to do this we 
need the following . 
 
Lemma 2.6.3 
Let )(,)( VASVAR lk ∈∈ and )(VAT m∈ then  
(2.1) )()()( TSRAltTSRTSR ⊗⊗=∧∧=∧∧ And )()(()( TSRAltTSAltRAltTSR ⊗⊗=⊗⊗=∧∧  

The wedge product is associative, we can write any product rTT ∧∧ .....1 of tensor )(VAT ik
i ∈ without specifying brackets. In 

fact it follows by induction from that )......(..... 11 rr TTAltTT ⊗⊗=∧∧ regardless of how brackets are inserted in the wedge 

product in particular, it follows from [ ]jijikk v
k

vv ,11 )(det
!

1),....,(..... ηηη =∧∧ for all Vvv k ∈,....,1 and *
21,...., V∈ηη are 

viewed as 1-forms, the basis elements Iζ are written in this fashion as kiIiI ζζζ ∧∧= ..... where ),....,( 1 kiiI = is an increasing 

sequence form n,....,1 this will be our notation for Iζ from now on . The wedge product is not commutative . Instead, it satisfies the 
following relation for interchange of factors. 
In this  defined a tensorφ onV is by definition a multiline *V denoting the dual space toV , r its covariant order and s its contra 
variant order , assume 00 ≥≥ sorr  thusφ assigns to each r-tupe of elements ofV and s tupelo of elements of *V a real number 

and if for each k , srk +≤≤1 we hold every variable except theφ fixed the thk − satisfies the linearity condition  
(2.2)                                                        ( ) ( ) ).....,,(...,,..,,...., 111 kkkk vvvvvvv ′′+=′′+ φαααφ   
For all R∈′αα , and Vvv kk ∈′, or V respectively for a fixed sr , we let )(Vf r

s be the collection of all tensors onV of covariant 
order s and contra variant order r , we know that as a function from ( )VVVV ××××× ....... * to order R they may by added 
and multiplied by scalars elements R with this addition and scalar multiplication )(Vf r

s is a vector space so that 

if )(, 21 Vf r
s∈φφ and R∈21,αα then 2211 φαφα + defined in the way alluded to above that is by. 

(2.3)                                             ( ) ( ) ( ) ( ),...,,...,,...., 21222111212211 vvvvvv φαφαφαφα +=+  
Is multiline and therefore in )(Vf r

s this )(Vf r
s has a natural vector space structure. In properties come naturally interims of the 

metric defined those spaces are known interims differential geometry as Riemannian manifolds a convector tensor on a vector V is 
simply a real valued ),....,,( 21 rvvvϕ of several vector variables ),....,( 1 rvv ofV the multiline number of variables is called the 
order of the tensor , a tensor field ϕ of order r on linear in each on a manifold M is an assignment to each point Mp∈ of tensor 

pϕ on the vector space MTp which satisfies a suitable regularity condition ∞CC ,0 or rC as P on M . 
 
Definition2.6.4 
With the natural definitions of addition and multiplication by elements of R the set )(Vf r

s of all tensors of order sr , on V forms a 
vector space of dimension srn + . 
 
Definition2.6.5 
We shall say that )(Vf r

s∈φ , V a vector space is symmetric if for each rji ≤≤ ,1 ,we ( )rij vvvvv ,...,,...,,...,, 21φ similarly if 
interchanging the thi − and thj − variables rji ≤≤ ,1 changes the sign, ( )rij vvvvv ,...,,...,,...,, 21φ− then we sayφ is skew or 
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anti symmetric or alternating covariant tensors are often called exterior forms, a tensor field is symmetric respective alternating if it 
has this property at each point. 
 
Definition 2.6.7 [ Summarizing and Al-treating Transformations ] 
We define two liner transformations on the vector space )(Vf r

s ,   a symmertrizing mapping )()(: VfVff r
s

r
s → , alternating 

mapping. 

(2.4)                                
r

s
r

s fVfA →)(:  by the formula ( )( ) ( )∑=
σ

σσσφφ rr vv
r

vvf ,.....,
!

1,...., 11  

And ( )( ) ( )∑=
σ

σσσφφ rr vv
r

vvA ,.....,
!

1,...., 11 the summation being over all rG∈σ , the group of permutations of r letter it is 

immediate that these maps linear transformation on )(Vf r
s in fact σφφ → defined by )()( rr vv σ

σ φφ = is such that a linear 
transformations and any linear combination of linear transformations of a vector space is again a linear transformation. 
 
Theorem 2.6.8 
The product )()()( VfVfVf srsr +→× just defined is bilinear associative if nww ....,,1 is abasis1 )(1* VfV = then 

)()1( ,...., rii ww ⊗⊗ and nii r ≤≤ ,....,1 1 is a basis of )(Vf r finally VWF →:* is linear , then 
Proof: 
 each statement is proved by straightforward computation to say that bilinear means that βα , are 

numbers )(, 21 Vf r∈φφ and )(Vf r∈ψ then ( ) ( ) ( )ψφβψφαψβφαφ ⊗+⊗=⊗+ 2121  Similarly for the second variable 
this is checked by evaluating side on sr + vectors ofV in fact basis vectors suffice because of linearity associatively is 
similarly ( ) ( )φψϕϕψφ ⊗=⊗⊗ , the defined in natural way this allows us to drop the parentheses to 
both ),....,( )()1( rii ww ⊗⊗ from a basis it is sufficient to note that if nee ,....,1 is the basis of V dual to )....( 1 nww ⊗⊗ then the 
tensor previously ),...,1( riiΩ defined is exactly ),....,( )()1( rii ww ⊗⊗ this follows from the two definitions. 

(2.5)
                                           

( )




=
≠

=Ω
)11

11
)()1(

),...,1(

,.....,(),...,(1
),....,(),...,(0

,.....,
rr

rr
rjj

rii

jjiiif
jjiiif

ee   

(2.6)
                             

)(
)(

)1(
)1(

)(
)2(

)2(
)1(

)1(
)()1(

)()1( ,..,),..,()(),...,(),...,( ri
rj

i
j

ri
j

i
j

i
rjj

rii weweweeww δδ==⊗⊗  
which show that both tensors have the same values on any order set of r basis vectors and are thus equal finally 
given VWF →:* if srww +,....,1 then 

(2.7)                                              ( )( ) ( )
( ) ( ) ( ) ( )( )srsrr

srsr

wwFFwFwFwFwF
wFwFwwF

++

++

⊗==

⊗=⊗

,....,)(),....,()(),......,(
)(),......,(,....,

1
***

1
**

1
*

*
1

*
1

*

ψϕψϕ
ψϕψϕ   

Which proves )()()( *** ψϕψϕ FFF ⊗=⊗ and completes tensor field. 
 
Remark 2.6.9 
 The rule for differentiating the wedge product of a p-form pα and q-form qβ is 

(2.8)                                                              ( ) qp
p

qpqp ddd βαβαβα ∧−+∧=∧ )1(  

 
Definition 2.6.10 
Let NMf →: be a ∞C map of ∞C manifolds , then each ∞C covariant tensor fieldϕ on N determines a ∞C covariant tensor 

field ϕ*F on M by the formula ),......,(),....,()( *
1

*
)(1

*
prppFrPpp XFXFXXF ϕϕ = the map )()(:* MfNfF rr → so 

defined is linear and takes symmetry alternating tensor to symmetric alternating tensors. 
 
Lemma 2.6.11  
Let 0≠Ω be an alternating covariant tensor V of order n=dim.V and let nee ,....,1 be a basis of V then for any set of 

vectors nvv ,...,1 with ∑= j
j

ii ev α we have, j
invv αdet)....,,( 1 =Ω . 
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Example 2.6.12 
I. Possible p-forms pα in two dimensional space are . 

(2.9)

                                                                          dydxyx
dyyxvdxyxu

yxf

∧=
+=

=

),(
),(),(

),(

2

1

0

φα
α
α

 

The exterior derivative of line element givens the two dimensional curl times the area 
[ ] ( ) dydxuvdyyxvdxyxud yx ∧∂−∂=+ ),(),( . 

II. the three space p-forms pα are . 

(2.10)

                                                   
321

3

21
3

13
2

32
12

3
3

2
2

1
11

0

)(

)(

dxdxdxx
dxdxwdxdxwdxdxw

dxvdxvdxv
xf

∧∧=

∧+∧+∧=

++=

=

ϕα
α
α
α

            

We see that ( ) 321
31221121 dxdxdxwvwvwv ∧∧++=∧αα and  

( )
( ) 311

3322112

1
1 2

1

dxdxdxwwwd

dxdxvd m
mjikjkji

∧∧∂+∂+∂=

∧∂=

α

εεα
 

 
Where kjiε is the totally anti-symmetric tensor in 3-dimensions.The isomorphism vectors tensor field we saw in the equation 

),(),(~ VgVgV


⋅≡⋅≡ and )~,(),~( 11 VgVgV ⋅≡⋅≡ −−


the link between the vector and dual vector spaces is provided by g and 
1−g if BA


= components µµ BA =  then BA ~~

= components ν
µνµ BgB = so where ν

νµµ AgA ≡ and ν
νµµ BgB ≡ so why 

do we bother one-forms when vector are sufficient the answer is that tensors may by function of both one-form and vectors , there is 
also an isomorphism a mongo tensors of different rank , we have just argued that the tensor space of rank ( 1.0) vectors and (0.1) are 
isomorphic , in fact all nm+2 tensor space of rank )( nm +  with fixed )( nm + are isomorphic, the metric tensor like together these 

spaces as exempla field by equation ),( k
k eTegT


νλµ
λ

µν ≡ we could now use the inverse metric  

(2.11)                                                           ),(1 k
keTegT 

µν
λλ

µν
−≡ p

kp
k

k
k TggTg νµ

λ
νµ

λ ≡  
The isomorphism of different tensor space allows us to introduce a notation that unifies them , we could effect such a unification by 
discarding basis vectors and one-forms only with components, in general isomorphism tensor vector A defined by 
 (2.12)                                                            µ

µ
ν

µν
µ

µ
µ eAegAeAA


≡== −                      

And µ
µeAA = is invariant under a change of basis because µe transforms like a basis one-form . 

2.7 Tensor fields  
The introduced definitions allows one  to introduce the tensor algebra )( MTA pR of tensor spaces obtained by tensor products of 

space R  and )( MTp and )( * MT p . Using tensor defined on each point Mp∈ one may define tensor fields. 
 
Definition 2.7.1 
Let M be a n-dimensional manifold . A differentiable tensor field t is an assignment ptp → where tensors )( MTAt pRp ∈ are of 
the same kind and have differentiable components with respect to all the canonical bases of )( MTA pR given by product of bases 

MTnk
x ppK

⊂=







∂
∂ ,...,1 and MTnkdx p

k
p

*,...,1 ⊂= induced by all of local coordinate system M . 

In particular a differentiable vector field and a differentiable 1-form ( equivalently called coveter field ) are assignments of tangent 
vectors and 1-forms respectively as stated above. 
For tensor fields the same terminology referred to tensor is used .For instance, a tensor field t which is represented in local 

coordinates by  p

j

p
i

i
j dx

x
pt ⊗
∂
∂)( is said to of order (1,1) . 
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(1) It is clear that to assign on a differentiable manifold M a differentiable tensor field T ( of any kind and order ) it necessary  and 
sufficient to assign a set of differentiable functions . ( ) ( )n

kjj
miin xxTxx ,....,,...., 1

,...,1
,....,11 →  

In every local coordinate patch ( of the whole differentiable structure M or, more simply , of an atlas of M ) such that they satisfy 
the usual rule of transformation of comports of tensors of tensors if ( )nxx ,....,1 and ( )nyy ,....,1 are the coordinates of the same 
point Mp∈ in two different local charts . 

p

kj

p

j

p
mi

p
ikjj

mii dxdx
xx

T ⊗⊗⊗
∂
∂

⊗⊗
∂
∂ ....... 1

1,....,1
,...,1  

(2) it is obvious that the differentiability requirement of the comports of a tensor  field can be choked using the bases induced by a 
single atlas of local charts. It is not necessary to consider all the charts of the differentiable structure of the manifold. 
(3) If  X is a differentiable vector field on a differentiable manifold, M defines a derivation at each point 

( )MDfifMp ∈∈ : , 
p

i
i

p x
pXfX
∂
∂

= )()( where ( )nxx ,....,1 are coordinates defined about p . More generally every 

differentiable vector field X defines a linear mapping from )(MD to )(MD given by )( fXf → for every 
)(MDf ∈ where )()( MDfX ∈ is defined as )()()( fXPfX p= for every Mp∈ . 

(4) for (contra variant ) vector field X on a differentiable manifold M , a requirement equivalent to the differentiability is the 
following the function )(:)( fXPfX p→ , ( where we use pX as a derivation ) is differentiable for all of )(MDf ∈ . 

Indeed if X is a differentiable contra variant vector field and if  )(MDf ∈ , one has that )(:)( fXPfX p→ is a 
differentiable function too as having a coordinate representation . 

( ) ( )
),...,1(

111 ,....,,...,)(:)( nxxi
nin

x
fxxXxxUfX

∂
∂

→∈− φφ  

In every local coordinate chart ),( φU and all the involved function being differentiable . Conversely )( fXp p→ defines a 
function in )(MD , )( fX for every )(MDf ∈ the components of )( fXp p→ in every local chart ),( φU must be 

differentiable . This is because in a neighborhood of Uq∈ , ( ))1()( fXqX i = . 

Where the function )()1( MDf ∈ vanishes outside U and is defined as )(rxr i→ , )(rh in U where ix is the i-th component 
of φ ( the coordinate ix ) and h a hat function centered on q with support in U . Similarly the differentiability of a covariant vector 

field w is equivalent to the differentiability of each function pp wXp .→ for all differentiable vector fields X . 

(5) If )(MDf ∈ the differential of f in p , pdf is the 1-form defined by 
p

i

p
ip dx

x
fdf

∂
∂

= in local coordinates about p . 

The definition does not depend on the chosen coordinates .As a consequence , the point Mp∈ , pdfp → defines a covariant 
differentiable vector field denoted by df and called the differential of f . 
(6) The set of contra variant differentiable vector fields on any differentiable manifold M defines a vector space with field given by 
R is replaced by )(MD , the obtained algebraic structure is not a vector space because )(MD is a commutative ring with 

multiplicative and addictive unit elements but fails to be a field . However the incoming algebraic structure given by a vector space 
with the field replaced by a commutative ring with multiplicative and addictive unit elements is well know and it is called module.  

III. INTEGRATION OF TENSOR FIELDS 
 In the previous in this section we defined the Lie derivative of tensor field along a few tXat exp= of a vector field X  . 
Analogously , one can spank about an integration of tensor fields. In particular we need to recover a tensor field its known Lie 
derivative with respect to the vector field X . 
Definition 3.1 
The indefinite integral of a function tf ′ with respect to the parameter t is defined as the set of all ant derivatives of tf ′ along flow 

ia of X symbolized by . 
(3.1)                                                                                      0ffdtf ii +=′∫  
Where 0f is an invariant of X i.e 00 =fX . 
Definition 3.2 
The definite integral of tf ′ on a closed interval [ ]ba, is defined by the Newton –Leibniz formula. 
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(3.3)                                                                   )()( afbffdtf b

at

b

a
t −==′∫  

f is a tensor field, then along with the Lie differentiation one can speak about an integration of tensor fields along the flow of X . 
Let S and Q be smooth tensor fields of the same type on M . 
Definition 3.3 
A tensor fields , Q  is said to be an ant derivative of S along the flow X if SQlQ X ==′ .Let 1Q and 2Q be tensor fields of the 
same ant derivative of S .then the second one is an ant derivative of S if and only if 021 QQQ =− where 0Q is an invariant tensor 
field along the flow of X ,i.e 00 =QlX . 
Definition 3.4 
The indefinite integral of the tensor field S with respect to t is defined as the set of all ant derivatives of S along the flow ia of 
X ,symbolized by . 

(3.4)                                                                                        0QQdtS tt −=∫  
Where Q is a ant derivative of S and 00 =QlX the next proposition relates the integration and the Lie differential of tensor fields. 
Proposition 3.5 
Let Q be an ant derivative of S along the flow  ia of X and suppose S is continuous on a closed interval [ ]ba, .Then the definite 
integral of S is defined by . 
(3.5)                                                                                        abt QQdtS −=∫  
Proof: 
Let the closed interval [ ]ba, be partitioned by points bttttttta nniii =≤≤≤≤≤≤≤≤= −+− 11110 ......... then the definite 
integral of S is defined by taking the limit of the sum. 

                                                                                             i

n

i
iitt

b

a
tSdtS ∆= ∑∫

=→∆
10maxlim ξ  

Where iSξ is the value of S at an arbitrary point ),( 1 iii tt −∈ξ and 1−−=∆ iii ttt is the length of the subinterval 
ni ,...,2,1= According to the mean value theorem there is one point iξ in each open interval )( 1−− ii tt such that 

1−−=∆ ititii QQtS ξ we have )( 1
1

−
=

−=− ∑ it

n

i
itab QQQQ which can be rewritten as . 

(3.6)                                                             i

n

i
iab tSQQ ∆=− ∑

=1
ξ  

Then taking the limit of sum in the right-hand side (3.6) as ∞→n we obtain . Let Y be differentiable vector field on M . 

(3.7)                                                                                    [ ] ba
t

b

a
YYdtYX −=∫ ,

 
Example 3.6 ( Geometrical examples ) 

Let us consider the linear vector field 
yx

yX
∂
∂

+
∂
∂

−= on the x,y plane the flow ia of X is a uniform circular motion around the 

origin )sincos,sincos(),(: txtytytxyxai +−→ the indefinite integral of a function along the flow ia is defined by 

(3.1) , where )(00 Iff =  is a function of invariant 22 yxI += of X form (3.3) it follows that the indefinite integral of a vector 
field [ ]YX , is of the form [ ] 0, YYdtYX tt +=∫ , where Y is a differentiable vector field on the xy plane , and 0Y is of the form 

y
yx

x
yxY

∂
∂

+
∂
∂

= ),(),(0 ηξ . According to condition [ ] ( ) ( ) 0, 0 =
∂
∂

−+
∂
∂

+=
y

X
x

XYX ξηηξ the functions ξ and 

η must satisfy the system of linear ODEs . 

                                                                                                   




=′+′′
=′+′′

0
0

ηη
ξξ

 

Where prime denotes the derivative with respect to X . Supposes two function xf = and yg = be given on the yx, plan .The 
dragging of those functions and the function yxgf +=+ along the flow of X are described by tttt ygxf == , and 

tt yxgf )()( +=+ respectively . Let us calculate the corresponding definite integrals on the closed interval [ ] 



=

2
,0, πba . 

By (3.2) we have. 
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yyxdtyxdtgf

yxydtydtg

yxxdtxdtf

ttttt

ttt

ttt

2)()()( 2
0

/2

0

2

0

/

2
0

2

0

2

0

2
0

2

0

2

0

−=+=−=+

−===

−−==′=′

∫∫

∫∫

∫∫

π
ππ

π
ππ

π
ππ

 

Consider the vector field 
y

Y
∂
∂

= the Lie derivatives of Y with respect to X is described the vector – function 

[ ] [ ] Y
y

YXY
x

YXY −=
∂
∂

−=′=′′
∂
∂

==′ .,. thus we have 0=′+′′ YY and the dragging of Y along the flow of X is 

described by the vector-function
y

t
x

tYTaY it ∂
∂

+
∂
∂

== cossin  then using we obtain the definite integral of field 
x

Y
∂
∂

=′ on 

the closed interval 





2
,0 π

  
 
  

 
The figure (1) illustrate the meaning of the definite integral of a vector field on the . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (1) : the flow of X is the uniform circular motion around the origin in the counterclockwise direction . The Lie derivative of  

y
Y

∂
∂

= ( south wind ) with respect to X is the field 
x

Y
∂
∂

=′ ( west wind) . 

 
 
 
 
 
 
 
 
 
 
 
Figure (2) : The field Y is rotated in moving frame according to the law tYtYYt sincos ′+= ( the wind changes own direction 

rotating clockwise ) . The calculating of definite integral [ ]dtYX∫
2

0
.

π

yields the field 
yx ∂
∂

∂
∂ , (north-west wind )  

 
 
 

y
t

x
t

xyx
Ydt

x t
t

t ∂
∂

−
∂
∂

=






∂
∂

∂
∂

−
∂
∂

==






∂
∂

∫ sincos,2
0

2

0

π
π
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Figure (3): the summands for the integral sum are defined by the mean value theorem taking the limit of the integral sum. We obtain 
the closing line to the hodograph of iY , the hodograph is the velocity as function of time . The hodograph of the vector-function 

iY has the same trajectory as X but with opposite direction . The integral sum tt t
tY ∆′∑/

ξ ξ is a broken line to the hodograph and the 

integral yx ∂
∂

−
∂
∂

is a straight line closing this broken , see Figure (3) . 

Example 3.7 

Let three vector fields                        
y

x
x

yZ
z

x
x

zY
z

y
y

zX
∂
∂

−
∂
∂

=
∂
∂

+
∂
∂

−=
∂
∂

−
∂
∂

= ,,  

Be given in space in the space xyz . The flows of XY , and Z are rotation about three axis xyz respectively . Let us consider the 
dragging of Y along the flow of X the dragging of Z along the flow of Y and the dragging of X along the flow of Z : 

[ ]
[ ]
[ ] tYtXXXXYYZX

tXtZZZZXZYZ
tZtYYYYZYXY

t

t

t

sincos0,,
sincos0,,

sincos0,,

+=⇒=+′′==′
+=⇒=+′′==′
+=⇒=+′′==′

 
Let us calculate the integrals of XY , and Z on a closed interval [ ]ba, . 

[ ]

[ ]

[ ] 





 +

−
+−

===







 +

−
+−

=−==







 +

−
+−

=−==

∫∫

∫∫

∫∫

2
cos

2
sin

2
sin2_,

2
cos

2
sin

2
sin2,

2
cos

2
sin

2
sin2,

baZbaXbaXXdtXZdtY

baXbaZbaZZdtZYdtX

baZbaYbaYYdtYXdtZ

ab
t

b

a

b

a
t

ab
t

b

a

b

a
t

ab
t

b

a

b

a
t

 

Taking 0=a and 
2
π

=b we obtain three vector fields . 

(3.8)                                                    ( )
z

x
y

x
x

zydtZt ∂
∂

−
∂
∂

−
∂
∂

−=∫
2

0

π

 

(3.9)                                                   ( )
z

y
y

zx
x

ydtX t ∂
∂

−
∂
∂

+−
∂
∂

−=∫
2

0

π

 

(3.10)                                                 ( )
z

y
y

zx
x

ydtYt ∂
∂

−
∂
∂

+−
∂
∂

=∫
2

0

π

 

The flow of the field (3.8) is . 

{ ( )
2
2sin2cos),,( tzytxxzyx t ++=→  

              { ( )
2

2cos1
2
2sin),,( tzytxyyzyx t

−
+−−=→  

             { ( )
2

2cos1
2
2sin),,( tzytxzzzyx t

−
+−−=→  
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From the equalities  zyzy tt −=− and 2222 )(2)(2 zyxzyxt ++=++ we obtain two invariants . 
(3.11)                                                                    zyIzyxI −=++= 2

22
1 ,)(2   

It means that the level surfaces of the trajectories of the field (3.9) are elliptic cylinders with axis of rotation 0,0 ==+ xzy . 
The trajectories are ellipse on the intersections of cylinders 01 ≥=cI with plane 02 ≥= cI perpendicular to the axis of rotation 
the flow of the field (3.9) is . 

                                                                   { ( )
2

2cos1
2
2sin),,( tzxtyxxzyx t

−
+−−=→  

                                                                   { ( )
2
2sin2cos),,( tzxtyyzyx t ++=→  

                                                                   { ( )
2

2cos1
2
2sin),,( tzxtyzzzyx t

−
+−−=→  

And the invariants are zyIzyxI −=++= 2
22

1 ,)(2 the level surface the trajectories of the field (3.9) are elliptic with axis of 

rotation 0,0 ==+ xzy the trajectories are ellipses on the intersection of the cylinders 01 ≥=cI with planes 

02 ≥= cI perpendicular to the of rotation from dtXdtY tt ∫∫ −= 2020

ππ

it follows that the flow and invariants of the fields (3.9) and 
(3.10) are the sume, but the trajectories of these fields are opposite directed.  
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IV. CONCLUSION 
(a) The introduced definitions allows one  to introduce the tensor algebra )( MTA pR of tensor spaces obtained by tensor products of space 

R  and )( MTp and )( * MT p . Using tensor defined on each point Mp∈ one may define tensor fields. 

(b) the tensor product TSTS ⊗→),( form )()()( 1 VTVTVT klk +→× , there is a construction of a product 
1)()( +→× klk AVAVA since tensor products of alternating tensors are not alternating. 

(c) The definite integral of tf ′ on a closed interval [ ]ba, is defined by the Newton –Leibniz formula. 

(d) )()( afbffdtf b
at

b

a
t −==′∫  

(e) f is a tensor field, then along with the Lie differentiation one can speak about an integration of tensor fields along the flow of X . S and 
Q be smooth tensor fields of the same type on M . 
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