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I. INTRODUCTION 
he fixed point theorems concern maps f of a set X into itself 
that, under certain conditions, admit a fixed point, that is, a 

point x ∈ X such that f(x) = x.  Which the knowledge of the 
existence of fixed points has relevant applications in many 
branches of analysis and topology.  Then let us show for instance 
the following simple but indicative example. 
        Suppose we given a system of n  equations in n unknowns 

of the form  j(x1, . . . , xn) = 0, j = 1, . . . , n 

where the j are continuous real-valued functions of the real 

variables xj . Let hj(x1, . . . , xn) = j(x1, . . . , xn) + xj , and for 
any point  x = (x1, . . . , xn) define  h(x) = (h1(x), . . . , hn(x)). 

Assume that h has a fixed point   ∈ Rn. Then  we see that     
is a solution to the system of equations.. 
 

II. THE BANACH CONTRACTION PRINCIPLE 
 Definition  
        Suppose  that X is a metric space equipped with a distance 
d. A map f : X →X is said to be Lipschitz continuous if there is  λ 
≥ 0 such that d(f(x1), f(x))≥d λ (x1, x2), ∀ x1, x2 ∈ X. The smallest 
λ  for which the above inequality holds is the Lipschitz constant 
of  f. If  λ ≤ 1 f is said to be non-expansive, if λ < 1 f is said to be 
a contraction. 
 
2.1 Theorem [Banach]  
        Suppose that  f is a contraction on a complete metric space 

X. Then  has a unique fixed point   ∈ X. 
 
Proof:  
        if x1, x2 ∈ X are fixed points of f, then 
d(x1, x2) = d(f(x1), f(x2)) ≤ λ  d(x1, x2) 
        which imply x1 = x2. Choose now any x0 ∈ X, and define 
the iterate sequence x n+1 = f(xn). By induction on n, 
d(x n+1, xn) ≤ λ n d(f(x0), x0). 
    if n ∈ N and m ≥ 1,  
  d(xn+m, xn) ≤  d(x n+m, xn+m− 1 ) + · · · + d(x n+1, x) 
                    ≤ (λ n+m + · · · + λn) d(f(x0), x0)        (1) 

xn limit . Hence xn is a Cauchy sequence, and admits a 

limit  ∈ X, for X is complete. Since f is continuous,  then we 

have f( ) = limn f(xn) = limn x n+1 = .  

Remark:  
     Let m →∞  in (1) we find the relation 

d(xn, ) ≤  d(f(x0), x0)  which provides a control on the 

convergence rate of xn  to the fixed point . The completeness of 
X plays here a crucial role. Indeed, contractions on incomplete 
metric spaces may fail to have fixed points. 
 
(2.2)Example : 
        Suppose that  X = (0, 1] with the usual distance. Define  
 f : X → X  as f(x) = x/2. 
 
(2.3) Corollary 
        Let X be  a complete metric space and Y be a topological 
space. Let f : X ×Y → X is a continuous function. Assume that f 
is a contraction on X uniformly in Y , that is, 
 
d(f(x1, y), f(x2, y))  ≤ λ d(x1, x2), ∀ x1, x2 ∈ X, ∀ y ∈ Y 
for some λ < 1. Then, for every fixed y ∈ Y , the map  
 
x ↦ f(x, y) has a unique fixed point 𝝋(y). Moreover, the function 
y ↦ 𝝋(y) is continuous from Y to X. Notice that  
 
if f : X × Y →X is continuous on Y and is a  contraction on X 
uniformly in Y , then f is in fact continuous on X × Y . 
 
Proof:   
        In light of Theorem 1.3, we only have to prove the 
continuity of 𝝋. For y, y0 ∈ Y , we have 
d(𝝋(y), 𝝋(y0)) = d(f(𝝋(y), y), f(𝝋(y0), y0)) 
≤ d(f(𝝋 (y), y), f(𝝋(y0), y)) + d(f(𝝋(y0), y), f(𝝋(y0), y0)) 
≤ λ d(𝝋(y), 𝝋(y0)) + d(f(𝝋(y0), y), f(𝝋(y0), y0)) 
which implies 

d(𝝋(y),𝝋(y0)) ≤  d(f𝝋(y0), y), f(𝝋(y0), y0)). 
 
        Since the above right-hand side goes to zero as y → y0, we 
have L >0 the desired continuity.  
 
Remark  
        If in addition Y is a metric space and f is Lipschitz 
continuous in Y , uniformly with respect to X, with Lipschitz 
constant L ≥ 0, then the function y ↦ 𝝋(y) is Lipschitz 
continuous with Lipschitz constant less than or equal to 
L /(1 − λ).Theorem 2.1 gives a sufficient condition for f in order 
to have a unique fixed point. 
(2.4)Example 
      Consider the map 

T 
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g(x) =   
 
mapping [0, 1] onto itself. Then g is not even continuous, but it 
has a unique fixed point (x = 1/2). The next corollary takes into 
account the above situation, and provides existence and 
uniqueness of a fixed point under more general conditions. 
 
(2.5)Definition:  
        For f : X → X and n ∈ N, we denote by f n the nth -iterate of f, 
namely, f ◦, · · ·◦ f   n-times (f 0 is the identity map). 
(2.6) Corollary : 
        Suppose that X is a complete metric space and let f : X → X. 
If f n is a contraction, for some n ≥ 1, then f has a unique fixed 

point  X. 
 
proof : 

        Let  be the unique fixed point of   f n, given by Theorem 

1.3. Then  fn(f( )) = f(f n( )) = f( ), which implies f( ) = . 
Since a fixed point of f is  clearly a fixed point of f n, we have 
uniqueness as well. Notice that in the example g2(x) ≡1/2. 
 

III. FURTHER EXTENSIONS OF THE CONTRACTION PRINCIPLE 
        There is in the literature a great number of generalizations 
of Theorem 2.1  Here we point out some results.  
 
        Theorem [Boyd-Wong] :Let X be a complete metric space, 
and 
 let f : X→ X. Assume there exists a right-continuous function 
𝝋 : [0,1) → [0,1) such that 𝝋 (r) < r if r > 0, and 
d(f(x1), f(x2)) <𝝋(d(x1, x2)), ∀ x1, x2 ∈ X. Then f has a unique 

fixed point  ∈ X. Moreover, for any x0 ∈ X the sequence f n(x0) 

converges to . Clearly, Theorem 2.1 is a particular case of this 
result, for 𝝋(r) = λ r.  
 
Proof:  
        If x1, x2 ∈ X are fixed points of f, then  
        d(x1, x2) = d(f(x1), f(x2)) < 𝝋(d(x1, x2))  fixed point 
theorems 
so x1 = x2. To prove the existence, fix any x0 ∈ X, and define the 
iterate sequence x n+1 = f(xn). We show that xε is a Cauchy 
sequence, and the desired conclusion follows arguing like in the 
proof of Theorem 2.1. For n ≥1, define the positive sequence 
an = d(xn, x n−1). It is clear that  a n +1 <𝟁 (an) < an; therefore an 
converges monotonically to some a ≥ 0.  From the right-
continuity of 𝟁, we get a ≤ 𝟁(a), which entails a = 0. If xn is not 
a Cauchy sequence, there is ε > 0 and integers mk ≥ nk ≥ k for 
every k ≥ 1 such that  

        dk := d(xmk , xnk) ≥ε,  ∀ k ≥ 1.In addition, upon choosing the 
smallest possible mk, we may assume that  d(x mk−1 , x nk) < ε  for 
k big enough (here we use the fact that  
an → 0). Therefore, for k big enough,  
ε ≤ dk ≤ d(xmk , x mk−1) + d(x mk−1 , xnk) < a mk + ε 
implying that dk → ε from above as k → ∞. Moreover, 
dk

 < d k+1 + a mk+1 + a nk+1 ≤ φ(dk) + a mk+1 + a nk+1 
and taking the limit as k → ∞ we obtain the relation ε≤φ(ε), 
which has to  be false since ε > 0.  
 
(3.1)Theorem [Caristi] : 
        Let X be a complete metric space, and let f : X →X. 
Assume there exists a lower semicontinuous function   
        𝟁 : X → [0,1) such that d(x, f(x)) ≤𝟁  (x) − 𝟁 (f(x)), ∀ x ∈ 
X. Then f has (at least) a fixed point in X. Again, Theorem 2.1 is 
a particular case, obtained for  𝟁(x) = d(x, f(x)) /(1−λ). Notice 
that f need not be continuous.  
 
Proof: 
        We introduce a partial ordering on X, setting x ≤y if and 
only if d(x, y) ≤𝟁 (x) − 𝟁 (y). Let ;𝟇 ≠ X0 ⊂ X be totally 
ordered, and consider a sequence  xn ∈ X0 such that  𝟁 (xn) is 
decreasing to α := inf{𝟁 (x) : x ∈ X0}. If n ∈ N and m ≥ 1,  

d(x n+m, xn) ≤ ,  

(x n+I - 𝟁 (xi) , 𝟁 (x n+i+1)    
            = 𝟁 (x n) − 𝟁 (x n+m). 
 
        Hence x n is a Cauchy sequence, and admits a limit xn ∈ X, 
for X is complete. Since   can only jump downwards (being 
lower semicontinuous), we also have 𝟁 (x*) = α. If x ∈ X0 and  
d(x, x*) > 0, then it must be x ⪯ xn for large n. Indeed,  
limn  𝟁(xn) = 𝟁 (x*) ≤ 𝟁 (x). We conclude that x* is an upper 
bound for X0, and by the Zorn lemma there exists a maximal 

element . On the other hand  ⪯ f( ), thus the maximality of 

 forces the equality  = f( ). If we assume the continuity of f, 
we obtain a slightly stronger result, even relaxing the continuity 
hypothesis on  𝟁. 
 
(3.2)Theorem:  
        Let X be a complete metric space, and let f : X → X be a 
continuous map. Assume there exists a function   : X → [0,∞) 
such that d(x, f(x)) ≤𝟁 (x) − 𝟁 (f(x)), ∀ x ∈ X. 
 
        Then f has a fixed point in X. Moreover, for any x0 ∈ X the 
sequence f n(x0) converges to a fixed point of f. 
Proof : 
        Let x0 ∈X. Due the above condition, the sequence  
𝟁 (f n(x0)) is decreasing, and thus convergent. Reasoning as in 
the proof of the Caristi theorem, we get that f n(x0) admits 

 a limit  ∈ X, for X is complete. The continuity of f  then 

entails f( ) = limn f(f n(x0)) = . We conclude with the 
following extension of Theorem 1.3, that we state without proof. 
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(3,3)Theorem [ iri ] :  
        Let X be a complete metric space, and let f : X → X be such 
        That d(f(x1), f(x2)) ≤λ max {d(x1, x2), d(x1, f(x1)), d(x2, 
f(x2)), d(x1, f(x2)), d(x2, f(x1)) } 
for some λ < 1 and every x1, x2 ∈ X. Then f has a unique fixed 

point  ∈ X. Moreover, d(f n(x0), ) = O(λn) for any x0 ∈ X. 
Also in this case f need not be continuous. However, it is easy to 
check that it is continuous at the fixed point. The function g of 
the former example fulfills the hypotheses of the theorem  
with λ = 2/3. 
 

IV. WEAK CONTRACTIONS 
        We now dwell on the case of maps on a metric space 
which are contractive without being contractions. 
(4.1)Definition : 
        Let X be a metric space with a distance d. A map f : X → X 
is a weak contraction if 
d(f(x1), f(x2)) < d(x1, x2), ∀ x1 ≠ x2 ∈ X. 
        Being a weak contraction is not in general a sufficient 
condition for f in order to have a fixed point, as it is shown in the 
following simple example. 
 
(4.2)Example: 
        Consider the complete metric space X = [1,+∞), and let f : X 
→ X  be defined as f(x) = x+1/x. It is easy to see that f is a weak 
contraction with no fixed points. Nonetheless, the condition turns 
out to be sufficient when X is compact. 
 
(4.3)Theorem : 
        Let f be a weak contraction on a compact metric space X. 

Then f has a unique fixed point  ∈ X. Moreover, for any  

x0 ∈ X the sequence f n(x0) converges to . 
 
Proof: 
        The uniqueness argument goes exactly as in the proof of 
Theorem 2.1. From the compactness of X, the continuous 

function x ↦d(x, f(x)) attains its minimum at some  ∈ X. If 

≠ f( ), we get 

         d( , f( )) = min x∈Xd(x, f(x)) ≤ d(f( ), f(f( ))) < d( , 

f( )) 

        which is impossible. Thus  is the unique fixed point of f 

(and so of fn for all n ≥ 2). Let now x0 ≠  be given, and define 

 dn = d(fn(x0), ). Observe that   

d n+1 = d(f n+1 (x0), f( )) < d(fn(x0), ) = dn. 
 

        Hence dn is strictly decreasing, and admits a limit r ≥ 0. Let 

now f (x0) be a subsequence of fn(x0) converging to some  z 

∈ X. Then r = d(z, ) = lim k→∞dnk = lim k→∞  

          = lim k→∞ d(f(fn
k(x0)), ) = d(f(z), ). But if z ≠ , then 

d(f(z), ) = d(f(z), f( )) < d(z, ). Therefore any convergent 

subsequence of fn(x0) has limit , which, along with the 

compactness of X, implies that fn(x0) converges to . Obviously, 

we can relax the compactness of X by requiring that be 
compact (just applying the theorem on the restriction of f on 

Arguing like in Corollary 2.3 , it is also immediate to 
prove the following 
 
(4.4)Corollary:  
        Suppose that  X is a compact metric space and let f : X →X. 
If fn is a weak contraction, for some n ≥ 1, then f has a unique 

fixed point  ∈ X. 
 
(4.5) A converse to the contraction principle : 
        Assume we are given a set X and a map f : X →X. We are 
interested to find a metric d on X such that (X, d) is a complete 
metric space and f is a contraction on X. Clearly, in light of 
Theorem 2.1,a necessary condition is that each iterate fn has a 
unique fixed point. Surprisingly enough, the condition turns out 
to be sufficient as well. sequences of maps and fixed points . 
 
(4.6)Theorem [Bessaga] : 
        Suppose that X is an arbitrary set, and let f : X → X be a 

map such that fn has a unique fixed point  ∈ X for every n ≥ 1. 
Then for every ε ∈ (0, 1), there is a metric d = dε on X that 
makes X a complete metric space, and f is a contraction on X 
with Lipschitz constant equal to ε. 
 
proof :   
        suppose ε ∈ (0, 1) and  let Z be the subset of X consisting of 

all elements z such that fn(z) =  for some n ∈N. We define the 
following equivalence relation on X \ Z: we say that x~ y if and 
only if f n(x) = f m(y) for some n,m ∈ N. Notice that if  
f n(x) = f m(y) and f n͂(x) = f m'(y) then f n+m' (x) = f m+n'(x). 
         
        But since x ≠ Z, this yields n + m' = m + n', that is,  
 n − m = n' − m'. At this point, by means of the axiom of choice, 
we select an element from each equivalence class. We now 

proceed defining the distance of  from a generic x ∈X by 

setting d( , ) = 0, d(x, ) = ε-n if  x ∈ Z with x ≠ , where 

 n = min{m ∈ N : fm(x) = }, and  d(x, ) = ε n−m if x ≠ Z, where 

n,m ∈ N are such that  f n(ˆx) = f m(x), ˆ  being the selected 
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representative of the equivalence class [x]. The definition is 
unambiguous, due to the above discussion. Finally ,for any 
 x, y ∈ X, we set d(x, y) 

=   
 
        It is straightforward to verify that d is a metric. To see that d 
is complete, observe that the only Cauchy sequences which do 

not converge to  are ultimately constant. We are left to show 
that f is a contraction with Lipschitz constant equal to ε. Let x ∈ 
X,  
 
x ≠ x. If x ∈ Z we have 

d(f(x), f( )) = d(f(x), ) ≤ ε−n =ε ε−(n+1) = εd(x, ). 
 
If x ≠ Z we have 

d(f(x), f( )) = d(f(x), ) = ε n−m - εε n−(m+1) = εd(x, ) 
 
since x ~ f(x). The thesis follows directly from the definition of 
the distance.  
 

V. SEQUENCES OF MAPS AND FIXED POINTS 
        Suppose that (X, d) be a complete metric space. We consider 
the problem of convergence of fixed points for a sequence of  
fn : X → X. Corollary 2.3 will be implicitly used in the 
statements of the next two theorems. 
 
(5.1) Theorem  
        Assume that each fn has at least a fixed point xn = fn(xn). 
Let 
f : X → X be a uniformly continuous map such that fm is a 
contraction for some m ≥ 1. If   fn converges uniformly to f, then 

xn converges to  = f( ). 
 
Proof:  We  assume that f is a contraction (i.e., m = 1).  
        Let λ < 1 be the Lipschitz constant of f. Given ε > 0, choose 
 n0 = n0(ε) such that d(fn(x), f(x)) <ε(1-λ)Then, for n ≥ n0, 

d(xn, ) = d(fn(xn), f )) 

≤ d(fn(xn), f(xn)) + d(f(xn), f( )) 

 ≤ ε(1 − λ) + λd(xn, ). 
 

Therefore d(xn , )≤ε, which proves the convergence. 
        To prove the general case  we observe that if 
d(f m(x), f m(y)) ≤λ md(x, y) for some λ < 1, we can define a new 
metric d0 on X equivalent to d by letting 
 

d0(x, y) =   
 

        Moreover, since f is uniformly continuous, fn converges 
uniformly to f  also with respect to d0. Finally, f is a contraction 
with respect to d0. 

d0(f(x), f(y)) =  

=λ  d( f k(x), f k(y)) +  d(fm(x), 

 f m(y))≤ d(   f k(x), f k(y)) = λd0(x, y). 
 
        So the problem is reduced to the previous case m = 1.The 
next result refers to a special class of complete metric spaces. 
 
(5.2 )Theorem:  
        Suppose that  X is locally compact. Assume that for each n 

∈ N there is m n ≥ 1 such that  is a contraction. Suppose 
that  
  f : X → X be a map such that fm is a contraction for some  m ≥1 

equicontinuous family, then xn = f n(xn) converges  to  = f( ). 
 
Proof: 
        Suppose trhat  ε = 0 is sufficiently small such that 

K( , ε) := {x ∈ X : d(x, )≤ ε ⊂ X is compact. As a byproduct 

of the Ascoli theorem, fn converges to f uniformly on K( ,ε), 
since it is equicontinuous and pointwise convergent. Let 
 N0 = n0(ε) such that d(f m n (x),  f m(x)) ≤ ε(1 − λ), ∀ n ≥ n0,  

∀ x ∈ K( , ε)  fixed points of non-expansive maps  where λ< 1 is 

the Lipschitz constant of f m. Then, for n≥ n0 and  x ∈ K( , ε) we 

have    d( f m n (x), ) = d(  f mn (x), f m( )) 

≤ d(f mn (x), f m(x)) + d(f m(x),  f m( ))  

≤ ε(1 − λ_) + λd(x, )≤ ε. 

Hence (K( , ε))⊂ K( , ε ) for all n≥ n0. Since the maps 

are contractions, it follows that, for n≥ n0, the fixed points 

xn of fn belong to K , ε),that is, d(xn, ) ≤ ε. 
 

VI. FIXED POINTS OF NON-EXPANSIVE MAPS 
        Suppose that X  is a Banach space, C ⊂ X nonvoid, closed, 
bounded and convex, and then  f : C →C be a non-expansive 
map. The problem is whether f admits a fixed point in C. The 
answer, is false ,in general. 
 
(6.1)Example:  
      Suppose that X = c0 with the supremum norm.  

Letting C = X(0, 1), the map f : C → C defined by 
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 f(x) = (1, x0, x1, . . .), for x = (x0, x1, x2, . . .) ∈ C is non-
expansive but clearly admits no fixed points in C. Things are 
quite different in uniformly convex Banach spaces. 
(6.2 )Theorem [Browder-Kirk]:  
        Suppose that X is a uniformly convex Banach space and 
C ⊂ X be nonvoid, closed, bounded and convex. If f : C → C is a 
non-expansive map, then f has a fixed point in C. In the 
particular case when X is a Hilbert space . 
 
Proof: 
        Suppose that x*∈ C is a fixed point, and consider a 
sequence  
rn

 ∈ (0, 1) converging to 1. For each n ∈ N, define a  map 
 fn : C → C as fn(x) = rn(x) + (1 − rn)x* .Notice that fn is a 
contractions on C, hence there is a unique  xn ∈ C such that fn(xn) 
= xn. Since C is weakly compact, xn has a subsequence (still 

denoted by xn) weakly convergent to some  ∈ C. We shall 

prove that  is a fixed point of f.     Notice first that  

lim n →∞
2 − 2 = 

2 

 
Since f is non-expansive we have 

                           ≤ +  
                     

=  
 
But rn →1 as n →∞ and C is bounded, then  we conclude that 
 

Limn→∞      sup 2- ≤ 0 , 

   which yields that  the equality f( ) = . 
 
(6.3)Proposition:  
        In Theorem 3.1, the set F of fixed points of f is closed and 
convex. 
 
proof : 
        The first assertion is trivial. Assume then x0, x1 ∈ F, with x0 
≠ x1, and denote xt = (1 − t)x0 + tx1, with t ∈ (0, 1). We have 

 =  

≤  +  

=  

≤ =(1-t)  
 
that imply the equalities 

=t  

= (1 − t) . 
 

        The proof is completed if we show that f(xt) = (1−t)x0+tx1. 
This follows from a general fact about uniform convexity.  
 

VII. INTEGRAL EQUATIONS 

        Let a, b ∈ R with a < b. Let (x, y)  K(x,y) be a 
measurable function on {a < x < b; a < y< b}. 
 
7.1 .Theorem. 

        Suppose that  
 

and  ∈ L2([a, b]). Then the integral equation 

f(x) = g(x) + μ  

has a unique solution for ⎸μ⎸ ≤  
 
Proof: We claim that the function h defined by 

h(x) := g(x) +𝜇  
 
where f ∈ L2([a, b]), lies in L∈([a; b]). By linearity, the triangle 
inequality, and our hypothesis that g ∈ L∈([a, b]), 
 
we only need to show that  
 

𝛹(x):= L2([a, b]). By Fubini's 

theorem and H lder's inequality, 

≤(

 

dy)dx 
 
=(

 
        Define a mapping T : L2([a, b]) → L2([a, b]) by Tf := h, 
where the metric d is the standard L2 metric. For 

f1; f2 ∈ L2([a; b]), we have by H lder's inequality that 
d(Tf1; Tf2) = ⎸𝜇  ⎸(  
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≤⎸𝜇  ⎸( 

 

≤⎸μ⎸  d( ) 

If ⎸μ⎸< , then the preceding 
estimate shows that T is a contraction mapping.  
 

VIII. MATRIX EQUATIONS 
        Consider system of linear algebraic equations given by the 
matrix problem Ax = b, where 
 

A =  

=(  
 
We can re-write this system of equations as 
x1 = (1 − a11)x1 − a12x2 − ⋯ − a1nxn + b1 
x2 = −a21x1 + (1 − a22)x2 − ⋯−a2nxn + b2 
⋮                                                           ⋮ 
xn = −an1x1 − an2x2 − ⋯ + (1 − ann)xn + bn 
 
        For 1 ≤ I, j≤ n, set aij := −aij +δ ij , where δij is the 
Kronecker delta function. We can write the above system 
of equations as 
 

xi =      ∀i=1,….,n 
 
        We can  see that the matrix problem Ax = b is equivalent to 
the matrix problem x− Ax + b = x.  Then We define a map 
T : Rn → Rn, T(x) := x − Ax + b 
 
        Thus finding solutions of the matrix problem Ax = b is 
equivalent to finding fixed points of the map T. Observe 
that, for x xi ∈ Rn, 
 
        Tx – Tx' = (x − Ax + b) − (x' – Ax' + b) 
 = (x – x') − (Ax – Ax') = (x – x') − A(x – x' ) = (I − A)(x – x') 
 
        We  claim that Ax = b has a unique solution if 

 
 

        We define a metric d on Rn by 

 d(y− y') = sup 1≤i≤n ⎸ Then  
 
d(Tx; Tx') = 

sup1≤i≤n⎸ sup1≤i≤n ⎸

 

=sup1≤i≤n( )(sup1≤i≤n⎸x− ) 

=d  sup 1≤i≤n  

≤kd(x− ). 
 
Which shows  that T is a contraction mapping.  
 

IX. PICARD-LINDE F THEOREM 
9.1Theorem: Let A ={(x, 

y)∈  
 
 and let f : A → R be Lipschitz continuous in the second variable. 
Let (x0; y0) ∈ A∘. Then the ordinary differential equation 

= f(x, y) 
has a unique solution y = g(x) satisfying g(x0) = y0 defined on an 
interval [x0 −ϵ, x0 +ϵ], for some ϵ > 0. 
 
        Proof:. By the fundamental theorem of calculus, solving the 
ODE in the statement of the theorem is equivalent 
to finding a unique solution to the integral equation 

g(x) = g(x0) +  
 
Let q > 0 be a constant such that  
        ⎸f(x, y1) ≤ f(x, y2)⎸≤ q ⎸y1 − y2 ⎸ for all (x, y1); (x, y2) ∈ 
A. Since A ⊂ R2 is compact and f is continuous, f is bounded 
some constant M > 0 on A. Choose ϵ > 0 such that ϵ < q−1, and let 
B 

:={(x,y)∈ : −ϵ≤x≤ ,

 
  
        Note that B ⊂ A. Let X be the subset of (C([x0 −ϵ; x0 +ϵ]); 

d), with d(.,.) = ∥. _. , of functions g satisfying 
d(g, g(x0)) ≤ Mϵ. It is evident from limit properties that (X, d) is 

a closed subspace. Set h := y0+ . 
 
We observe that 

http://ijsrp.org/


International Journal of Scientific and Research Publications, Volume 6, Issue 1, January 2016      233 
ISSN 2250-3153   

www.ijsrp.org 

d(h, y0) = sup x∈[ -

ϵ_; ⎸ +  

sup

 
        Hence, h ∈ X. Define a mapping  T : X →X by Tg := h. We 
claim that T is a contraction mapping. Indeed, for g1, g2 ∈ X, we 
have that 

d(Tg1; Tg2) = sup x∈[ -ϵ_; g1(t)) dt-

y0+ (t,g2(t)dt 

≤ sup x∈[ -ϵ_; g1(t))−f(t, g2(t))⎸ dt 
 

≤ sup x∈[ -ϵ_; g(t))− g2(t))⎸ dt 

≤d(g1, g2)  

= d( ) 
 
where 0 ≤ k ≤1 by our choice of ϵ. We conclude that T is a 
contraction mapping. 
 
        More of applications follows on the next paper. 
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